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Coroutines are everywhere

EOCaml JS G @ ( G )k

Powering programming idioms
o Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
o Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
o Yield-style generators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

Powering programming models
o User interface programming (e.g. widgets)
o High performance programming (e.g. tasking)

o Probabilistic programming (e.g. sampling)
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Coroutines are an instance of first-class continuations



Coroutines are all great, what’s the problem?
Classical coroutines do not offer modular composition
Problem: one type to embed them all

R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)
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Now we have discovered effect handlers



Demo programs in libseff (Alvarez-Picallo et al. 2023)

Warm-up: Hello World
src/hello.c
Dynamic binding
inc/env.h
src/env.c
Lightweight threading
inc/lwt.h
src/lwt.c
Obtaining actors via modular composition
src/actor.c



Conclusions

Summary
o Effect handlers allow programmers to name control effects
o Differentiating control effects enables modular composition
o Customisable and flexible interpretation of effects
Future considerations
o A HiCR frontend for effect handler oriented programming (EHOP)?
o FunctionFlow as the universal runtime? A bespoke APl for EHOP

o Abstracting coroutine/continuation/stack allocation policies
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