
WasmFX: Typed Continuations in Wasm

Daniel Hillerström 1 Sam Lindley 1

Andreas Rossberg 2 KC Sivaramakrishnan 3 Daan Leijen 4 Matija Pretnar 5

1The University of Edinburgh, UK

2DFINITY, CH

3IIT Madras, IN

4Microsoft Research, USA

5University of Ljubljana, SI

October 20, 2021

WebAssembly: neither web nor assembly (Haas et al. 2017)

What is Wasm?
A universal compilation target
A virtual stack machine (source language agnostic)
A predictable performance model

Code format
A Wasm “program” is a structured module
Designed for stream compilation
The term language is statically typed and block-structured
Control flow is structured (i.e. all CFGs are reducible)

Wasm MVP 1.0 is tailored for C/C++

WasmFX extends Wasm with first-class continuations

The problem
Non-local control flow abstractions are pervasive (e.g. async/await, lightweight threads, first-class
continuations)
Wasm lacks support for non-local control flow

The solution
Handling-style delimited continuations (Sitaram (1993), Plotkin and Pretnar (2009))
Admits easy typing using insights from effect handlers
Minimal extension to Wasm

Introduction of control tags
A type constructor for continuations
Six instructions for manipulating (linear) continuations

Deep or shallow semantics?

Deep capture and resumption

handle E [opV] with H N[cont〈H;E〉/r ,V /x], where {op p r 7→ N} ∈ H

resume V with W handle E [W] with H, where V = cont〈H;E〉

Shallow capture and resumption

handle E [opV] with H N[cont〈E〉/r ,V /x], where {op p r 7→ N} ∈ H

resume V with W E [W], where V = cont〈E〉

‘Sheep’ allocation, capture, and resumption

cont.new V cont〈V 〉, where V = λ〈〉.M
handle E [opV] with H N[cont〈E〉/r ,V /x], where {op p r 7→ N} ∈ H

resume V with 〈H;W 〉 handle E [W] with H, where V = cont〈E〉

Deep or shallow semantics?

Deep capture and resumption

handle E [opV] with H N[cont〈H;E〉/r ,V /x], where {op p r 7→ N} ∈ H

resume V with W handle E [W] with H, where V = cont〈H;E〉

Shallow capture and resumption

handle E [opV] with H N[cont〈E〉/r ,V /x], where {op p r 7→ N} ∈ H

resume V with W E [W], where V = cont〈E〉

‘Sheep’ allocation, capture, and resumption

cont.new V cont〈V 〉, where V = λ〈〉.M
handle E [opV] with H N[cont〈E〉/r ,V /x], where {op p r 7→ N} ∈ H

resume V with 〈H;W 〉 handle E [W] with H, where V = cont〈E〉

Running example: coroutines (1)

;; interface for running two coroutines
;; non-interleaving implementation
(module $co2
;; type alias task = [] -> []
(type $task (func))

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
;; run the tasks sequentially
(call_ref (local.get $task1))
(call_ref (local.get $task2))

)
)

Running example: coroutines (2)
;; main example: streams of odd and even naturals
(module $example
...
;; imports yield : [] -> []
(func $yield (import "co2" "yield"))

;; odd : [i32] -> []
;; prints the first $niter odd natural numbers
(func $odd (param $niter i32)

(local $n i32) ;; next odd number
(local $i i32) ;; iterator
;; initialise locals
(local.set $n (i32.const 1))
(local.set $i (i32.const 1))
(block $b
(loop $l
(br_if $b (i32.gt_u (local.get $i) (local.get $niter)))
;; print the current odd number
(call $print (local.get $n))
;; compute next odd number
(local.set $n (i32.add (local.get $n) (i32.const 2)))
;; increment the iterator
(local.set $i (i32.add (local.get $i) (i32.const 1)))
;; yield control
(call $yield)
(br $l))))

;; even : [i32] -> []
;; prints the first $niter even natural numbers
(func $even (param $niter i32) ...)

;; odd5, even5 : [] -> []
(func $odd5 (export "odd5")

(call $odd (i32.const 5)))
(func $even5 (export "even5")

(call $even (i32.const 5)))
)

The instruction (call $run (ref.func $odd5) (ref.func $even5)) prints 1 3 5 7 9 2 4 6 8 10

Instructions: declaring control tags

Control tag declaration
(tag $tag (param σ∗) (result τ∗))

it’s a mild extension of Wasm’s exception tags

(known in the literature as an ‘operation symbol’ (Plotkin and Pretnar 2009))

Refactoring the co2 module (1)

(module $co2
;; type alias task = [] -> []
(type $task (func))

;; yield : [] -> []
(tag $yield (param) (result))

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
...)

