
Towards Compilation of Affine Algebraic Effects
Handlers

Daniel Hillerström
daniel.hillerstrom@ed.ac.uk

http://homepages.inf.ed.ac.uk/s1467124

The University of Edinburgh

April 26, 2016

mailto:daniel.hillerstrom@ed.ac.uk
http://homepages.inf.ed.ac.uk/s1467124


The Links language

The code examples in this talk are written in Links1:

Pure, functional, web-oriented, research programming language.

Sort of JavaScript syntax with sane semantics.

Developed at the University of Edinburgh

Conceived to solve the impedance mismatch problem in
web-programming.

Best thing about Links:

It has no users

1ref. Cooper et al. (2006)
Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 2/14



The Links language

The code examples in this talk are written in Links1:

Pure, functional, web-oriented, research programming language.

Sort of JavaScript syntax with sane semantics.

Developed at the University of Edinburgh

Conceived to solve the impedance mismatch problem in
web-programming.

Best thing about Links: It has no users

1ref. Cooper et al. (2006)
Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 2/14



Programs are effectful

Virtually, every program comprise an effectful component, e.g.

raise exceptions

perform input/output

mutate some state

fork threads

non-determinism

. . . and so forth

In most programming languages effects are dealt with implicitly.
Algebraic effects and handlers provide a modular abstraction for
modelling and controlling effects explicitly.

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 3/14



Algebraic effects by example: A coin toss2

Algebraic effects

An algebraic effect is a collection of abstract operations.

For example, nondeterminism is given by a single operation
nondet = {Choose : Bool}

An effectful coin toss:

fun toss() {

if (do Choose) Heads

else Tails

}

Visualised as a computation tree:

Choose

Heads

true

Tails

false

2The example is adopted from Kammar et al. (2013)
Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 4/14



Effect handlers by example: A coin toss

Handlers
A handler instantiates abstract operations with a concrete
implementation.

fun toss() {

if (do Choose) Heads

else Tails

}

handler alwaysHeads {

case Choose(k) -> k(true)

case Return(x) -> x

}

Choose

Heads

true

Tails

false

Here k is the continuation of do Choose.
The result of alwaysHeads(toss) is Heads.

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 5/14



Project overview

I’m interested in making effect handlers a practical programming model.

Phase 1 Front-end: handlers and row types3

Phase 2 Back-end: compile handlers to efficient, native code.

Phase 3 Rebuild Links’ concurrency model in terms of handlers

Continuations are the main performance bottleneck. OCaml multicore4

provides an efficient implementation of linear handlers. My plan is to
translate Links IR to OCaml Lambda IR.

3c.f. Hillerström and Lindley (2016)
4ref. Dolan et al. (2015)

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 6/14



Categorising handlers

Exception5

handler maybeResult {

case Fail(k) -> Nothing

case Return(x) -> Just(x)

}

Linear

handler randomResult {

case Choose(k) -> k(random() > 0.5)

case Return(x) -> x

}

Multi-shot

handler allResults {

case Choose(k) -> k(true) ++ k(false)

case Return(x) -> [x]

}

Affine handlers invoke their continuations at most once.
Idea: Use the type system to track the nature of handlers, and specialise
the run-time implementations during code generation.

5where exception = {Fail : Void}
Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 7/14



Categorising handlers

Exception5

handler maybeResult {

case Fail(k) -> Nothing

case Return(x) -> Just(x)

}

Linear

handler randomResult {

case Choose(k) -> k(random() > 0.5)

case Return(x) -> x

}

Multi-shot

handler allResults {

case Choose(k) -> k(true) ++ k(false)

case Return(x) -> [x]

}

Affine handlers invoke their continuations at most once.
Idea: Use the type system to track the nature of handlers, and specialise
the run-time implementations during code generation.

5where exception = {Fail : Void}
Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 7/14



Composing handlers by example: Drunk coin toss

Consider a drunkard tossing a coin6:

fun drunkToss() {

if (do Choose) toss()

else do Fail

}

We may compose handlers to fully interpret drunkToss:
randomResult(maybeResult(drunkToss)).

Possible outcomes: {Just(Heads),Just(Tails),Nothing}.

6Technical detail: switch(do Fail) { } required for example to type check.
Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 8/14



Runtime stack of handlers

Composition gives rise to stack of handlers at runtime:

randomResult(maybeResult(drunkToss))

maybeResult

randomResult

⊥

Handling Choose in drunkToss causes the stack to be unwinded.

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 9/14



Optimisations

The stack representation is simple, but inefficient for large compositions.
OCaml does not perform optimisations for handlers.

