
Programming Coroutines via Effect Handlers
Or How Effect Handlers are Structured Coroutines

Daniel Hillerström

Computing Systems Laboratory

Zurich Research Center

Huawei Technologies, Switzerland

June 27, 2024

Barcelona Supercomputing Center and Huawei

3rd Workshop on Nanos, FunctionFlow, and HiCR

Shanghai, China

https://dhil.net

https://dhil.net


Coroutines are everywhere

· · ·
Powering programming idioms

Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)

Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)

Yield-style generators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

Powering programming models
User interface programming (e.g. widgets)

High performance programming (e.g. tasking)

Probabilistic programming (e.g. sampling)

Coroutines are an instance of first-class continuations



Coroutines are everywhere

· · ·
Powering programming idioms

Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)

Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)

Yield-style generators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

Powering programming models
User interface programming (e.g. widgets)

High performance programming (e.g. tasking)

Probabilistic programming (e.g. sampling)

Coroutines are an instance of first-class continuations



Coroutines are all great, what’s the problem?

Classical coroutines do not offer modular composition
Problem: one type to embed them all

R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types

This is known as the “universal control effect”

Solution: name control effects

effect eff : S -> R

R suspend(effS,R)

union<A,effS,R . . . > resume[effS,R . . . ]<A>(coroutine_t<A>, R)

Now we have discovered effect handlers



Coroutines are all great, what’s the problem?

Classical coroutines do not offer modular composition
Problem: one type to embed them all

R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types

This is known as the “universal control effect”

Solution: name control effects

effect eff : S -> R

R suspend(effS,R)

union<A,effS,R . . . > resume[effS,R . . . ]<A>(coroutine_t<A>, R)

Now we have discovered effect handlers



Coroutines are all great, what’s the problem?

Classical coroutines do not offer modular composition
Problem: one type to embed them all

R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types

This is known as the “universal control effect”

Solution: name control effects

effect eff : S -> R

R suspend(effS,R)

union<A,effS,R . . . > resume[effS,R . . . ]<A>(coroutine_t<A>, R)

Now we have discovered effect handlers



Coroutines are all great, what’s the problem?

Classical coroutines do not offer modular composition
Problem: one type to embed them all

R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types

This is known as the “universal control effect”

Solution: name control effects

effect eff : S -> R

R suspend(effS,R)

union<A,effS,R . . . > resume[effS,R . . . ]<A>(coroutine_t<A>, R)

Now we have discovered effect handlers



Coroutines are all great, what’s the problem?

Classical coroutines do not offer modular composition
Problem: one type to embed them all

R suspend<R,S>(S)

union<A,S> resume<R,S,A>(coroutine_t<R,S,A>, R)

Programming over a fixed type! Or worse no types

This is known as the “universal control effect”

Solution: name control effects

effect eff : S -> R

R suspend(effS,R)

union<A,effS,R . . . > resume[effS,R . . . ]<A>(coroutine_t<A>, R)

Now we have discovered effect handlers



Demos

Demo programs in libseff (Alvarez-Picallo et al. 2023)

Warm-up: Hello World
src/hello.c

Dynamic binding
inc/env.h

src/env.c

Lightweight threading
inc/lwt.h

src/lwt.c

Obtaining actors via modular composition
src/actor.c



Conclusions

Summary
Effect handlers allow programmers to name control effects

Differentiating control effects enables modular composition

Customisable and flexible interpretation of effects

Future considerations
A HiCR frontend for effect handler oriented programming (EHOP)?

FunctionFlow as the universal runtime? A bespoke API for EHOP

Abstracting coroutine/continuation/stack allocation policies



References

Plotkin, Gordon D. and Matija Pretnar (2013). “Handling Algebraic Effects”. In: Logical Methods in
Computer Science 9.4. doi: 10.2168/LMCS-9(4:23)2013.

Alvarez-Picallo, Mario et al. (Nov. 2023). High-level effect handlers in C.
https://homepages.inf.ed.ac.uk/slindley/papers/libseff-draft-november2023.pdf.

https://doi.org/10.2168/LMCS-9(4:23)2013
https://homepages.inf.ed.ac.uk/slindley/papers/libseff-draft-november2023.pdf

	References

