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Multicore OCaml

Multicore OCaml adds shared-memory parallelism to OCaml.

Stephen Dolan Leo White KC Sivaramakrishnan Jeremy Yallop Anil Madhavapeddy

In addition, it adds effect handlers as the primary means for concurrency [1]
enabling schedulers to be implemented as user-level libraries,
providing fine-grained control over scheduling,
while retaining direct-style programming.

For more information regarding the Multicore OCaml project see

http://ocamllabs.io/doc/multicore.html

http://ocamllabs.io/doc/multicore.html


Effect Handlers

Effect handlers provide a generalisation of exception handlers

Exceptions

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
raise (Fork task);
do_something_else ()

with
| Fork task ->
Queue.enqueue task

| Yield ->
Queue.enqueue
(fun () -> ???);

let task = Queue.dequeue () in
task ()

Effects

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
perform (Fork task);
do_something_else ()

with
| effect (Fork task) comp ->
Queue.enqueue task;
continue comp ()

| effect Yield comp ->
Queue.enqueue
(fun () -> continue comp ());

let task = Queue.dequeue () in
task ()

Intuition Effect handlers are exception handlers + resumable exceptions
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Systems Programming with Effect Handlers?

Concurrent systems programming today (in functional languages)
Callback style (e.g. Node.Js)
Monadic style (e.g. Haskell, OCaml)

Research Hypothesis
Effect handlers provide a compelling direct-style abstraction suitable for systems
programming

Evaluation We have built an Asynchronous Effect-based IO (AEIO) library for
overlapping IO operations which we put to use in a web server.



Experimental Setup

We evaluate the performance of three web servers
1 OCaml state-of-art: httpaf with Async 113.33.031 (vanilla OCaml)
2 Effect-based: httpaf with aeio1 (Multicore OCaml)
3 Go 1.6.3 using net/http constrained to a single core

The workload was generated by wrk2

https://github.com/giltene/wrk2

The experiments were conducted on a standard machine
3 Ghz Intel Core i7
16 GB main memory
64-bit Ubuntu 16.10

1uses libev event loop (using epoll)

https://github.com/giltene/wrk2
https://github.com/giltene/wrk2


Results I
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Figure: Medium contention 1000 connections, 10000 requests/sec



Results II
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Figure: Medium contention 1000 connections, 10000 requests/sec (incl. Go)



Conclusions

In summary
Handlers provide composable concurrency in direct-style
Performs on par with the state of the art in OCaml
Multicore OCaml is young, yet promising results

The Multicore OCaml compiler

https://github.com/ocamllabs/ocaml-multicore

Asynchronous Effect-based IO library for Multicore OCaml

https://github.com/kayceesrk/ocaml-aeio

Full details are available in our paper [2]

http://kcsrk.info/papers/system_effects_may_17.pdf

https://github.com/ocamllabs/ocaml-multicore
https://github.com/kayceesrk/ocaml-aeio
http://kcsrk.info/papers/system_effects_may_17.pdf
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