Handlers.Js

A Comparative Study of Implementation Strategies for Effect Handlers on the
Web

Daniel Hillerstrom

Laboratory for Foundations of Computer Science
School of Informatics
The University of Edinburgh, UK

April 5, 2018

(Joint work with Sam Lindley, Robert Atkey, KC Sivaramakrishnan, and Jeremy Yallop)

Asynchronous trends in web programming

Call mania Nest of callbacks
Monadic then Chaining of promises via then
Star fascination Pervasiveness of functionx and yieldx

Async idiom Ubiquity of async function and await

Asynchronous trends in web programming

Call mania Nest of callbacks
Monadic then Chaining of promises via then
Star fascination Pervasiveness of functionx and yieldx
Async idiom Ubiquity of async function and await

Effect handlers subsume all of these “idioms”

Applications of Plotkin and Pretnar (2013)’s effect handlers

Effect handlers subume contemporary control abstraction
o Generators and iterators (Leijen 2017b)
@ Async/await and promises (Leijen 2017a)
o Co-routines (Kiselyov et al. 2013)

More generally, effect handlers have applied in
e Concurrency (Dolan et al. 2017)
o Multi-staging (Yallop 2017)
@ Probabilistic programming (Goodman 2017)
@ Backtracking (Wu et al. 2014)

@ Modular program construction (Kammar et al. 2013)

...and this is all in direct style!

Effect handlers by example

Consider the classic “guess a number game”

fun game() {
print("Take a guess>");
var number = do Read;
switch (do Guess(number)) {
case Low ->
print("Wrong: Your guess is too low.\n");
game()
case Correct ->
print("Correct!!\n")
case High ->
print("Wrong: Your guess is too high.\n");
game ()

Effect handlers by example

The abstract computation induces a computation tree.

Read

nez

Effect handlers by example

The abstract computation induces a computation tree. We need an interpreter!

Read

nez

Effect handlers by example

Interpretation of Guess is a simple validation check

fun mySecret(secret, m)() {
handle(m()) {
case Return(x) -> x
case Guess(n, resume) ->
if (n < secret) resume(Low)
else if (n > secret) resume(High)
else resume(Correct)

Effect handlers by example

Interpretation of Guess is a simple validation check

fun mySecret(secret, m)() {
handle(m()) {
case Return(x) -> x
case Guess(n, resume) ->
if (n < secret) resume(Low)
else if (n > secret) resume(High)
else resume(Correct)
}
}

We can mock Read using a parameterised handler

fun input(myGuesses, m)() {
handle(m()) (myGuesses -> nextGuess) {
case Return(_) -> ()
case Read(resume) ->
switch(nextGuess) {
case [] -> ()
case g :: gs ->
println(intToString(g)); resume(g, gs)

Effect handlers by example

Plugging everything together

> mySecret(2, input([4,0,2], game))()
Take a guess> 4
Wrong: Your guess is too high.

Take a guess> 0
Wrong: Your guess is too low.

Take a guess> 2
Correct!!
00

Effect handlers by example

We can modularly reinterpret operations of an abstract computation

fun history(m)() {
handle(m())([] -> hist) {
case Return(_) -> hist
case Guess(n, resume) ->
var an = do Guess(n);
resume(an, (n, an) :: hist)

Effect handlers by example

We can modularly reinterpret operations of an abstract computation

fun history(m)() {
handle(m())([] -> hist) {
case Return(_) -> hist
case Guess(n, resume) ->
var an = do Guess(n);
resume(an, (n, an) :: hist)

Plugging history into the pipeline yields

> mySecret(2, history(input([4,0,2], game))) ()
(same as before)
[(2, Correct), (0, Low), (4, High)l : [(Int, Answer)]

Five implementation strategies

The following are feasible compilation strategies
@ Free monad
Kiselyov et al. (2013), Kammar et al. (2013), and Pretnar et al. (2017)
@ Abstract machine
Hillerstrdm and Lindley (2016)
@ Continuation-passing style
Leijen (2017b) and Hillerstrém et al. (2017)
Generators and iterators (James and Sabry 2011)
Generalised stack inspection (Pettyjohn et al. 2005; Loitsch 2007)

Five implementation strategies

The following are feasible compilation strategies
@ Free monad
Kiselyov et al. (2013), Kammar et al. (2013), and Pretnar et al. (2017)
@ Abstract machine
Hillerstrdm and Lindley (2016)
@ Continuation-passing style
Leijen (2017b) and Hillerstrém et al. (2017)
Generators and iterators (James and Sabry 2011)
Generalised stack inspection (Pettyjohn et al. 2005; Loitsch 2007)

Free monad (Kiselyov et al. 2013; Kammar et al. 2013)

Idea: folds over computation trees.

