
Benchmarking WasmFX

Daniel Hillerström

Computing Systems Laboratory
Zurich Research Center

Huawei Technologies, Switzerland
and

The University of Edinburgh, UK

May 20, 2024

WebAssembly Stacks Subgroup

https://dhil.net

https://dhil.net

Collaborators

Sam Lindley Andreas Rossberg Daan Leijen KC Sivaramakrishnan

Matija Pretnar Frank Emrich Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

Collaborators

Sam Lindley Andreas Rossberg Daan Leijen KC Sivaramakrishnan

Matija Pretnar Frank Emrich Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

Status: WasmFX in Wasmtime

Implementation status
Switching stacks via libcalls to Wasmtime Fiber

Wasm

Rust/Wasmtime Fiber runtime

lib

ca
ll

Continuations and their stacks are safe

Fiber stacks are pooled

Continuation metadata is unpooled

Continuation arguments are boxed

bas
e im

pl

opt impl

dev

Benchmark definitions

Definition: Microbenchmark
A “small” program designed to measure the performance of a single operation of the system.

Definition: Macrobenchmark
A program that is representative of some “real” workload, where context switching is inherent.

What we (micro)benchmark

General setup
Source language: C with a bespoke fiber library

Asyncify implementation
WasmFX implementation

Requirement: all fibers gracefully terminate (i.e. successful return or cancellation)

Fibers interface in C

/** The signature of a fiber entry point. **/
typedef void* (*fiber_entry_point_t)(void*);
/** The abstract type of a fiber object. **/
typedef struct fiber* fiber_t;

/** Allocates a new fiber with the default stack size. **/
fiber_t fiber_alloc(fiber_entry_point_t entry);
/** Reclaims the memory occupied by a fiber object. **/
void fiber_free(fiber_t fiber);

/** Yields control to its parent context. **/
void* fiber_yield(void *arg);

/** Possible status codes for ‘fiber_resume‘. **/
typedef enum { FIBER_OK, FIBER_YIELD, FIBER_ERROR } fiber_result_t;

/** Resumes a given ‘fiber‘ with argument ‘arg‘. **/
void* fiber_resume(fiber_t fiber, void *arg, fiber_result_t *result);

Experiments setup

Compilation pipelines
Asyncify

Prog.c
WASI SDK 22.0

-O3 --std=c17

wasm-opt

-O2 --asyncify
wasmtime compile

Prog.wasm
Prog.cwasm

WasmFX

Prog.c
WASI SDK 22.0

-O3 --std=c17
wasmtime compile

Prog.wasm
Prog.cwasm

Apples & oranges
Different storage

Asyncify-backed fibers in linear memory
WasmFX-backed fibers in tables

Clang unwilling to generate function references

Microbenchmark: Prime sieve

Description
Actor-based concurrency simulation

Computes the first 8100 prime numbers

8100 coroutines, multiple yields

Shallow call stack

Run-time ratio Binary size ratio
Asyncify 1.00 1.05 (41kb)
WasmFX (base) 5.31 1.0 (39kb)
WasmFX (dev)

3.25

1.0 (39kb)
Lower is better

Microbenchmark: Prime sieve

Description
Actor-based concurrency simulation

Computes the first 8100 prime numbers

8100 coroutines, multiple yields

Shallow call stack

Run-time ratio Binary size ratio
Asyncify 1.00 1.05 (41kb)
WasmFX (base) 5.31 1.0 (39kb)
WasmFX (dev) 3.25 1.0 (39kb)

Lower is better

Microbenchmark: C10m

Description
HTTP server workload simulation

10 million coroutines in total

Sliding window: 10000 coroutines run concurrently, each yielding once

Shallow call stack depth

Run-time ratio Binary size ratio
Asyncify 1.00 12.72 (9.1kb)
WasmFX (base) 3.87 1.0 (723b)
WasmFX (dev)

2.76

1.0 (723b)
Lower is better

Microbenchmark: C10m

Description
HTTP server workload simulation

10 million coroutines in total

Sliding window: 10000 coroutines run concurrently, each yielding once

Shallow call stack depth

Run-time ratio Binary size ratio
Asyncify 1.00 12.72 (9.1kb)
WasmFX (base) 3.87 1.0 (723b)
WasmFX (dev) 2.76 1.0 (723b)

