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Abstract
Algebraic effects combined with effect handlers have emerged as compelling, mod-
ular abstraction for modelling and controlling computational effects. By separ-
ating the effect signatures from their implementation, algebraic effects afford a
high degree of modularity as programmers can describe effectful computations
independently of their concrete interpretation.

We present a compiler for the functional programming language Links that
uses the Multicore OCaml backend to provide a native implementation of effect
handlers.

We present a core calculus λρeff with row-polymorphic effects and effect hand-
lers based on a variation of A-normal form used in our implementation. In addi-
tion, we give an operational semantics for the calculus. Furthermore, we describe
a translation from λρeff to a subset of the intermediate language used by OCaml.

Interestingly, concurrency can be described as an algebraic effect, whose hand-
ler amounts to a scheduler. Thus, rather than baking concurrency support into
the compiler, we keep the compiler lean by implementing the message-passing
concurrency model of Links using handlers. We demonstrate a faithful encoding
of the concurrency model, which maintains type-safe communication by taking
advantage of the effect system of Links.

Finally, we perform some experiments with the compiler using the concurrency
implementation to see how it performs against the Links interpreter. Moreover,
we consider how to improve the performance of the compiler.
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Chapter 1

Introduction

Computational effects are pervasive. They arise naturally in many different
shapes such as exceptions, file i/o, global state mutation, concurrency, non-
determinism, and so forth. Many mainstream programming languages provide
little or no support for controlling computational effects – in most cases con-
trol is limited to exception handling. Recently algebraic effects (Plotkin and
Power, 2001, 2003) combined with effect handlers (Plotkin and Pretnar, 2013)
have emerged as a modular abstraction for expressing and managing user-defined
computational effects. By separating the expression of an effectful computation
from its implementation, algebraic effects and handlers allow programmers to ex-
press effectful computations independently of their concrete interpretation (Kam-
mar et al., 2013). In this system, concurrency arise as just another computational
effect, modularly expressed as a signature of abstract operations whose implement-
ations are given by one or more handlers. This allows programmers to define their
own schedulers for concurrent programs (Dolan et al., 2015) rather than being
stuck with a built-in, specially compiler-supported implementation.

In previous work, we extended the functional programming language Links
with algebraic effects and handlers (Hillerström, 2015). Links is a full-fledged
strict, single-source programming language for multi-tier web-programming. It
comprise three backends:

1. a JavaScript compiler for client-side code,

2. an interpreter for the server,

3. and an SQL generator for the database.

1



2 Chapter 1. Introduction

The source language is compiled to a common intermediate representation (IR).
For the client, the IR is compiled to JavaScript. For the server, the IR is in-
terpreted using a variant of the CEK machine (Felleisen and Friedman, 1987;
Hillerström and Lindley, 2016). For the database, the IR is translated into an
SQL query. In addition, Links has built-in support for concurrency. The concur-
rency model of Links is a variant of the actor model (Hewitt and Baker, 1977)
with type-safe interaction amongst processes.

In this dissertation we present an extension to the Links infrastructure: a nat-
ive backend with support for effect handlers (Hillerström et al., 2016). In order to
keep the compiler lean we separate the implementation of the concurrency model
of Links from the compiler. Instead we implement the message-passing concur-
rency model using effect handlers (Hillerström, 2016). In addition to keeping
the compiler lean, lifting the concurrency implementation into user-space allows
us to potentially experiment with different implementations or even have several
different implementations coexisting.

1.1 Motivation

Mainstream managed programming languages tend to be closely tied to a com-
plex, monolithic runtime system. Examples are the Java family of programming
languages, that run on top of Oracle’s Java HotSpot VM (HotSpotVM, 2016); the
.NET family of programming languages, that run on top of Microsoft’s Common
Language Runtime (Microsoft Corp., 2016); the Haskell programming language
with the Glasgow Haskell Compiler Runtime System (GHC, 2014).

Typically runtime systems are responsible for managing concurrency amongst
other things such as garbage-collection, and any language features which do not
compile to code themselves. Often concurrency support is hard-wired deeply into
the runtime, requiring special support from the compiler to expose concurrency
primitives as libraries for the programmer (Sivaramakrishnan et al., 2016). As a
consequence it is difficult to change or evolve the concurrency implementation.

If we can lift concurrency into the programming language, allowing program-
mers to compose their own domain-specific concurrency abstractions, then we not
only simplify the compiler and runtime system, we also simplify the life of the
compiler writer.
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1.2 Problem statement

It poises an interesting research question whether we can implement a compiler
for Links without concurrency support, and then reconstruct the message-passing
concurrency model of Links using effect handlers. Thus, in this dissertation we
attempt to answer the following problem:

How can we compile the handlers of Links to native code, and moreover, how
can we reconstruct a faithful implementation of the message-passing concurrency

model of Links with handlers?

By faithful we mean an implementation that is close to the built-in imple-
mentation of the Links interpreter as we inevitably have to give up special syntax
once we reify concurrency as user-defined library.

1.2.1 Approach and proposed solution

Recently, the Multicore OCaml project (Dolan et al., 2015) has extended the
industrial-strength functional programming language OCaml with so-called linear
effect handlers as an effort to bring multicore capabilities to the language. The
purpose of adding handlers is to enable programmers to express user-defined
concurrent multi-threaded schedulers.

Implementing a native backend for a programming language such as Links
is a non-trivial task. In order to make it viable task we plan to take advant-
age of Multicore OCaml backend that already provides native support for effect
handlers, and that Links is written in OCaml. Thus we intend to integrate the
OCaml backend into Links infrastructure, and translate the Links intermediate
representation into the intermediate representation of OCaml. However, the task
is somewhat complicated by the fact that the effect handlers of Links are so-called
multi-shot effect handlers, which are more expressive than linear effect handlers.
Thus, we will consider how to encode multi-shot handlers in OCaml backend.

Our work differs further from theirs as we attempt to implement process-
oriented rather shared-memory concurrency. Furthermore, we consider how to
encode an entire message-passing concurrency model.
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1.3 Scope, aims, and objectives

Since Links is full-fledged programming language for the web, we will restrict
ourselves to work only with a subset of Links, namely, the backend of Links
which supports effect handlers. In other words, we aim to extend the Links
infrastructure with a native backend for effect handlers. We will deliberately
leave support for the web-related features of Links for future work.

Our main contributions are

• A compiler for Links, that support native compilation of multi-shot hand-
lers (Hillerström et al., 2016). We describe a translation from the Links IR
to the OCaml IR which demonstrates how to encode multi-shot handlers in
the OCaml IR.

• A reconstruction of the message-passing concurrency model of Links using
effect handlers (Hillerström, 2016), that maintains the type-safe communic-
ation property of the original built-in implementation.

• A formalisation of the implementation of effect handlers in Links (Hiller-
ström and Lindley, 2016).

1.4 Thesis outline

In Chapter 2 we give a brief introduction to programming Links, effect handlers,
and the concurrency model of Links. We also discuss related work.

We discuss the compiler infrastructure and the compilation strategy in Chapter 3
as well as a core calculus, λρeff, that captures the essence of the Links IR. Further-
more, we describe a translation from the Links IR to the OCaml IR.

In Chapter 4 we demonstrate a reconstruction of the concurrency model of
Links using effect handlers.

