Daniel Hillerstrom

Computing Systems Laboratory
Zurich Research Center
Huawei Technologies, Switzerland
and
The University of Edinburgh, UK

May 20, 2024

WebAssembly Stacks Subgroup

https://dhil.net

https://dhil.net

Collaborators

-

Sam Lindley Andreas Rossberg Daan Leijen KC Sivaram‘;krishnan

5

-
&

Matija Pretnar Frank Emrich Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

Collaborators

-

Sam Lindley Andreas Rossberg Daan Leijen KC SivaramAkrishnan

F

5

-

Matija Pretnar Frank Emrich Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

Status: WasmFX in Wasmtime

Implementation status

o Switching stacks via libcalls to Wasmtime Fiber

Rust/Wasmtime Fiber runtime

Continuations and their stacks are safe

©

o Fiber stacks are pooled

©

Continuation metadata is unpooled

©

Continuation arguments are boxed

opt impl

A “small” program designed to measure the performance of a single operation of the system.

A program that is representative of some “real” workload, where context switching is inherent.

General setup
o Source language: C with a bespoke fiber library

o Asyncify implementation
o WasmFX implementation

o Requirement: all fibers gracefully terminate (i.e. successful return or cancellation)

Fibers interface in C

/**x The signature of a fiber entry point. *x/
typedef voidx (xfiber_entry_point_t) (voidx);

/**x The abstract type of a fiber object. xx*/

typedef struct fiberx fiber_t;

/**x Allocates a new fiber with the default stack size. *x/
fiber_t fiber_alloc(fiber_entry_point_t entry);

/** Reclaims the memory occupied by a fiber object. x*x/
void fiber_free(fiber_t fiber);

/*x Yields control to its parent context. *x/
voidx fiber_yield(void *arg);

/** Possible status codes for ‘fiber_resume’. x*x/
typedef enum { FIBER OK, FIBER_YIELD, FIBER_ERROR } fiber_result_t;

/** Resumes a given ‘fiber’ with argument ‘arg’. xx*/
void* fiber_resume(fiber_t fiber, void *arg, fiber_result_t xresult);

Experiments setup

Compilation pipelines

o Asyncify

WASI SDK 22.0 |Prog.wasm wasm-opt
wasmtime compile Prog.cwasm
-03 --std=c17 -02 --asyncify
o WasmFX

WASI SDK 22.0 Prog.wasm
wasmtime compile Prog.cwasm
-03 --std=c17

Apples & oranges

o Different storage

o Asyncify-backed fibers in linear memory
o WasmFX-backed fibers in tables

o Clang unwilling to generate function references

Microbenchmark: Prime sieve

Description

o Actor-based concurrency simulation

o Computes the first 8100 prime numbers

@ 8100 coroutines, multiple yields

o Shallow call stack

Run-time ratio

Binary size ratio

Asyncify 1.00 1.05 (41kb)
WasmFX (base) | 5.31 1.0 (39kb)
WasmFX (dev) 1.0 (39kb)

Lower is better

Microbenchmark: Prime sieve

Description

o Actor-based concurrency simulation

o Computes the first 8100 prime numbers

@ 8100 coroutines, multiple yields

o Shallow call stack

Run-time ratio

Binary size ratio

Asyncify 1.00 1.05 (41kb)
WasmFX (base) | 5.31 1.0 (39kb)
WasmFX (dev) | 3.25 1.0 (39kb)

Lower is better

Microbenchmark: C10m

Description
o HTTP server workload simulation

@ 10 million coroutines in total

o Sliding window: 10000 coroutines run concurrently, each yielding once

o Shallow call stack depth

Run-time ratio

Binary size ratio

Asyncify 1.00 12.72 (9.1kb)
WasmFX (base) | 3.87 1.0 (723b)
WasmFX (dev) 1.0 (723b)

Lower is better

Microbenchmark: C10m

Description
o HTTP server workload simulation

@ 10 million coroutines in total

o Sliding window: 10000 coroutines run concurrently, each yielding once

o Shallow call stack depth

Run-time ratio

Binary size ratio

Asyncify 1.00 12.72 (9.1kb)
WasmFX (base) | 3.87 1.0 (723b)
WasmFX (dev) | 2.76 1.0 (723b)

Lower is better

Microbenchmark: Skynet

Description
o Nested tree-structured concurrency simulation
o 10 million coroutines in total, 6 active, each yielding once

o Deep call stack

Run-time ratio | Binary size ratio
Asyncify 1.00 27.52 (9kb)
WasmFX (base) | 4.18 1.0 (327b)
WasmFX (dev) 1.0 (327b)