Read

nez

In some sense the “standard implementation technique”.

Free monad (Kiselyov et al. 2013; Kammar et al. 2013)

Idea: folds over computation trees.

Read

nez

In some sense the “standard implementation technique”.

Free monad (Kiselyov et al. 2013; Kammar et al. 2013)

Idea: folds over computation trees.

Read

nez

i Guess
mySecret | input Low High

Correct

In some sense the “standard implementation technique”.

The CEK machine

(C|E|K)

The CEK machine consists of three components
@ Control, the expression being evaluated
@ Environment, binding free variables

e Kontinuation, the continuation of C

The CEK machine

(C|E|K)

The CEK machine consists of three components
@ Control, the expression being evaluated
@ Environment, binding free variables

e Kontinuation, the continuation of C

Classic continuation structure (Felleisen and Friedman 1986)

K : List(Frame)

The CEK machine

(C|E|K)

The CEK machine consists of three components
@ Control, the expression being evaluated
@ Environment, binding free variables

e Kontinuation, the continuation of C

With handlers, the structure gets "bumped” (Hillerstréom and Lindley 2016)

K : List(Handler x List(Frame))

The CEK machine (cont

The continuation structure pictorially

The CEK machine (cont

The continuation structure pictorially

mySecret

The CEK machine (cont

The continuation structure pictorially

input

mySecret

The CEK machine (cont'd)

The continuation structure pictorially

input

mySecret

The CEK machine (cont'd)

Performing Guess unwinds the stack

mySecret

input

wn
[y
<
¢
(e

The CEK machine (cont'd)

Resuming inside mySecret restores the stack

input

mySecret

Continuation-passing style

CPS is in some sense the classic approach (Appel 1992; Kennedy 2007).
@ Explicit control flow
@ Every function call is a tail call
CPS for effect handlers (Hillerstrom et al. 2017)
@ Use a continuation structure akin to that of the abstract machine, i.e. a stack

@ Pass the stack around explicitly

[game()] = game input mySecret

Generators and iterators

Generators and iterators provide a restricted form of delimited control (James and
Sabry 2011).

The main idea
@ Transform every function into a generator

@ Transform each handler into a generator that iterates its given computation

The continuation is implicit in the call stack

mySecret

input

Generalised stack inspection

Generalised stack inspection provides a way to capture continuations using
exception handlers (Pettyjohn et al. 2005).
The basic idea

@ The call stack reflects the continuation

@ Enclose every binding in an exception handler

@ Throw an exception to assemble the continuation

Generalised stack inspection

Generalised stack inspection provides a way to capture continuations using
exception handlers (Pettyjohn et al. 2005).

The basic idea
@ The call stack reflects the continuation
@ Enclose every binding in an exception handler

@ Throw an exception to assemble the continuation

var x;
try {
x = [M];
} catch (e) {
if (e instanceof PerformOperation) {
[varx = M; N | = 2, augnent ([N]);
} else {
throw e;
}
}
return ([N]@x);

Generalised stack inspection (cont

Initially there is only the call stack

Call stack

mySecret

input

Continuation

Generalised stack inspection (cont

Throwing an exception causes the continuation to materialise

Call stack Continuation

mySecret

input

Generalised stack inspection (cont

Instantiate the abstract handler once we pass over a concrete handler

Call stack Continuation

L

Generalised stack inspection (cont

Continue unwinding the call stack

Call stack Continuation

input

Generalised stack inspection (cont

Continue unwinding the call stack

Call stack Continuation

input

Generalised stack inspection (cont

Notice that the continuation was built in reverse

Call stack Continuation

mySecret

input

Generalised stack inspection (cont

The continuation is reversed prior to invocation

Call stack Continuation

input

mySecret

Preliminary results

50-
407 Strategies
[Mcps
[cex
% 30- . Stk. inspect.
B . Genliter
(7]
o
2]
2
=
[N
220
10- I
0- L— L—
\