We perform some experiments with our compiler in order to measure its per-
formance against the Links interpreter and the OCaml compiler in Chapter 5.
We analyse and discuss the results of the experiments. In addition, we consider
how one may improve the performance of our compiler.

Finally in Chapter 6 we conclude and discuss future work.



Chapter 2

Background and related work

In this chapter we give an introduction to programming with algebraic effects
and handlers by example in Links. Although, first we introduce Links without
effect handlers in Section 2.1. Then in Section 2.2 we introduce effect handlers.
In Section 2.4 we discuss the built-in implementation of the concurrency model
of Links. Finally, in Section 2.5 we discuss related work.

2.1 Links primer

In section provides a brief primer to the Links programming language. As an
introductory example we will implement a purely functional first-in-last-out queue
in the style of Okasaki (1998). The example comprises most of the Links features
that we will use in Chapter 4.

We begin by defining a type constructor Queue(a) which classifies queues whose
elements have type a:

typename Queue(a:: Type) = ([a],[a]);

The keyword typename is used to define type aliases. The notation a::Type denotes
that the type variable a has kind Type. Links has several kinds, however, we will
only use the Type and Row kinds. The type constructor Queue(a) constructs a pair of
lists whose elements have type a. The main idea is that the two lists, respectively,
represent the front and back of the queue. We always insert elements into the
back list, and remove elements from the front list.

We define a useful function which creates an empty queue:
sig emptyQueue : () -> Queue(a)
fun emptyQueue () { ([], []) }

5



6 Chapter 2. Background and related work

The syntax of Links is loosely based on that of JavaScript. The fun keyword
begins a function definition (like function in JavaScript). Just as in JavaScript
functions are n-ary, but they can also be curried. Unlike in JavaScript, functions
are statically typed and the sig keyword begins a type signature. The type
signature reads: emptyQueue is a nullary function that returns a type polymorphic
queue. The empty queue is represented as pair of empty lists. The notation []

denotes the empty list.
Next we define another useful function which puts an element into a queue:
sig enqueue : (Queue(a), a) -> Queue(a)
fun enqueue ((xs ,ys), y) { (xs , y:: ys) }

Here we pattern match on the first argument of enqueue to bind the front list to
xs and the back list to ys. We cons the element y onto the back list by using the
list cons operator ::.

Now that we can populate a queue we will consider how to depopulate a queue.
We will define a function dequeue that removes the head of a given queue. The
definition of dequeue is a bit more involved than the definition of enqueue, because
we have to deal with the special case when the queue is empty. To deal with this
case we use a standard functional programming pattern: represent the possibility
of failure as a Maybe-type. We can define the type as a variant:

typename Maybe(a) = [| Nothing
|Just:a
|];

The syntax [|...|] denotes a variant type in Links in which components of the
variant type are delimited by the pipe symbol (|). The Nothing and Just are data
constructors. The idea is to tag a dequeued element by Just to inform the caller
that an element was successfully removed. In case there are no elements in the
queue we simply return Nothing. The function dequeue is implemented as follows:

sig dequeue : (Queue(a)) ~> (Maybe(a), Queue(a))
fun dequeue (q) {

switch (q) {
case ([], []) -> (Nothing , q)
case (x :: xs , ys) -> (Just(x), (xs , ys))
case ([], ys) -> dequeue (( reverse (ys), []))

}
}

The switch(q){...} construct pattern matches on the shape of the queue q through
a list of clauses. The first clause considers the special case when the queue is
empty. In this case we simply return Nothing and the unmodified queue. The
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second clause considers the case when the front list is non-empty. In this case
remove the head of the front list and return it inside a Just along with the modified
queue. The final clause considers the case when the front list is empty but the
back list is (possibly) non-empty. In this case we swap the front and back list.
In addition, the back list gets reversed to preserve the first-in-last-out semantics
of the queue.

Effect system Links has a type-and-effect system which tracks the effects that
functions may perform. For example, the reader may have noticed that the arrow
in the type signature of dequeue is squiggly (~>) rather than straight (->). The
squiggly function arrow is syntactic sugar for denoting that the computation has
the wild effect. The wild effect captures intrinsic effects such as I/O, randomness,
divergence, etc. To some extent it is analogous to the IO monad of Haskell,
though the wild effect is much stricter as without it general recursion is disallowed.
The effect system of Links uses row polymorphism to provide extensible effect
signature. We can elaborate the squiggly arrow ~> to {wild|e}-> where {wild|e}

denotes a row with a label wild and an effect variable e. The effect variable is
a row variable which can be instantiated to populate the row with additional
labels (Hillerström and Lindley, 2016). The straight arrow is actually syntactic
sugar for writing { |e}->, that is an empty open effect row which means the
function can be used in the presence of any other effect.

Type inference Often in Links we may omit type signatures altogether as
Links has type inference. If we write fun just(x) { Just(x) } then we might ex-
pect the inferred type to be just : (a) -> Maybe(a). However, Links will infer the
type just : (a) -> [|Just:a|e|], where e is a row variable that can be instanti-
ated to contain additional labels. The reason for this behaviour is that Links
employs structural typing as opposed to nominal typing. In the latter typing dis-
cipline any two terms have the same type if and only if they are constructed by
the same constructor. By contrast, in the structural typing discipline any two
terms have compatible types if they have the same structure. For example, we
can unify the given type and the inferred type above

Maybe(a)v [|Just:a|e|]

by instantiating the row variable e to Nothing.
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2.2 Affine and multi-shot effect handlers

This section provides a short primer to effect handlers in Links. The contents of
this section are largely based on Hillerström et al. (2016). An algebraic effect is
given by a signature of abstract operations. For example nondeterminism is an
algebraic effect that is given by a nondeterministic choice operation called Choose.
In Links, we may use this operation to implement a coin toss:

sig toss : Comp ({ Choose :Bool |e}, Toss)
fun toss () { if (do Choose ) Heads else Tails }

This declares an abstract computation toss, which invokes an operation Choose

using the do primitive. The sig keyword begins a signature, which reads: toss

is a computation with effect signature {Choose:Bool |e} and return value Toss,
whose constructors are Heads and Tails. The effect signature conveys that the
computation may perform the Choose operation. In particular, the effect row has
an effect variable e which means the computation may be invoked in the scope
of additional effects. The computation type Comp(·,·) is not a built-in type. It is
straightforward to define in Links:

typename Comp(e::Row ,a:: Type) = () -e-> a;

The type constructor takes a row type e and a regular type a and constructs a
thunk with effect row e and return type a.

We need a suitable effect handler in order to evaluate the computation toss.
An effect handler instantiates a subset of the operations of an abstract computa-
tion. For example, the following handler interprets Choose randomly:

sig randomResult : (Comp ({ Choose :Bool |e}, a)) ->
Comp ({ Choose {_} |e}, a)

handler randomResult {
case Return (x) -> x
case Choose ( resume ) -> resume ( random () > 0.5)

}

The signature conveys that the handler interprets the operation Choose and leaves
any other operations uninterpreted. The notation Choose{_} denotes that the
operation is polymorphic in its presence. The handler comprises two clauses:

1. the Return-clause specifies how to handle the return value of the computa-
tion.