Lower is better

Microbenchmark: Skynet

Description

o Nested tree-structured concurrency simulation

o 10 million coroutines in total, 6 active, each yielding once

o Deep call stack

Run-time ratio

Binary size ratio

Asyncify 1.00 27.52 (9kb)
WasmFX (base) | 4.18 1.0 (327b)
WasmFX (dev) | 3.25 1.0 (327b)

Lower is better

Microbenchmark: Hello World

Description

o Cooperatively printing of “Hello World”

o 2 coroutines, print one letter, yield

o Print operation and yield in loop

Run-time ratio

Binary size ratio

Asyncify 2.95 1.4 (33kb)
WasmFX (base) | 1.0 1.0 (24kb)
WasmFX (dev) 1.0 1.0 (24kb)

Lower is better

Microbenchmark: C10m revisited

Description

(4]

(*]

©

HTTP server workload simulation

10 million coroutines in total

Sliding window: 10000 coroutines run concurrently, each yielding once

Shallow call stack depth

[/O call in hot loop

Run-time ratio

Binary size ratio

Asyncify 1.00 12.72 (9.1kb)
No I/O | WasmFX (base) | 3.87 1.0 (723b)
WasmFX (dev) | 2.76 1.0 (723b)
Asyncify 1.00 12.15 (9.2kb)
1/0 WasmFX (base) | 1.41 1.0 (757b)
WasmFX (dev) | 1.38 1.0 (757b)

Lower is better

Allocated

Allocated

Unsafe stacks Rubbish
o Allocated via malloc

o On demand allocation Rubbish

Rubbish

Rubbish

Allocated
Allocated
Unsafe stacks Undetected overflow
o Allocated via malloc
o On demand allocation Rubbish
Rubbish
Rubbish

Committed
Committed
Safe stacks
o Always allocated via mmap Guard page
o Guard pages delimit stacks
o Stack pools Reserved
o Suggestive scheme for stack growing
Reserved
Reserved

Committed
Committed
Safe stacks
o Always allocated via mmap Committed
o Guard pages delimit stacks
o Stack pools Guard page
o Suggestive scheme for stack growing
Reserved
Reserved

Microbenchmark: C10m revisited, again

Description
o HTTP server workload simulation

@ 10 million coroutines in total

o Sliding window: 10000 coroutines run concurrently, each yielding once

o Shallow call stack depth

Run-time ratio

Binary size ratio

Asyncify 1.00 12.72 (9.1kb)
WasmFX (dev/pool) 2.76 1.0 (723b)
WasmFX (dev/no pool) | 187.73 1.0 (723b)

Lower is better

HTTP server
o HTTP/1.1 servers written in C using Waeio (bespoke library)
o Waeio: a prototype framework for interleaving /O using stack switching
o We serve a static page on /, and kill the server on /quit

o We measure throughput and tail latency

Waeio: An effect-based 1/0 library

Waeio

WASI (poll)

Host (poll)

Asyncify

WasmFX

Waeio: An effect-based 1/0 library

Waeio

WASI (poll)

Host (poll)

Host (epoll)?

Asyncify

WasmFX

Waeio: An effect-based 1/0 library

Waeio

WASI (poll)

Host (poll)

Host (epoll)?

Asyncify

WasmFX

BoS?

Macrobenchmark setup

Setup

o Setup is the same as for microbenchmarks (+Waeio)
Http parser

o picohttpparser (main branch commit f8d0513)

o https://github.com/h20o/picohttpparser
Workload generator

o wrk2 (main branch commit 44a94c1)

o https://github.com/giltene/wrk2

o Options:

o -t4 -cl000 -R{80,60,40}000 -d60s

Binary size

o Asyncify: 41kb (1.37x)

o WasmFX: 30kb

o Host driver: 30mb (statically linked)

https://github.com/h2o/picohttpparser
https://github.com/giltene/wrk2

Macrobenchmark: HTTP server throughput

serviced requests/second

80000

60000 -

40000 -

20000 -

—8— asyncify
—¥— wasmfx_baseline
—&— wasmfx

Peak (req/s)
Asyncify 79587
WasmFX (base) | 88116
WasmFX (dev) | 88270

T T T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000 400000

load requests/second

Higher is better

Macrobenchmark: HTTP server 40K req/s

40000 requests/sec

Latency graph for localhost:8080

5 | —— Asyncify
—— WasmFX (base)
—— WasmFX (dev)

