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Coroutines are everywhere

· · ·
Powering programming idioms

Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)

Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)

Yield-style generators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

Powering programming models
User interface programming (e.g. widgets)

High performance programming (e.g. tasking)

Probabilistic programming (e.g. sampling)

Coroutines are an instance of first-class continuations
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Coroutines are all great, what’s the problem?

Classical coroutines do not offer modular composition
Problem: one type to embed them all

R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types

This is known as the “universal control effect”

Solution: name control effects

effect eff : S -> R

R suspend(effS,R)

union<A,effS,R . . . > resume[effS,R . . . ]<A>(coroutine_t<A>, R)

Now we have discovered effect handlers
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Demos

Demo programs in libseff (Alvarez-Picallo et al. 2023)

Warm-up: Hello World
src/hello.c

Dynamic binding
inc/env.h

src/env.c

Lightweight threading
inc/lwt.h

src/lwt.c

Obtaining actors via modular composition
src/actor.c



Conclusions

Summary
Effect handlers allow programmers to name control effects

Differentiating control effects enables modular composition

Customisable and flexible interpretation of effects

Future considerations
A HiCR frontend for effect handler oriented programming (EHOP)?

FunctionFlow as the universal runtime? A bespoke API for EHOP

Abstracting coroutine/continuation/stack allocation policies
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