2. the Choose-clause specifies how to handle a Choose operation. The para-
meter resume is the delimited continuation of the operation Choose in the
computation.
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We say that randomResult is a linear handler, because it invokes every continu-
ation exactly once. Essentially, the handler interprets the computation toss as
modelling a fair coin. Using this handler we can evaluate the computation toss

in the Links interpreter:
links > randomResult (toss)();
Tails : Toss
links > randomResult (toss)();
Heads : Toss

Evaluating the composition produces either Heads or Tails uniformly.
Alternatively, we may define a handler for Choose that invokes its continuation

twice to enumerate every possible outcome:
sig allResults : (Comp ({ Choose :Bool |e}, a)) ->

Comp ({ Choose {_} |e}, [a])
handler allResults {

case Return (x) -> [x]
case Choose ( resume ) -> resume (true) ++ resume (false)

}

Observe that the return value is lifted into a singleton list. The Choose-clause
concatenates the outcomes obtained by interpreting the operation as true and
false, respectively. We say that allResults is a multi-shot handler. The compos-
ition allResults(toss) produces a computation that yields a list of the possible
outcomes, i.e.

links > allResults (toss)();
[Heads , Tails] : [Toss]

Using the toss computation we can model a drunk coin toss. In a drunken
coin toss the drunkard may fail to catch the coin after flipping it. We need an
additional operation Fail : Zero that models failure, then we can implement the
drunk coin toss as follows:

sig drunkToss : Comp ({ Choose :Bool ,Fail:Zero |e}, Toss)
fun drunkToss () { if (do Choose ) toss ()

else switch (do Fail) { } }

Here Zero is the empty type, and thus the switch pattern matching construct has
no clauses.

Note that the additional operation causes the effect row to grow accordingly.
Now it comprises two operations. Thus, randomResult is no longer sufficient in
order to give a full interpretation of drunkToss. We need yet another handler that
interprets Fail.

An interpretation of Fail amounts to defining a familiar exception handler.
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As an example consider the following exception handler, which returns Just the
result of the computation or returns Nothing if the operation Fail is performed:

sig maybeResult : (Comp ({ Fail:Zero |e}, a)) ->
Comp ({ Fail{_} |e}, Maybe(a))

handler maybeResult {
case Return (x) -> Just(x)
case Fail(_) -> Nothing

}

The type system prevents invocation of the continuation in the Fail-clause, be-
cause the type Zero has zero inhabitants. Linear and exception handlers together
constitute affine handlers.

We can compose maybeResult and randomResult to give an interpretation of
drunkToss. Figure 2.1 depicts a sequence diagram for evaluation of this composi-
tion. The result of the evaluation is nondeterministic:

links > maybeResult ( randomResult ( drunkToss ))();
Just(Tails) : Maybe(Toss)
links > maybeResult ( randomResult ( drunkToss ))();
Nothing : Maybe(Toss)

Program maybeResult randomResult drunkToss

maybeResult(randomResult(drunkToss))()

randomResult(drunkToss)()

drunkToss()

do Choose

resume(true)

do Choose

resume(false)

Tails

Tails

Just(Tails)

Figure 2.1: Sequence diagram for a maybeResult(randomResult(drunkToss)).
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2.2.1 Handler pipelines

A composition of handlers effectively form a pipeline where unhandled operations
flow from inside out. To capture this intuition – and to reduce the number of
parentheses – we define an infix binary operator that constructs a pipeline:

op h -<- g { fun(m) { h(g(m)) } }

The op keyword begins the definition of an infix binary operator in Links. The
operator reads: h after g. In addition, we give another operator to plug a com-
putation into a handler pipeline:

op h -< m { h(m) }

This operator simply applies the handler h to the computation m. Furthermore,
it is convenient to have a top-level function that runs a handler pipeline:

fun run(m) { m() }

The function forces the thunk produced by a handler pipeline. Now, we can write
the composition of maybeResult and randomResult as

links > run -<- maybeResult -<- randomResult -< drunkToss ;
Just(Tails) : Maybe(Toss)

For deep pipeline of handlers these two operators help make handler composition
syntactically lightweight.

2.3 State and parameterised handlers

Most programs maintain some sort of state through their life time. It is possible
to describe state as an effect with operations for reading (Get : s) and updating
(Put : s {}-> ()) a state of type s. We implement them as follows:

sig get : () {Get:s|_}-> s
fun get () {do Get}

sig put : (s) {Put :(s) {}-> ()|_}-> ()
fun put(s) {do Put(s)}

Typically, we wrap the invocation of an abstract operation inside a function. This
is mainly because it lets us compose effects with functions seamlessly. Moreover,
sometimes we want to do more than just invoking an operation.

We use a parameterised handler to give an interpretation of state. In addition
to supplying a computation to a parameterised handler, we also supply one or
more parameters. In this instance we pass the state as an additional parameter s
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sig evalState : (s) ->
(Comp ({ Get:s ,Put :(s) {}-> () |e}, a)) ->

Comp ({ Get{_},Put{_} |e}, a)
handler evalState (s) {

case Get(k) -> k(s)(s)
case Put(s,k) -> k(())(s)
case Return (x) -> x

}

The main difference compared to an unparameterised handler is that the con-
tinuation k is a curried function that takes a return value followed by the handler
parameters. In the Get clause, we return the state and also pass it unmodified to
any subsequent invocations of the handler. Similarly, in the Put clause, we return
unit and update the state.

In order to demonstrate the state handler in action consider the following
example:

fun fortytwo () {
var q = enqueue (get (), 42);
put(q);
var (x, _) = dequeue (get ());
switch (x) {

case Just(i) -> print( intToString (i))
case Nothing -> print("No elements .")

}
}

The program retrieves a queue using the get operation, enqueues the element 42,
and stores the modified queue. Afterwards, the queue is retrieved again and an
element is dequeued. We use the evalState handler to interpret the computation:

links > run -<- evalState ( emptyQueue ()) -< fortytwo ;
42 : Int

We seed the state handler with the empty queue which is the initial state of the
program.

2.4 The built-in concurrency model of Links

The concurrency model of Links is based on a typed actor model (Cooper et al.,
2006). In an actor model processes run in (memory) isolation (Hewitt and Baker,
1977). A process can only make state changing decisions locally. In order to
influence the global program state, the process must communicate with other
processes through message passing. Each process is equipped with its own mail-
box. Figure 2.2 sketches an abstract representation of the interaction between
two processes.
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P1m0m1· · ·mkMailbox

P2n0n1· · ·sMailbox

P1 sends message s to P2

Figure 2.2: Interaction between processes.

A Links program begins in a single process of control, but this process can
spawn multiple subprocesses, which in turn can spawn subprocesses of their own.
multiple processes. There are four essential built-in primitives for concurrency:
process self referral, process spawning, sending and receiving messages. In the
following paragraphs we briefly introduce each primitive.

Self referral The built-in function self retrieves the process identifier from the
current context. A process identifier has the type Process({ |e }). The type is
parameterised by an effect row with an effect variable e which tracks the effects
that the process may perform. The signature of self is

links > self;
self : () ~e~> Process ({ |e })

Invoking the function at the top level retrieves the identifier of the main process:
links > self ();
0 : Process ({ |_ })

Evidently the main process always has identifier 0. Subsequent processes are
assigned identifiers 1, 2, 3, and so forth. Although, the term 0 looks like a value
of the integer type we cannot act upon it as such, because the process type is
implemented as an abstract type. Therefore the type checker will prevent us from
incrementing the process identifer by hand:

links > self () + 1;
<stdin >:1: Type error: [..]