Max (ms)
£a Asyncify 6.6
z WasmFX (base) 6.0
& 5 WasmFX (dev) 6.3

Lower is better

T T T T T T
0 20 40 60 80 100
percentile

Macrobenchmark: HTTP server 40K req/s

40000 requests/sec

latency [ms] [log scale]

1014

Latency graph for localhost:8080

—— Asyncify
—— WasmFX (base)
—— WasmFX (dev)

Max (ms)
Asyncify 6.6
WasmFX (base) 6.0
WasmFX (dev) 6.3

T T T T T T
0 20 40 60 80 100
percentile

Lower is better

Macrobenchmark: HTTP server 60K req/s

60000 requests/sec

Latency graph for localhost:8080

14 { — Asyncify
—— WasmFX (base)
—— WasmFX (dev)
12
10 Max (ms)
£, Asyncify 14.89
z WasmFX (base) 7.6
5 6 WasmFX (dev) 6.3
Lower is better
]
2 /
0 f T T T T T
0 20 40 60 80 100

percentile

Macrobenchmark: HTTP server 60K req/s

60000 requests/sec

latency [ms] [log scale]

Latency graph for localhost:8080

101 4

100 4

101 4

—— Asyncify
—— WasmFX (base)
—— WasmFX (dev)

Max (ms)
Asyncify 14.89
WasmFX (base) 7.6
WasmFX (dev) 6.3

0 20 40 60 80 100
percentile

Lower is better

Macrobenchmark: HTTP server 80K req/s

80000 requests/sec

Latency graph for localhost:8080

—— Asyncify
—— WasmFX (base)

—— WasmFX (dev)
204

Max (ms)
£ Asyncify 742
z WasmFX (base) 16
510 WasmFX (dev) 8

Lower is better

f T T T T T
0 20 40 60 80 100
percentile

Macrobenchmark: HTTP server 80K req/s

80000 requests/sec

Latency graph for localhost:8080

—— Asyncify
—— WasmFX (base)
10! 4 —— WasmFX (dev)
% Max (ms)
é 10| Asyncify 742
7 WasmFX (base) 16
7 WasmFX (dev) 8
g Lower is better
1071 4
E] 2‘0 4‘0 ﬁb SID 160

percentile

Which kind of programs should we benchmark?
o Microbenchmarks: what are the key interesting properties to measure?

o Macrobenchmarks: what are some inherently stack-switching-y representative workloads?

Discussion: Benchmarks

Which kind of programs should we benchmark?

o Microbenchmarks: what are the key interesting properties to measure?

o Macrobenchmarks: what are some inherently stack-switching-y representative workloads?
Task-oriented programs

o Http servers

o Generator programs?

o HPC?

o Canonical work stealing benchmark?

Discussion: Benchmarks

Which kind of programs should we benchmark?

o Microbenchmarks: what are the key interesting properties to measure?

o Macrobenchmarks: what are some inherently stack-switching-y representative workloads?
Task-oriented programs

o Http servers

o Generator programs?

o HPC?

o Canonical work stealing benchmark?
Multifaceted stack switching

o What are some representative workloads that combine stack switching features?

WasmFX resource list

Latest resources

o Waeio (https://github.com/wasmfx/waeio)

o Fiber library (https://github.com/wasmfx/fiber-c)

o Benchmark suite (https://github.com/wasmfx/benchfx)
Previous resources

o Formal specification (https://github.com/WebAssembly/stack-switching/blob/wasmfx/
proposals/continuations/Overview.md)

Informal explainer document (https://github.com/WebAssembly/stack-switching/blob/
wasmfx/proposals/continuations/Explainer.md)

o Reference implementation (https://github.com/WebAssembly/stack-switching/tree/wasmfx)
o Wasmtime implementation (https://github.com/wasmfx/wasmfxtime)

Toolchain support (https://github.com/wasmfx/binaryenfx)

o OOPSLA’23 research paper (https://doi.org/10.48550/arXiv.2308.08347)

©

©

https://wasmfx.dev

https://github.com/wasmfx/waeio
https://github.com/wasmfx/fiber-c
https://github.com/wasmfx/benchfx
https://github.com/WebAssembly/stack-switching/blob/wasmfx/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/wasmfx/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/wasmfx/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/blob/wasmfx/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/tree/wasmfx
https://github.com/wasmfx/wasmfxtime
https://github.com/wasmfx/binaryenfx
https://doi.org/10.48550/arXiv.2308.08347
https://wasmfx.dev

Phipps-Costin, Luna et al (2023). “Continuing WebAssembly with Effect Handlers”. ' o0 00
Program. Lang. 7.00PSLA2, pp. 460-485.

	References