Solution: Rediscover classical optimisations in the context of handlers:

Fusion

Inlining

Reordering of handlers

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 10/14



Optimisation: Fusion

Criterion for handler fusion
If two adjacent handlers handle a disjoint set of operations, then they can
be fused.

handler maybeResult {

case Fail(k) -> Nothing

case Return(x) -> Just(x)

}

handler randomResult {

case Choose(k) -> k(random() > 0.5)

case Return(x) -> x

}

maybeResult

randomResult

⊥

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 11/14



Optimisation: Fusion

Criterion for handler fusion
If two adjacent handlers handle a disjoint set of operations, then they can
be fused.

handler maybeRandomResult {

case Fail(k) -> Nothing

case Choose(k) -> k(random() > 0.5)

case Return(x) -> var y = Just(x); y

}

maybeRandomResult

⊥

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 11/14



Optimisation: Inlining

Conservative criteria for handler inlining

A linear handlers can be inlined ifa

It invokes continuations in tail-position

The handler is the top-element (>)

asometimes we can relax these criteria

handler maybeResult {

case Fail(k) -> Nothing

case Return(x) -> Just(x)

}

handler randomResult {

case Choose(k) -> k(random() > 0.5)

case Return(x) -> x

}

randomResult(

maybeResult(

fun() {

if (do Choose) toss()

else do Fail

}))

If we reorder the two handlers, then we can inline randomResult

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 12/14



Optimisation: Inlining

Conservative criteria for handler inlining

A linear handlers can be inlined ifa

It invokes continuations in tail-position

The handler is the top-element (>)

asometimes we can relax these criteria

handler maybeResult {

case Fail(k) -> Nothing

case Return(x) -> Just(x)

}

handler randomResult {

case Choose(k) -> k(random() > 0.5)

case Return(x) -> x

}

randomResult(

maybeResult(

fun() {

if (do Choose) toss()

else do Fail

}))

Cannot inline maybeResult: it is not linear

If we reorder the two handlers, then we can inline randomResult

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 12/14



Optimisation: Inlining

Conservative criteria for handler inlining

A linear handlers can be inlined ifa

It invokes continuations in tail-position

The handler is the top-element (>)

asometimes we can relax these criteria

handler maybeResult {

case Fail(k) -> Nothing

case Return(x) -> Just(x)

}

handler randomResult {

case Choose(k) -> k(random() > 0.5)

case Return(x) -> x

}

randomResult(

maybeResult(

fun() {

if (do Choose) toss()

else do Fail

}))

Cannot inline linear randomResult: it is not >

If we reorder the two handlers, then we can inline randomResult

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 12/14



Optimisation: Inlining

Conservative criteria for handler inlining

A linear handlers can be inlined ifa

It invokes continuations in tail-position

The handler is the top-element (>)

asometimes we can relax these criteria

handler maybeResult {

case Fail(k) -> Nothing

case Return(x) -> Just(x)

}

handler randomResult {

case Choose(k) -> k(random() > 0.5)

case Return(x) -> x

}

randomResult(

maybeResult(

fun() {

if (do Choose) toss()

else do Fail

}))

Cannot inline linear randomResult: it is not >
If we reorder the two handlers, then we can inline randomResult

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 12/14



Optimisation: Inlining

Conservative criteria for handler inlining

A linear handlers can be inlined ifa

It invokes continuations in tail-position

The handler is the top-element (>)

asometimes we can relax these criteria

handler maybeResult {

case Fail(k) -> Nothing

case Return(x) -> Just(x)

}

handler randomResult {

case Choose(k) -> k(random() > 0.5)

case Return(x) -> x

}

maybeResult(

randomResult(

fun() {

if (do Choose) toss()

else do Fail

}))

If we reorder the two handlers, then we can inline randomResult

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 12/14



Optimisation: Inlining

Conservative criteria for handler inlining

A linear handlers can be inlined ifa

It invokes continuations in tail-position

The handler is the top-element (>)

asometimes we can relax these criteria

handler maybeResult {

case Fail(k) -> Nothing

case Return(x) -> Just(x)

}

maybeResult(

fun() {

if (random() > 0.5)

toss()[random()>0.5/do Choose]

else do Fail

}))

If we reorder the two handlers, then we can inline randomResult

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 12/14



Summary

Handlers provide a great abstraction for generic programming.

I get native baseline performance for free from OCaml.

Classical optimisation techniques provide a first good attempt at
optimising handlers.

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 13/14



References

E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming
without tiers. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P.
de Roever, editors, Formal Methods for Components and Objects, 5th
International Symposium, FMCO 2006, Amsterdam, The Netherlands,
November 7-10, 2006, Revised Lectures, volume 4709 of Lecture Notes
in Computer Science, pages 266–296. Springer, 2006. URL
http://dx.doi.org/10.1007/978-3-540-74792-5_12.

S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and
A. Madhavapeddy. Effective concurrency through algebraic effects, 9
2015. OCaml Workshop.

D. Hillerström and S. Lindley. Liberating effects with rows and handlers.
Submitted, draft, March 2016.

O. Kammar, S. Lindley, and N. Oury. Handlers in action. In Proceedings
of the 18th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’13, pages 145–158, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2326-0. URL
http://doi.acm.org/10.1145/2500365.2500590.

Daniel Hillerström (The University of Edinburgh) Towards Compilation of Affine Algebraic Effects Handlers April 26, 2016 14/14

http://dx.doi.org/10.1007/978-3-540-74792-5_12
http://doi.acm.org/10.1145/2500365.2500590

