Daniel Hillerstrom

Computing Systems Laboratory
Zurich Research Center
Huawei Technologies, Switzerland

June 27, 2024

Barcelona Supercomputing Center and Huawei
3rd Workshop on Nanos, FunctionFlow, and HiCR
Shanghai, China

https://dhil.net

https://dhil.net

Coroutines are everywhere

EOCaml JS G @ (G)k

Powering programming idioms
o Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
o Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
o Yield-style generators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

Powering programming models
o User interface programming (e.g. widgets)
o High performance programming (e.g. tasking)

o Probabilistic programming (e.g. sampling)

Coroutines are everywhere

EOCaml JS @ @ (G)k

Powering programming idioms
o Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
o Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
o Yield-style generators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

Powering programming models
o User interface programming (e.g. widgets)
o High performance programming (e.g. tasking)

o Probabilistic programming (e.g. sampling)

Coroutines are an instance of first-class continuations

Coroutines are all great, what’s the problem?
Classical coroutines do not offer modular composition
Problem: one type to embed them all

R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Coroutines are all great, what’s the problem?

Classical coroutines do not offer modular composition

Problem: one type to embed them all
R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types

Coroutines are all great, what’s the problem?
Classical coroutines do not offer modular composition
Problem: one type to embed them all
R suspend<R,S>(S)
union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types

This is known as the “universal control effect”

Coroutines are all great, what’s the problem?

Classical coroutines do not offer modular composition

Problem: one type to embed them all

R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types
This is known as the “universal control effect”

Solution: name control effects
effect eff : S -> R
R suspend(effgg)

union<A,effsg...> resumefeffsp

...]<A>(coroutine_t<A>,

R)

Coroutines are all great, what’s the problem?
Classical coroutines do not offer modular composition
Problem: one type to embed them all
R suspend<R,S>(S)
union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types
This is known as the “universal control effect”

Solution: name control effects
effect eff : S -> R
R suspend(effgg)

union<A,effsg...> resumefeffsy ...]<A>(coroutine_t<A>, R)

Now we have discovered effect handlers

Demo programs in libseff (Alvarez-Picallo et al. 2023)

Warm-up: Hello World
src/hello.c
Dynamic binding
inc/env.h
src/env.c
Lightweight threading
inc/lwt.h
src/lwt.c
Obtaining actors via modular composition
src/actor.c

Conclusions

Summary
o Effect handlers allow programmers to name control effects
o Differentiating control effects enables modular composition
o Customisable and flexible interpretation of effects
Future considerations
o A HiCR frontend for effect handler oriented programming (EHOP)?
o FunctionFlow as the universal runtime? A bespoke APl for EHOP

o Abstracting coroutine/continuation/stack allocation policies

Plotkin, Gordon D. and Matija Pretnar (2013). “Handling Algebraic Effects”. In: Logical Methods in
Computer Science 9.4. pol: 10.2168/LMCS-9(4:23)2013.

Alvarez-Picallo, Mario et al. (Nov. 2023). High-level effect handlers in C.
https://homepages.inf.ed.ac.uk/slindley/papers/libseff-draft-november2023.pdf.

https://doi.org/10.2168/LMCS-9(4:23)2013
https://homepages.inf.ed.ac.uk/slindley/papers/libseff-draft-november2023.pdf

	References