Chékra JavaScFiptCore No'de SpiderMonkey V8
Engines

Preliminary results

1.0-

0.8-

0.6-

0.4-
Strategies
[Wces

0.2- [cex
. Stk. inspect.
. Genliter

0.0-

Chz’lkra JavaSc;iplCore No’de Spiderl:llonkey V8
Engines

Relative speed-up

Implementation Extensions Stack Type respecting
Free monad None Implicit No
Abstract machine None Explicit No
CPS None Explicit No
Generators/iterators | Generators/iterators Implicit* No
Stack inspection Exception handlers | Explicit (lazy) Yest

* Trampolining requires an explicit stack representation

t Modulo effect typing

o Establish correctness of the generators/iterators and generalised stack
inspection strategies

o Relate the five different compilation strategies

@ More experimental evaluation

References |

Appel, Andrew W. (1992). Compiling with Continuations. Cambridge University
Press.

Dolan, Stephen et al. (2017). “Concurrent System Programming with Effect
Handlers”. In: TFP.

Felleisen, Matthias and Daniel P. Friedman (1986). “Control Operators, the
SECD-machine, and the A-Calculus”. In: Formal Description of Programming
Concepts Ill. Elsevier, pp. 193-217.

Goodman, Noah (2017). Uber Al Labs Open Sources Pyro, a Deep Probabilistic
Programming Language. URL: https://eng.uber.com/pyro/.

Hillerstrom, Daniel and Sam Lindley (2016). “Liberating effects with rows and
handlers”. In: TyDe@/CFP. ACM, pp. 15-27.

Hillerstrom, Daniel et al. (2017). “Continuation Passing Style for Effect Handlers".
In: FSCD. Vol. 84. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
18:1-18:19.

James, Roshan P and Amr Sabry (2011). "Yield: Mainstream delimited
continuations”. In: TPDC.

https://eng.uber.com/pyro/

References |l

Kammar, Ohad, Sam Lindley, and Nicolas Oury (2013). “Handlers in action”. In:
ICFP. ACM, pp. 145-158.

Kennedy, Andrew (2007). “Compiling with continuations, continued”. In: /CFP.
ACM, pp. 177-190.

Kiselyov, Oleg, Amr Sabry, and Cameron Swords (2013). “Extensible effects: an
alternative to monad transformers”. In: Haskell. ACM, pp. 59-70.

Leijen, Daan (2017a). “Structured Asynchrony with Algebraic Effects”. In:
TyDe@ICFP. ACM, pp. 16-29.

— (2017b). “Type directed compilation of row-typed algebraic effects”. In: POPL.
ACM, pp. 486—499.

Loitsch, Florian (2007). “Exceptional Continuations in JavaScript”. [n: 2007
Workshop on Scheme and Functional Programming. Freiburg, Germany.

Pettyjohn, Greg et al. (2005). “Continuations from generalized stack inspection”.
In: ICFP. ACM, pp. 216-227.

Plotkin, Gordon D. and Matija Pretnar (2013). “Handling Algebraic Effects”. In:
Logical Methods in Computer Science 9.4.

References ||

Pretnar, Matija et al. (2017). Efficient compilation of algebraic effects and
handlers. Tech. rep. CW 708. KU Leuven, Belgium.

Wau, Nicolas, Tom Schrijvers, and Ralf Hinze (2014). “Effect handlers in scope”.
In: Proceedings of the 2014 ACM SIGPLAN symposium on Haskell,
Gothenburg, Sweden, September 4-5, 2014. Ed. by Wouter Swierstra. ACM,
pp. 1-12. DOI: 10.1145/2633357.2633358. URL:
http://doi.acm.org/10.1145/2633357.2633358.

Yallop, Jeremy (2017). “Staged generic programming”. In: PACMPL 1.ICFP,
29:1-29:29.

http://dx.doi.org/10.1145/2633357.2633358
http://doi.acm.org/10.1145/2633357.2633358