)

Instructions: creating continuations

Continuation type
(cont ([σ∗] → [τ∗]))

cont is a new reference type constructor parameterised by a function type

Continuation allocation

cont.new : [(ref ([σ∗] → [τ∗]))] → [(cont ([σ∗] → [τ∗]))]

where ref is the type constructor for function reference types

Refactoring the co2 module (2)

(module $co2
;; type alias task = [] -> []
(type $task (func))
;; type alias ct = $task
(type $ct (cont $task))

;; yield : [] -> []
(tag $yield (param) (result))

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run : [(ref $task) (ref $task)] -> []
;; implements a ’seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
;; locals to manage continuations
(local $up (ref null $ct))
(local $down (ref null $ct))
(local $isOtherDone i32)
;; initialise locals
(local.set $up (cont.new (type $ct) (local.get $task1)))
(local.set $down (cont.new (type $ct) (local.get $task2)))
...)

)

Instructions: invoking continuations

Continuation resumption

cont.resume (tag $tag $h)∗ : [σ∗ (cont ([σ∗] → [τ∗]))] → [τ∗]

where {$tag : [σ∗i] → [τ∗i] and $h : [σ∗i (cont [τ
∗
i] → [τ∗])]}i

Continuation cancellation

cont.throw (exception $exn) (tag $tag $h)∗ : [σ∗0 (cont ([σ∗] → [τ∗]))] → [τ∗]

where $exn : [σ∗0] → [], {$tag : [σ∗i] → [τ∗i] and $h : [σ∗i (cont [τ
∗
i] → [τ∗])]}i

Both instructions fully consume their continuation argument

Refactoring the co2 module (3)

(module $co2
...
;; run : [(ref $task) (ref $task)] -> []
;; implements a ’seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
;; locals to manage continuations
(local $up (ref null $ct))
(local $down (ref null $ct))
(local $isOtherDone i32)
;; initialise locals
(local.set $up (cont.new (type $ct) (local.get $task1)))
(local.set $down (cont.new (type $ct) (local.get $task2)))
;; run $up
(loop $h
(block $on_yield (result (ref $ct))
(cont.resume (tag $yield $on_yield)

(local.get $up))
;; $up finished, check whether $down is done
(if (i32.eq (local.get $isOtherDone) (i32.const 1))
(then (return)))

;; prepare to run $down
(local.get $down)
(local.set $up)
(local.set $isOtherDone (i32.const 1))
(br $h)

) ;; on_yield clause, stack type: [(cont $ct)]
(local.set $up)
(if (i32.eqz (local.get $isOtherDone))
(then
;; swap $up and $down
(local.get $down)
(local.set $down (local.get $up))
(local.set $up)

))
(br $h)))

)

Instructions: suspending continuations

Continuation suspension
cont.suspend $tag : [σ∗] → [τ∗]

where $tag : [σ∗] → [τ∗]

Refactoring the co2 module (4)

(module $co2
;; type alias task = [] -> []
(type $task (func))
;; type alias ct = $task
(type $ct (cont $task))

;; yield : [] -> []
(tag $yield (param) (result))

;; yield : [] -> []
(func $yield (export "yield")
(cont.suspend $yield))

;; run : [(ref $task) (ref $task)] -> []
;; implements a ’seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
...)

)

Now (call $run (ref.func $odd5) (ref.func $even5)) prints 1 2 3 4 5 6 7 8 9 10

Instructions: binding and trapping continuations

Partial continuation application

cont.bind (type $ct) : [σ∗0 (cont ([σ
∗
0 σ
∗
1] → [τ∗]))] → [(cont ([σ∗1] → [τ∗]))]

where $ct = cont ([σ∗0 σ
∗
1] → [τ∗])

Control barriers
barrier $lbl (type $bt) instr∗ : [σ∗] → [τ∗]

where $bt = [σ∗] → [τ∗] and instr∗ : [σ∗] → [τ∗]

Summary

In summary
Typed continuations proposal adds first-class control to Wasm
A marriage of deep and shallow handlers
It’s a minimal extension to Wasm

The proposal is being actively developed at

https://github.com/effect-handlers/wasm-spec

Comments and feedback are welcome!

https://github.com/effect-handlers/wasm-spec

References

Sitaram, Dorai (1993). “Handling Control”. In: PLDI. ACM, pp. 147–155.
Ganz, Steven E., Daniel P. Friedman, and Mitchell Wand (1999). “Trampolined Style”. In: ICFP. ACM,

pp. 18–27.
Plotkin, Gordon D. and Matija Pretnar (2009). “Handlers of Algebraic Effects”. In: ESOP. Vol. 5502.

LNCS. Springer, pp. 80–94.
Haas, Andreas et al. (2017). “Bringing the web up to speed with WebAssembly”. In: PLDI. ACM,

pp. 185–200.

	References