Lower is better

Microbenchmark: Skynet

Description
Nested tree-structured concurrency simulation

10 million coroutines in total, 6 active, each yielding once

Deep call stack

Run-time ratio Binary size ratio
Asyncify 1.00 27.52 (9kb)
WasmFX (base) 4.18 1.0 (327b)
WasmFX (dev)

3.25

1.0 (327b)
Lower is better

Microbenchmark: Skynet

Description
Nested tree-structured concurrency simulation

10 million coroutines in total, 6 active, each yielding once

Deep call stack

Run-time ratio Binary size ratio
Asyncify 1.00 27.52 (9kb)
WasmFX (base) 4.18 1.0 (327b)
WasmFX (dev) 3.25 1.0 (327b)

Lower is better

Microbenchmark: Hello World

Description
Cooperatively printing of “Hello World”

2 coroutines, print one letter, yield

Print operation and yield in loop

Run-time ratio Binary size ratio
Asyncify 2.95 1.4 (33kb)
WasmFX (base) 1.0 1.0 (24kb)
WasmFX (dev) 1.0 1.0 (24kb)

Lower is better

Microbenchmark: C10m revisited

Description
HTTP server workload simulation

10 million coroutines in total

Sliding window: 10000 coroutines run concurrently, each yielding once

Shallow call stack depth

I/O call in hot loop

Run-time ratio Binary size ratio

No I/O
Asyncify 1.00 12.72 (9.1kb)
WasmFX (base) 3.87 1.0 (723b)
WasmFX (dev) 2.76 1.0 (723b)

I/O
Asyncify 1.00 12.15 (9.2kb)
WasmFX (base) 1.41 1.0 (757b)
WasmFX (dev) 1.38 1.0 (757b)

Lower is better

Unsafe stacks

Unsafe stacks
Allocated via malloc

On demand allocation

Allocated

Allocated

Rubbish

Rubbish

Rubbish

Rubbish

Unsafe stacks

Unsafe stacks
Allocated via malloc

On demand allocation

Allocated

Allocated

Undetected overflow

Rubbish

Rubbish

Rubbish

Safe stacks

Safe stacks
Always allocated via mmap

Guard pages delimit stacks

Stack pools

Suggestive scheme for stack growing

Committed

Committed

Guard page

Reserved

Reserved

Reserved

Safe stacks

Safe stacks
Always allocated via mmap

Guard pages delimit stacks

Stack pools

Suggestive scheme for stack growing

Committed

Committed

Committed

Guard page

Reserved

Reserved

Microbenchmark: C10m revisited, again

Description
HTTP server workload simulation

10 million coroutines in total

Sliding window: 10000 coroutines run concurrently, each yielding once

Shallow call stack depth

Run-time ratio Binary size ratio
Asyncify 1.00 12.72 (9.1kb)
WasmFX (dev/pool) 2.76 1.0 (723b)
WasmFX (dev/no pool) 187.73 1.0 (723b)

Lower is better

What we (macro)benchmark

HTTP server
HTTP/1.1 servers written in C using Waeio (bespoke library)

Waeio: a prototype framework for interleaving I/O using stack switching

We serve a static page on /, and kill the server on /quit

We measure throughput and tail latency

Waeio: An effect-based I/O library

Waeio

Wasio Fiber

WASI (poll) Host (poll)

Host (epoll)?

Asyncify WasmFX

BoS?

Waeio: An effect-based I/O library

Waeio

Wasio Fiber

WASI (poll) Host (poll) Host (epoll)? Asyncify WasmFX

BoS?

Waeio: An effect-based I/O library

Waeio

Wasio Fiber

WASI (poll) Host (poll) Host (epoll)? Asyncify WasmFX BoS?