Here, we have omitted the full error message for brevity, however the problem
is that the addition operator (+) expects two arguments of type Int. The two
types Process({ |e }) and Int are incompatible. This adds a layer of safety to the
concurrency model as we cannot erroneously refer to an non-existent process.
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Spawning The primitive spawn { expression } returns a handle to a new pro-
cess which begins by evaluating expression. For example by spawning the com-
putation print("Hello World") we obtain the process identifier for the subprocess:

links > spawn { print("Hello World") };
Hello World
1 : Process ({ wild|_ })

We obtain the handle 1 whose effect row contains the wild effect due to the fact
that the subprocess prints to the standard out.

Receiving and sending A process can receive messages using the recv func-
tion, e.g.

links > var p2 = spawn { print(" Message : " ^^ recv ()) };
p2 = 2 : Process ({ hear:String ,wild|_ })

The recv function blocks until a message becomes available. Each mailbox is
given a static type according to the messages it expects to receive. The built-in
effect hear reflects and tracks this type. We can send a message to process 1 using
the ! primitive (pronounced “send”):

links > p2 ! "Hello";
Message : Hello
() : ()

Process 1 prints the received message "Hello" and terminates afterwards. The
process is only capable of receiving strings but often a process will use a variant
to tag the different messages it can receive. Typically, a process will dispatch
on the tag of received message. As a concrete example consider this example
adapted from the Links documentation (Links, 2016) where a process that gets
informed about passing comets and celebrity sightings:

var p3 = spawn {
fun loop () {

var _ = switch (recv ()) {
case PassingComet (id , zenith , azimuth ) -> cometSighted (

id , zenith , azimuth )
case CelebritySighting (name , venue) -> celebSighted (

name , venue)
};
loop ()

}
loop ()

};

Here we assume the existence of two functions cometSighted and celebSighted

that register sightings of comets and sightings of celebrities, respectively. The
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P1 (Generator)

P 2
2 P 3

3

P 5
4P 7

5

{2, . . . ,10}

{n | n 6≡ 0 (mod 2)}

{n | n 6≡ 0 (mod 3)}

{n | n 6≡ 0 (mod 5)}

Figure 2.3: Visual representation of Sieve of Eratosthenes.

hear effect in the type signature of p3 now reflects that the process expects to
receive messages tagged by either CelebritySighting or PassingComet:

links > p3;
3 : Process ({ hear :[| CelebritySighting :( String , String )

| PassingComet :(Int , Float , Float)|]
, wild|_ })

We can inform the process of any passing comets and celebrity sightings:
links > p3 ! CelebritySighting ("Ewan McGregor ", "Leith");
Ewan McGregor has been seen in Leith
() : ()
links > p3 ! PassingComet (42, 10.3 , 180.5) ;
Comet no. 42 sighted (10.3 , 180.5)
() : ()

2.4.1 Sieve of Eratosthenes example

We will now consider a larger example which will serve to demonstrate an ac-
tual concurrent application in Links. However, we shall reuse the example to
demonstrate our reconstruction of the concurrency model in Chapter 4.

We shall implement a parallel version of the Sieve of Eratosthenes prime
number finding algorithm.

The basic idea is to dynamically construct a pipeline of processes where each
process holds one prime number (Andrews, 2000). Figure 2.3 visualises the sieve
pipeline which finds primes between 2 and 10. In the figure the subscript of each
process is its identifier and the superscript is the prime number it holds. The
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job of each sieve process is to receive and perform a primality test on candidate
prime by dividing the candidate number by its own prime. If the remainder
after division is positive then the process forwards the candidate to its neighbour
process. The initial process generates a sequence of natural numbers. These
numbers are sent one by one to the first sieve process. We implement this as the
function generator(n) where n is the upper bound of the sequence:

fun generator (n) {
var first = spawn { sieve () };
foreach ([2..n], fun(p) { first ! Candidate (p) });
first ! Stop

}

The function spawns the first sieve as a child process. The foreach function has
type ([a], (a) ~e~> ()) ~e~> (), that is it takes a list and an action as argu-
ments. The action is applied to each element in the list. The notation [2..n] is
a shorthand for generating the sequence of integers between 2 and n. The action
function sends a Candidate-tagged number to the first sieve process. When the
entire sequence has been transmitted the generator sends the Stop signal.

The first message sent to a sieve process will always be its prime. Subsequent
messages may either be a Candidate prime number or the Stop signal. The imple-
mentation of sieve is given below.
1 fun sieve () {
2 var myprime = fromCandidate (recv ());
3 print( intToString ( myprime ));
4 fun loop( neighbour ) {
5 switch (recv ()) {
6 case Stop -> stop( neighbour )
7 case Candidate ( number ) ->
8 if ( number ‘mod ‘ myprime == 0) {
9 loop( neighbour )

10 } else {
11 var neighbour =
12 switch ( neighbour ) {
13 case Just(pid) -> pid
14 case Nothing -> spawn { sieve () }
15 };
16 neighbour ! Candidate ( number );
17 loop(Just( neighbour ))
18 }
19 }
20 }
21 loop( Nothing )
22 }

We describe function line by line.

Line 2 receives the process’ prime number. The fromCandidate simply removes
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the Candidate tag from the number.

Line 3 simply prints the prime to standard out.

Line 4 begins the definition of the main loop of the process. The function is
parameterised by a handle to its neighbouring process.

Lines 5-9 dispatch on the message tag. If the message is Stop then the auxiliary
function stop (described below) propagates the stop signal to the neighbour
process. If a candidate prime number is received then the process performs
a primality test on the candidate number. In case the number is composite
the loop function recurse in order to repeat the procedure.

Lines 11-17 forwards the candidate number to its neighbour. However before do-
ing so the process must ensure it has a neighbour. If the process already has
a neighbour then the switch expression simply removes the Just tag from
the neighbour’s identifier. In case it does not have a neighbour it spawns
one and returns the new neighbour’s identifier. Thereafter the process re-
wraps the candidate number and sends it to its neighbour. Finally, the loop

function gets called recursively with the neighbour’s identifier wrapped in
a Just.

The stop function handles the special case of when the process has no neighbour:
fun stop( neighbour ) {

switch ( neighbour ) {
case Nothing -> ()
case Just(pid) -> pid ! Stop

}
}

The process silently exits if it does not have a neighbour. Otherwise the process
forwards the Stop message before exiting. Now, we can run the example:

links > generator (10);
2
3
5
7
() : ()

As expected the primes between 2 and 10 get printed.
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2.5 Related work

Since the inception of effect handlers a rather lot of implementations have ap-
peared. Many of these implementations are attempts at encoding handlers in an
existing language. Nevertheless, some new languages have been designed from
the ground up with handlers in mind.

2.5.1 Implementations of effect handlers

Any signature of abstract operations can be understood as a free algebra and rep-
resented as a functor. In particular, every such functor gives rise to a free monad.
Thus, free monads provide a natural basis for implementing effect handlers (Swi-
erstra (2008) provide an account of free monads for functional programmers).
Many of the library implementations of effect handlers include implementations
based on free monads (Kammar et al., 2013; Kiselyov et al., 2013; Kiselyov and
Ishii, 2015; Brady, 2013; Wu et al., 2014).

