
This work is supported by

OCaml Labs



Asynchronous Effect-based Input and Output

Daniel Hillerström
daniel.hillerstrom@ed.ac.uk

http://homepages.inf.ed.ac.uk/s1467124

CDT Pervasive Parallelism
School of Informatics

The University of Edinburgh, UK

June 14, 2017

CDT Pervasive Parallelism Student Showcase

(based on joint work with Stephen Dolan, Spiros Eliopoulos, Anil Madhavapeddy, KC
Sivaramakrishnan, and Leo White)

mailto:daniel.hillerstrom@ed.ac.uk
http://homepages.inf.ed.ac.uk/s1467124
www.stedolan.net
http://computationallyendowed.com/
anil.recoil.org
www.kcsrk.info
www.kcsrk.info
http://www.lpw25.net/


Multicore OCaml

Multicore OCaml adds shared-memory parallelism to OCaml.

Stephen Dolan Leo White KC Sivaramakrishnan Jeremy Yallop Anil Madhavapeddy

In addition, it adds effect handlers as the primary means for concurrency [1]
enabling schedulers to be implemented as user-level libraries,
providing fine-grained control over scheduling,
while retaining direct-style programming.

For more information regarding the Multicore OCaml project see

http://ocamllabs.io/doc/multicore.html

http://ocamllabs.io/doc/multicore.html


Effect Handlers

Effect handlers provide a generalisation of exception handlers

Exceptions

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
raise (Fork task);
do_something_else ()

with
| Fork task ->
Queue.enqueue task

| Yield ->
Queue.enqueue
(fun () -> ???);

let task = Queue.dequeue () in
task ()

Effects

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
perform (Fork task);
do_something_else ()

with
| effect (Fork task) comp ->
Queue.enqueue task;
continue comp ()

| effect Yield comp ->
Queue.enqueue
(fun () -> continue comp ());

let task = Queue.dequeue () in
task ()

Intuition Effect handlers are exception handlers + resumable exceptions



Effect Handlers

Effect handlers provide a generalisation of exception handlers

Exceptions

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
raise (Fork task);
do_something_else ()

with
| Fork task ->
Queue.enqueue task

| Yield ->
Queue.enqueue
(fun () -> ???);

let task = Queue.dequeue () in
task ()

Effects

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
perform (Fork task);
do_something_else ()

with
| effect (Fork task) comp ->
Queue.enqueue task;
continue comp ()

| effect Yield comp ->
Queue.enqueue
(fun () -> continue comp ());

let task = Queue.dequeue () in
task ()

Intuition Effect handlers are exception handlers + resumable exceptions



Effect Handlers

Effect handlers provide a generalisation of exception handlers

Exceptions

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
raise (Fork task);
do_something_else ()

with
| Fork task ->
Queue.enqueue task

| Yield ->
Queue.enqueue
(fun () -> ???);

let task = Queue.dequeue () in
task ()

Effects

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
perform (Fork task);
do_something_else ()

with
| effect (Fork task) comp ->
Queue.enqueue task;
continue comp ()

| effect Yield comp ->
Queue.enqueue
(fun () -> continue comp ());

let task = Queue.dequeue () in
task ()

Intuition Effect handlers are exception handlers + resumable exceptions



Effect Handlers

Effect handlers provide a generalisation of exception handlers

Exceptions

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
raise (Fork task);
do_something_else ()

with
| Fork task ->
Queue.enqueue task

| Yield ->
Queue.enqueue
(fun () -> ???);

let task = Queue.dequeue () in
task ()

Effects

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
perform (Fork task);
do_something_else ()

with
| effect (Fork task) comp ->
Queue.enqueue task;
continue comp ()

| effect Yield comp ->
Queue.enqueue
(fun () -> continue comp ());

let task = Queue.dequeue () in
task ()

Intuition Effect handlers are exception handlers + resumable exceptions



Effect Handlers

Effect handlers provide a generalisation of exception handlers

Exceptions

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
raise (Fork task);
do_something_else ()

with
| Fork task ->
Queue.enqueue task

| Yield ->
Queue.enqueue
(fun () -> ???);

let task = Queue.dequeue () in
task ()

Effects

let _ =
let run_q = Queue.empty () in
try
let task = do_something () in
perform (Fork task);
do_something_else ()

with
| effect (Fork task) comp ->
Queue.enqueue task;
continue comp ()

| effect Yield comp ->
Queue.enqueue
(fun () -> continue comp ());

let task = Queue.dequeue () in
task ()

Intuition Effect handlers are exception handlers + resumable exceptions



Systems Programming with Effect Handlers?

Concurrent systems programming today (in functional languages)
Callback style (e.g. Node.Js)
Monadic style (e.g. Haskell, OCaml)

Research Hypothesis
Effect handlers provide a compelling direct-style abstraction suitable for systems
programming

Evaluation We have built an Asynchronous Effect-based IO (AEIO) library for
overlapping IO operations which we put to use in a web server.



Experimental Setup

We evaluate the performance of three web servers
1 OCaml state-of-art: httpaf with Async 113.33.031 (vanilla OCaml)
2 Effect-based: httpaf with aeio1 (Multicore OCaml)
3 Go 1.6.3 using net/http constrained to a single core

The workload was generated by wrk2

https://github.com/giltene/wrk2

The experiments were conducted on a standard machine
3 Ghz Intel Core i7
16 GB main memory
64-bit Ubuntu 16.10

1uses libev event loop (using epoll)

https://github.com/giltene/wrk2
https://github.com/giltene/wrk2


Results I

0% 90.0% 99.0% 99.9% 99.99% 99.99900000000001%
0

5

10

15

20

25

30

35

La
te

n
cy

 (
m

s)

Async

Aeio

Figure: Medium contention 1000 connections, 10000 requests/sec



Results II

0% 90.0% 99.0% 99.9% 99.99% 99.99900000000001%
0

5

10

15

20

25

30

35

La
te

n
cy

 (
m

s)

Async

Aeio

Go

Figure: Medium contention 1000 connections, 10000 requests/sec (incl. Go)



Conclusions

In summary
Handlers provide composable concurrency in direct-style
Performs on par with the state of the art in OCaml
Multicore OCaml is young, yet promising results

The Multicore OCaml compiler

https://github.com/ocamllabs/ocaml-multicore

Asynchronous Effect-based IO library for Multicore OCaml

https://github.com/kayceesrk/ocaml-aeio

Full details are available in our paper [2]

http://kcsrk.info/papers/system_effects_may_17.pdf

https://github.com/ocamllabs/ocaml-multicore
https://github.com/kayceesrk/ocaml-aeio
http://kcsrk.info/papers/system_effects_may_17.pdf


References

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil
Madhavapeddy.
Effective concurrency through algebraic effects.
OCaml Workshop, 2015.

Stephen Dolan andSpiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy,
KC Sivaramakrishnan, and Leo White.
Concurrent system programming with effect handlers.
Trends in Functional Programming, 2017.