Macrobenchmark setup

Setup
Setup is the same as for microbenchmarks (+Waeio)

Http parser
picohttpparser (main branch commit f8d0513)

https://github.com/h2o/picohttpparser

Workload generator
wrk2 (main branch commit 44a94c1)

https://github.com/giltene/wrk2

Options:
-t4 -c1000 -R{80,60,40}000 -d60s

Binary size
Asyncify: 41kb (1.37×)

WasmFX: 30kb

Host driver: 30mb (statically linked)

https://github.com/h2o/picohttpparser
https://github.com/giltene/wrk2

Macrobenchmark: HTTP server throughput

Peak (req/s)
Asyncify 79587
WasmFX (base) 88116
WasmFX (dev) 88270

Higher is better

Macrobenchmark: HTTP server 40K req/s

40000 requests/sec

Max (ms)
Asyncify 6.6
WasmFX (base) 6.0
WasmFX (dev) 6.3

Lower is better

Macrobenchmark: HTTP server 40K req/s

40000 requests/sec

Max (ms)
Asyncify 6.6
WasmFX (base) 6.0
WasmFX (dev) 6.3

Lower is better

Macrobenchmark: HTTP server 60K req/s

60000 requests/sec

Max (ms)
Asyncify 14.89
WasmFX (base) 7.6
WasmFX (dev) 6.3

Lower is better

Macrobenchmark: HTTP server 60K req/s

60000 requests/sec

Max (ms)
Asyncify 14.89
WasmFX (base) 7.6
WasmFX (dev) 6.3

Lower is better

Macrobenchmark: HTTP server 80K req/s

80000 requests/sec

Max (ms)
Asyncify 742
WasmFX (base) 16
WasmFX (dev) 8

Lower is better

Macrobenchmark: HTTP server 80K req/s

80000 requests/sec

Max (ms)
Asyncify 742
WasmFX (base) 16
WasmFX (dev) 8

Lower is better

Discussion: Benchmarks

Which kind of programs should we benchmark?
Microbenchmarks: what are the key interesting properties to measure?

Macrobenchmarks: what are some inherently stack-switching-y representative workloads?

Task-oriented programs
Http servers

Generator programs?

HPC?

Canonical work stealing benchmark?

Multifaceted stack switching
What are some representative workloads that combine stack switching features?

Discussion: Benchmarks

Which kind of programs should we benchmark?
Microbenchmarks: what are the key interesting properties to measure?

Macrobenchmarks: what are some inherently stack-switching-y representative workloads?

Task-oriented programs
Http servers

Generator programs?

HPC?

Canonical work stealing benchmark?

Multifaceted stack switching
What are some representative workloads that combine stack switching features?

Discussion: Benchmarks

Which kind of programs should we benchmark?
Microbenchmarks: what are the key interesting properties to measure?

Macrobenchmarks: what are some inherently stack-switching-y representative workloads?

Task-oriented programs
Http servers

Generator programs?

HPC?

Canonical work stealing benchmark?

Multifaceted stack switching
What are some representative workloads that combine stack switching features?

WasmFX resource list
Latest resources

Waeio (https://github.com/wasmfx/waeio)

Fiber library (https://github.com/wasmfx/fiber-c)

Benchmark suite (https://github.com/wasmfx/benchfx)

Previous resources
Formal specification (https://github.com/WebAssembly/stack-switching/blob/wasmfx/
proposals/continuations/Overview.md)

Informal explainer document (https://github.com/WebAssembly/stack-switching/blob/
wasmfx/proposals/continuations/Explainer.md)

Reference implementation (https://github.com/WebAssembly/stack-switching/tree/wasmfx)

Wasmtime implementation (https://github.com/wasmfx/wasmfxtime)

Toolchain support (https://github.com/wasmfx/binaryenfx)

OOPSLA’23 research paper (https://doi.org/10.48550/arXiv.2308.08347)

https://wasmfx.dev

https://github.com/wasmfx/waeio
https://github.com/wasmfx/fiber-c
https://github.com/wasmfx/benchfx
https://github.com/WebAssembly/stack-switching/blob/wasmfx/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/wasmfx/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/wasmfx/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/blob/wasmfx/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/tree/wasmfx
https://github.com/wasmfx/wasmfxtime
https://github.com/wasmfx/binaryenfx
https://doi.org/10.48550/arXiv.2308.08347
https://wasmfx.dev

References I

Phipps-Costin, Luna et al. (2023). “Continuing WebAssembly with Effect Handlers”. In: Proc. ACM
Program. Lang. 7.OOPSLA2, pp. 460–485.

	References