Kammar et al. (2013) take advantage of Haskell’s aggressive fusion optimisa-
tions for an efficient Haskell library for handlers, as explained in detail by Wu
and Schrijvers (2015). Saleh and Schrijvers (2016) apply a similar technique for
optimising their embedding of handlers in ProLog. Kiselyov and Ishii (2015) also
optimise a different Haskell library for handlers, taking advantage of prior work
on optimising monadic reflection (van der Ploeg and Kiselyov, 2014).

The Idris effects library by Brady (2013) takes advantage of dependent types
to provide effect handlers for a form of effects corresponding to parameterised
monads (Atkey, 2009). Our work differs from these systems in that we compile
effect handlers directly, rather than via library.

We are aware of three languages that are specifically designed with effect
handlers in mind.

• The Eff language by Bauer and Pretnar (2015) is a strict language with
Hindley-Milner type inference similar in spirit to ML, but extended with
effect handlers. It has the look-and-feel of the OCaml programming lan-
guage. It includes a novel feature for supporting fresh generation of effects
in order to support effects such as ML-style higher-order state. Currently,
the Eff is compiled to a free monad encoding in the surface syntax of OCaml.

• Frank by Lindley et al. (2016) takes the idea of effect handlers to the ex-
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treme, having no primitive notion of function, only handlers. In Frank a
function is but a special case of a handler. Interestingly, Frank includes
the notion of multi-handlers which handle multiple computations at once.
Frank is built on a bidirectional type system. It includes an effect type
system and a novel form of effect polymorphism in which the programmer
never needs to read or write any effect variables. Currently, Frank has only
a prototypical interpreter.

• Shonky by McBride (2016) amounts to a dynamically-typed variant of
Frank. Though it is not statically typed, handlers must be annotated with
the names of the effects that they handle. The implementation of Shonky
uses a generalisation of the CEK machine akin to the one used by the Links
interpreter. The main differences are that Shonky uses a different IR than
Links.

Although OCaml itself has no support for effect handlers, a development
branch, Multicore OCaml (Dolan et al., 2015), does. Multicore OCaml does not
include an effect type system, and handlers are restricted so that continuations
are affine, that is, they can be invoked at most once. This design admits a
particularly efficient implementation (Bruggeman et al., 1996), as continuations
need never be copied, so they can simply be stored on the stack.

The programming language Koka by Leijen (2016) has recently been extended
with effect handlers. The Koka compiler employs a particularly efficient compil-
ation scheme using a type directed selective continuation-passing style (CPS)
translation in order to compile effect handlers to common runtime platforms.





Chapter 3

Compiling effect handlers

Links is a strict ML-like functional language for the web (Cooper et al., 2006).
The defining feature of Links is that it provides a single source language that
targets all three tiers of a web application: client, server, and database. Links
source code is translated into an intermediate representation (IR) based on A-
normal form (Flanagan et al., 1993).

In this chapter we describe our native compiler backend for server-side Links.
In addition, we give a formalisation of the intermediate language used within
the Links compiler. Furthermore, we describe the translation of the intermediate
representation of Links into the intermediate representation of OCaml. The ma-
terial in Section 3.1 and Section 3.5 is based on Hillerström et al. (2016), while
the contents of Section 3.2 are based on Hillerström and Lindley (2016).

3.1 Compilation strategy

We reuse most of the previous Links infrastructure. Though, we extend the
compiler infrastructure with a native backend as shown in Figure 3.1. The Links
compiler pipeline follows a rather conventional compiler pipeline design. The
frontend comprises a parser, an early elaboration pass that happens before type
checking. The backend contains a translation pass of the Links frontend into a
small, typed intermediate language in A-normal form (ANF) (Flanagan et al.,
1993). This pass is assisted by a pattern matching compiler. The Links interpreter
implements a generalised CEK machine (Hillerström and Lindley, 2016), which
interprets ANF code directly.

For the native backend our compilation strategy is to translate the Links ANF

21
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Binary

Figure 3.1: Links compiler pipeline.
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Byte code Flambda

Clambda
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Figure 3.2: OCaml backend (Hillerström et al., 2016).
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language into the OCaml Lambda language, which is a small, untyped lambda
calculus. The OCaml backend exposes a hierarchy of intermediate representa-
tions, where the top representation is known as Lambda. As shown in the Figure
3.2, the Lambda IR offers two different compilation options: byte code and native
code. Therefore by targeting Lambda rather than a lower level IR, we achieve
maximum flexibility as a translation into byte code, in principle, enables us to
take advantage of custom backends.

There are several semantic differences between Links and OCaml, e.g. Links
employs structural typing, whilst OCaml predominantly employs nominal typing.
In particular, Links employs row typing for effects, records, and variants, whereas
OCaml only supports row typing for the latter. Exhibiting a faithful translation
from Links to OCaml amounts to a lot of value boxing (Holmes, 2009). Thus, we
target Lambda for greater flexibility and control. We effectively subvert OCaml’s
typechecker by targeting Lambda, however the translation is safe as Links pro-
grams are already typechecked.

3.2 A formalisation of the Links intermediate
language

In this section, we present a type and effect system and a small-step opera-
tional semantics for λρeff (pronounced “lambda-eff-row”), a Church-style row-
polymorphic call-by-value calculus for effect handlers. This core calculus captures
the essence of the Links IR. We prove that the operational semantics is sound
with respect to the type and effect system.

The design of λρeff is inspired by the λ-calculi of Kammar et al. (2013), Pretnar
(2015), and Lindley and Cheney (2012). As in the work of Kammar et al. (2013),
each handler can have its own effect signature. As in the work of Pretnar (2015),
the underlying formalism is fine-grain call-by-value (Levy et al., 2003), which
names each intermediate computation like in A-normal form (Flanagan et al.,
1993), but unlike A-normal form is closed under β-reduction. As in the work of
Lindley and Cheney (2012), the effect system is based on row polymorphism.
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Value types A,B ::= A→ C | ∀αK .C
| 〈R〉 | [R] | α

Computation types C,D ::= A!E
Effect types E ::= {R}
Row types R ::= ` : P ;R | ρ | ·
Presence types P ::= Pre(A) | Abs | θ
Handler types F ::= C⇒D

Types T ::= A | C | E |R | P | F
Kinds K ::= Type | RowL | Presence

| Comp | Effect | Handler
Label sets L ::= ∅ | {`}]L
Type environments Γ ::= · | Γ,x : A
Kind environments ∆ ::= · |∆,α :K

Figure 3.3: Types, effects, kinds, and environments

3.2.1 Types

The grammars of types, kinds, label sets, and type and kind environments are
given in Figure 3.3.

Value types The function type A→ C represents functions that map values
of type A to computations of type C. The polymorphic type ∀αK .C is paramet-
erised by a type variable α of kind K. The record type 〈R〉 represents records
with fields constrained by row R. Dually, the variant type [R] represents tagged
sums constrained by row R. The handler type C ⇒D represents handlers that
transform computations of type C into computations of type D.

Computation types A computation type A!E is given by a value type A and
an effect E, which specifies the operations that the computation may perform.

Row Types Effect types, records and variants are defined in terms of rows. A
row type embodies a collection of distinct labels, each of which is annotated with
a presence type. A presence type indicates whether a label is present with some
type A (Pre(A)), absent (Abs) or polymorphic in its presence (θ).

Row types are either closed or open. A closed row type ends in ·, whilst an
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open row type ends with a row variable ρ. Furthermore, a closed row term can
have only the labels explicitly mentioned in its type. Conversely, the row variable
in an open row can be instantiated with additional labels. We identify rows up to
reordering of labels. For instance, we consider the following two rows equivalent:

`1 : P1; · · · ;`n : Pn ≡ `n : Pn; · · · ;`1 : P1.

The unit and empty type are definable in terms of row types. We define the unit
type as the empty, closed record, that is, 〈·〉. Similarly, we define the empty type
as the empty, closed variant [·]. Usually, we usually omit the · for closed rows.

Handler types A handler type C⇒D is given by an input computation type
C and an output computation type D.

Kinds We have six kinds: Type, Comp, Effect, RowL, Presence, Handler, which
classify value types, computation types, effect types, row types, presence types,
and handler types, respectively. Row kinds are annotated with a set of labels L.
The kind of a complete row is Row∅. More generally, the kind RowL denotes a
partial row that cannot mention the labels in L.

Type variables We let α, ρ and θ range over type variables. By convention
we use α for value type variables or for type variables of unspecified kind, ρ for
type variables of row kind, and θ for type variables of presence kind.

Type and kind environments Type environments map term variables to
their types and kind environments map type variables to their kinds.

3.2.2 Terms

The terms are given in Figure 3.4. We let x,y,z,k range over term variables. By
convention, we use k to denote continuation names.

The syntax partitions terms into values, computations and handlers. Value
terms comprise variables (x), lambda abstraction (λxA.M), type abstraction
(ΛαK .M), and the introduction forms for records and variants. Records are
introduced using the empty record 〈〉 and record extension 〈` = V ;W 〉, whilst
variants are introduced using injection (`V )R, which injects a field with label `
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Values V,W ::= x | λxA.M | ΛαK .M
| 〈〉 | 〈`= V ;W 〉 | (`V )R

Computations M,N ::= V W | V A
| let 〈`= x;y〉= V inN
| case V {` x 7→M ;y 7→N} | absurdCV
| return V
| let x←M inN
| (do ` V )E

| handleM withH

Handlers H ::= {return x 7→M}
| {` x k 7→M}]H

Figure 3.4: Term syntax

and value V into a row whose type is R. We include the row type annotation in
order to support bottom-up type reconstruction.

All elimination forms are computation terms. Abstraction and type abstrac-
tion are eliminated using application (V W ) and type application (V A) respect-
ively. The record eliminator (let 〈`= x;y〉= V inN) splits a record V into x, the
value associated with `, and y, the rest of the record. Non-empty variants are
eliminated using the case construct (case V {` x 7→M ;y 7→N}), which evaluates
the computationM if the tag of V matches `. Otherwise it falls through to y and
evaluates N . The elimination form for empty variants is (absurdC V ). A trivial
computation (return V ) returns value V . The expression (let x← M in N)
evaluates M and binds the result value to x in N .

The construct (do ` V )E invokes an operation ` with value argument V . The
handle construct (handleM withH) runs a computation M with handler defin-
ition H. A handler definition H consists of a return clause return x 7→M and
a possibly empty set of operation clauses {`i xi ki 7→Mi}i. The return clause
defines how to handle the final return value of the handled computation, which
is bound to x in M . The i-th operation clause binds the operation parameter to
xi and the continuation ki in Mi.

We write Id(M) for handleM with {return x 7→ x}. We write H(return)
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for the return clause of H and H(`) for the set of either zero or one operation
clauses in H that handle the operation `. We write dom(H) for the set of op-
erations handled by H. As our calculus is Church-style, we annotate various
term forms with type or kind information (term abstraction, type abstraction,
injection, operations, and empty cases); we sometimes omit these annotations.

3.2.3 Static semantics

The kinding rules are given in Figure 3.5 and the typing rules are given in Fig-
ure 3.6.

The kinding judgement ∆ ` T : K states that type T has kind K in kind
environment ∆. The value typing judgement ∆;Γ` V :A states that value term V

has type A under kind environment ∆ and type environment Γ. The computation
typing judgement ∆;Γ`M :C states that termM has computation type C under
kind environment ∆ and type environment Γ. The handler typing judgement
∆;Γ `H :C⇒D states that handler H has type C⇒D under kind environment
∆ and type environment Γ. In the typing judgements, we implicitly assume that
Γ, A, C, and D, are well-kinded with respect to ∆. We define the functions
FTV (Γ) to be the set of free type variables in Γ.

The kinding and typing rules are mostly straightforward. The interesting
typing rules are T-Handle and the two handler rules. The T-Handle rule
states that handle M with H produces a computation of type D given that
the computation M has type C, and that H is a handler that transforms a
computation of type C into another computation of type D.

The T-Handler rule is crucial. The effect rows on the computation type C
and the output computation type D must share the same suffix R. This means
that the effect row of D must explicitly mention each of the operations `i, whether
that be to say that an `i is present with a given type signature, absent, or poly-
morphic in its presence. The row R describes the operations that are forwarded.
It may include a row-variable, in which case an arbitrary number of effects may
be forwarded by the handler. The typing of the return clause is straightforward.
In the typing of each operation clause, the continuation returns the output com-
putation type D. Thus, we are here defining deep handlers (Kammar et al., 2013)
in which the handler is implicitly wrapped around the continuation, such that
any subsequent operations are handled uniformly by the same handler.
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TyVar

∆,α :K ` α :K

Comp
∆ ` A : Type ∆ ` E : Effect

∆ ` A!E : Comp

Fun
∆ ` A : Type ∆ ` C : Comp

∆ ` A→ C : Type

Forall
∆,α :K ` C : Comp

∆ ` ∀αK .C : Type

Record
∆ `R : Row∅

∆ ` 〈R〉 : Type

Variant
∆ `R : Row∅

∆ ` [R] : Type

Effect
∆ `R : Row∅

∆ ` {R} : Effect

Present
∆ ` A : Type

∆ ` Pre(A) : Presence

Absent

∆ ` Abs : Presence

EmptyRow

∆ ` · : RowL

ExtendRow
∆ ` P : Presence ∆ `R : RowL]{`}

∆ ` ` : P ;R : RowL

Handler
∆ ` C : Comp ∆ `D : Comp

∆ ` C⇒D : Handler

Figure 3.5: Kinding rules (Hillerström and Lindley, 2016).
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Values
T-Var
x : A ∈ Γ

∆;Γ ` x : A

T-Lam
∆;Γ,x : A `M : C

∆;Γ ` λxA.M : A→ C

T-PolyLam
∆,α :K;Γ `M : C α /∈ FTV (Γ)

∆;Γ ` ΛαK .M : ∀αK .C

T-Unit

∆;Γ ` 〈〉 : 〈〉

T-Extend
∆;Γ ` V : A ∆;Γ `W : 〈` : Abs;R〉

∆;Γ ` 〈`= V ;W 〉 : 〈` : Pre(A);R〉

T-Inject
∆;Γ ` V : A

∆;Γ ` (`V )R : [` : Pre(A);R]

Computations

T-App
∆;Γ ` V : A→ C ∆;Γ `W :B

∆;Γ ` V W : C

T-PolyApp
∆;Γ ` V : ∀αK .C ∆ ` A :K

∆;Γ ` V A : C[A/α]

T-Split
∆;Γ ` V : 〈` : Pre(A);R〉

∆;Γ,x : A,y : 〈` : Abs;R〉 `N : C

∆;Γ ` let 〈`= x;y〉= V inN : C

T-Case
∆;Γ ` V : [` : Pre(A);R]

∆;Γ,x : A `M : C
∆;Γ,y : [` : Abs;R] `N : C

∆;Γ ` case V {` x 7→M ;y 7→N} : C

T-Absurd
∆;Γ ` V : []

∆;Γ ` absurdC V : C

T-Return
∆;Γ ` V : A

∆;Γ ` return V : A!E

T-Let
∆;Γ `M : A!E ∆;Γ,x : A `N : C

∆;Γ ` let x←M inN : C

T-Do
∆;Γ ` V : A E = {` : A→B;R}

∆;Γ ` (do ` V )E :B!E

T-Handle
∆;Γ `M : C ∆;Γ `H : C⇒D

∆;Γ ` handleM withH :D

Handlers
T-Handler

C = A!{(`i : Ai→Bi)i;R}
D =B!{(`i : Pi)i;R} H = {return x 7→M}]{`i y k 7→Ni}i

[∆;Γ,y : Ai,k :Bi→D `Ni :D]i ∆;Γ,x : A `M :D

∆;Γ `H : C⇒D

Figure 3.6: Typing rules (Hillerström and Lindley, 2016).
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S-App

(λxA.M)V  M [V/x]
S-TyApp

(ΛαK .M)A M [A/α]

S-Split

let 〈`= x;y〉= 〈`= V ;W 〉 inN  N [V/x,W/y]

S-Case1

case (`V )R{` x 7→M ;y 7→N} M [V/x]

S-Case2

case (`V )R{`′ x 7→M ;y 7→N} N [(`V )R/y], if ` 6= `′

S-Let

let x← return V inN  N [V/x]
S-Lift

M  N, if E [M ] E [N ]

S-Handle-Ret

handle (return V ) withH N [V/x], where {return x 7→N} ∈H

S-Handle-Op
handle E [do ` V ] withH N [V/x,λy.handle E [return y] withH/k],

where ` /∈BL(E) and {` x k 7→M} ∈H

Evaluation contexts E ::= [ ] | let x←E inN | handle E withH

Figure 3.7: Small-step operational semantics (Hillerström and Lindley, 2016).

3.2.4 Operational semantics

We give a small-step operational semantics for λρeff. Figure 3.7 displays the op-
erational rules. The reduction relation  is defined on computation terms. The
statement M  M ′ reads: term M reduces to term M ′ in a single step. Most
of the rules are standard. Substitution on terms is defined in the usual way. We
use evaluation contexts to focus on the active expression. The interesting rules
are the handler rules.

We write BL(E) for the set of operation labels bound by E .

BL([ ]) = ∅
BL(let x←E inN) = BL(E)

BL(handle E withH) = BL(E)∪dom(H)

The rule S-Handle-Ret invokes the return clause of a handler. The rule
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S-Handle-op handles an operation by invoking the appropriate operation clause.
The constraint ` /∈ BL(E) ensures that no inner handler inside the evaluation
context is able to handle the operation: thus a handler is able to reach past any
other inner handlers that do not handle `.

We write  + for the transitive closure of relation  . Subject reduction and
type soundness for λρeff are standard.

Theorem 3.2.1 (Subject Reduction). If ∆;Γ ` M : A!E and M  M ′, then
∆;Γ `M ′ : A!E.

Proof. By induction on the given typing derivation.

There are two ways in which a computation can terminate. It can either
successfully return a value, or it can get stuck on an unhandled operation.

Definition 3.2.2. We say that computation term N is normal with respect to
effect E, if N is either of the form return V , or E [do ` W ], where ` ∈ E and
` /∈BL(E).

If N is normal with respect to the empty effect {·}, then N has the form
return V .

Theorem 3.2.3 (Type Soundness). If `M : A!E, then there exists ` N : A!E,
such that M  + N 6 , and N is normal with respect to effect E.

Proof. By induction on the given typing derivation.

3.3 The Lambda intermediate language

In this section we describe OCaml IR Lambda, which is an untyped call-by-value
lambda calculus. Lambda is a fairly high-level language even though it exposes
low-level primitives. However a rather daunting problem with Lambda is that it
does not have a formally specified semantics. As a result the behaviour of Lambda
programs vary depending on the platform. As a consequence it is considerably
complicated to exhibit a faithful translation into Lambda. Hopefully, this will
change in the future as both Dolan (2016) and Chambert (2016) are working on
defining a semantics for Lambda.
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Expressions L,I,J ::= x

| if L then I else J
| let x← L in J
| fun x 7→ L

| LJ

| P

Primitives P ::= i

| 〈〈X〉〉
| fieldi L
| error
| eq(L,J)
| clone L
| perform L

| resume(S,L)
| delegate(L,J)

Box ::= L;X | ·
Stacks S ::= alloc_stack(L,I,J)
Integers i, l ∈ Z

Figure 3.8: Term syntax for Lambda.
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3.3.1 Terms

The term syntax is given in Figure 3.8. The term syntax comprises: expressions,
primitives, boxes, and stacks. Expressions comprise variables (x) and conditional
expressions (if L then I else J) which evaluate one of their branches depending
on the evaluation of L. Let-bindings (let x← L in J) are similar to those of λρeff.
The expression (fun x 7→ L) is a lambda abstraction that binds the variable x in
the body L. Expression application (LJ) is the standard eliminator for lambda
abstractions. Expressions also comprise primitives.

The primitive category comprises integers, a box introduction primitive (〈〈X〉〉)
and a box elimination primitive (fieldi L) whose semantics is well-defined if and
only if the expression L evaluates to a box in which case it projects the ith element
of the given box. The error primitive is a special instruction which abruptly
halts program execution. The generic, structural equality operator (eq(L,J))
compares its two arguments. It returns a boolean value encoded as an integer.
The operations perform, resume, clone, and delegate are all crucial to the
implementation of handlers.

The perform(L) primitive invokes an abstract operation. An abstract op-
eration is encoded as a two-place box, where the first component contains the
operation name and the second component contains the operation argument.
The resume(S,L) primitive evaluates the expression L with a handler S. If an
abstract operation is performed in L then the run-time attempts to look up a
suitable operation clause in the handler S. To forward an unhandled operation
we use the delegate(L,J) primitive. It forwards an abstract operation name L
along with the continuation, J , of the abstract operation to another enclosing
resume-block. The clone(L) primitive makes a copy of an expression L. This
primitive is paramount to the successful encoding of multi-shot handlers of Links
as Lambda supports only linear handlers. A handler in Lambda is represented as
a triple. The alloc_stack(L,I,J) primitive allocates a new handler on the heap
with return clause L, an exception clause I, and an operation clause J .

3.4 Translating Links into Lambda

The translation from Links to Lambda consists of three mutual recursive trans-
lation functions: V (·) which translate a Links value into a Lambda term,M(·)
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Handle translation

M(handleM withH) = resume(H (H) ,M(M))

Handler stack allocation

H ({return x 7→M}]H) = alloc_stack


fun V (x) 7→M(M) ,
error,
fun z 7→ let y← field1 z in
let k← field2 z inHop (H,y,k)


Operation clause translation

Hop ({`xk 7→M}]H,〈〈l;x′〉〉,k′) = if eq(N (`), l) then
let k′′← fun y 7→ (clone k′)y
inM(M) [k′′/k,x′/x]

elseHop (H,z,k′)
Hop (∅,x,k) = delegate(x,k)

Operation invocation translation

M
(
do (` V )E

)
= perform V

(
(` V )E

)
Operation translation

V
(
(` V )E

)
= 〈〈N (`);V (V )〉〉

Figure 3.9: Translation of Links handlers into Lambda terms.



3.5. Runtime representation 35

which translates a Links computation term into a Lambda term, and H (·) which
translates a Links handler into a Lambda term. Additionally, we require a func-
tion N : L→ Z that maps labels in Links to labels in Lambda, which happens to
be just integers. Figure 3.9 shows the translation of handlers. The other syntax
constructors are mostly straightforward to translate.

The (handleM withH) gets translated into a resumable context. The hand-
ler H gets translated into a Lambda handler, which is allocated using the al-
loc_stack primitive. We translate the return clause of H independently of the
operation clauses. In the exception component of alloc_stack we place the
error primitive. This is safe because Links does not have a distinct notion of
exception as in OCaml, and thus there is no way we could ever raise an exception
that would activate this component. In the operation clause component we in-
stall a function whose argument z is a box of two elements: an operation and the
continuation of the operation. In the function body we dismantle the box by pro-
jecting and binding the operation to a fresh variable y. Similarly, we project and
bind the continuation to k. These two variables are passed to an auxiliary trans-
lation function Hop (·,y,k). This function needs to keep track of the performed
operation and its continuation as it translates the operation clauses recursively.

The translation of operation clauses is rather involved. The basic idea is to
translate the clauses into a chain of if-then-else expressions with each if-expression
guarding a particular clause body. We check whether the label of the operation
clause matches the label of the invoked operation. If they match then we create
a fresh wrapper function, k′′, around the continuation. This wrapper function is
key to simulate multi-shot continuations with linear continuation as it clones the
continuation k′ before use, which effectively lets us reuse a linear continuation
multiple times. Crucially, we substitute the binder of the wrapper function for
the binder of the continuation in the translated body. We also substitute the
binder to the operation argument. When there are no more operation clauses
to translate then we insert a delegate which forwards the operation x and the
continuation k to another enclosing handler.

3.5 Runtime representation

By using the OCaml backend we naturally inherit the OCaml run-time. OCaml
implements effect handlers as heap-managed stack data structures, and as con-
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do Choose

· · ·

do Fail

Return-clause

Exception handler

Choose-clause

·

· · ·

Return-clause

Exception handler

Fail-clause

⊥

Figure 3.10: Representation of maybeResult(randomResult(drunkToss)) at runtime.

sequence composition of handlers gives rise to n-element stacks at runtime. For
example, the composition maybeResult(randomResult(drunkToss)) is represented as
a two-element stack as shown in Figure 3.10. In the figure we have explicitly
unpacked the computation to exemplify how the abstract operations have imme-
diate access to the enclosing handler’s operation clause. For example, the Choose

operation has direct access its corresponding clause in the current handler. By
contrast, the Fail operation will have to fall-through the Choose-clause before
finding its corresponding clause in the next handler. Thus, an invocation of an
abstract operation amounts to performing a dynamic lookup to locate a suitable
handler in the stack.

As our translation demonstrates, one can simulate multi-shot handlers by
cloning continuations prior to invocation. The cost of cloning is linear in the size
of stack. Thus it becomes rather expensive to invoke an abstract operation in a
deep pipeline of handlers.

3.6 Summary

This chapter presented a native backend for the Links compiler which interfaces
with the Multicore OCaml backend to provide native compilation of common
language features and effect handlers. However, the translation from the Links
IR to the OCaml IR is somewhat complicated by the fact that the OCaml IR
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does not have a formally specified semantics. Unlike the Links IR for which we
presented a formalisation. The translation shows how one may encode multi-
shot handlers with linear handlers by cloning continuations prior to invocation.
Purposely, the compiler does not provide any special support for concurrency.





Chapter 4

A reconstruction of the Links
concurrency model with handlers

In this chapter we explore an implementation of the concurrency model of Links
using effect handlers. The construction of the concurrency model spans multiple
sections: in Section 4.1 we discuss a process abstraction that is somewhat faithful
to the built-in process abstraction of Links in the sense that our new abstraction
also tracks the effects of processes. Then in Section 4.2 we define an interface for
spawning and suspending processes. In addition, we implement a basic process
scheduler that we subsequently refine with more sophisticated features. In Sec-
tion 4.3 we consider how to enable communication amongst processes. The two
latter sections elaborate the idea outlined in Hillerström (2016).

4.1 Process abstraction

In Links each process has its own unique process identifier which makes the
process uniquely identifiable. The built-in process type is an abstract type, but
under the hood it is really just an integer that gets incremented each time a new
process is spawned. We introduce a process handle type, EProcess(·), which is a
type alias for an integer:

typename EProcess (e:: Row) = Int;

The name of the type is short for effectful process because the type is not just a
simple alias, it also tracks effects. It is parameterised by a phantom row e – it is
not mentioned in the definition of EProcess – which tracks the effects of processes.
We use a small trick to get effect tracking to work as desired. Though, the trick

39
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is quite obvious: let the type and effect system do the work for us. By making
essential use of a helper function to create process handles, we can obtain effect
tracking mostly for free:

sig makeProcessHandle : (() -e-> (), Int) -> EProcess ({ |e})
fun makeProcessHandle (_, pid) { pid }

The cleverness is in the type signature. First, note that the function accepts
as its first argument a nullary function that has effect row e and returns unit.
It is intended that this nullary function is the computation that the process will
execute. Observe that makeProcessHandle wholly ignores its first argument. It uses
only its second argument trivially. The type system captures the effect row on
the first argument and uses it to construct a process type with an open row that
mentions e, i.e. EProcess({ |e}). Because the process type mentions e it must,
by row polymorphism, have the same effects as the ignored input function. Let
us try it out:

links > makeProcess (fun () { print("I am wild!") }, 1);
1 : EProcess ({ |wild|_ })
links > makeProcess (fun () { if (do Choose ) print("True")
...... else print("False") }, 2);
2 : EProcess ({ | Choose :Bool ,wild|_ })

4.2 Spawning, suspending, and scheduling pro-
cesses

Cooperative routines (coroutine) provide an abstraction for expressing user-defined
concurrency. A coroutine is just a regular function that is evaluated by the pro-
gram thread of control. Thus it is rather cheap to spawn a coroutine. However,
the program thread can at most execute one coroutine at a time. The key to intro-
duce concurrency is to have some control operators that transfer control from one
coroutine to another. The caveat is that coroutines cannot provide preemptive
concurrency.

4.2.1 Spawn and Yield

The interface for spawning and suspending processes consists of two operations.
The operation Spawn takes a nullary function with an effect signature e as its
argument and returns a process of type EProcess({ |e}), i.e.
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sig pspawn : (() -e-> ()) {Spawn :(() -e-> ()) {}-> EProcess ({
|e}) |_}-> EProcess ({ |e})

fun pspawn (f) { do Spawn(f) }

The function name pspawn is short for process spawn. The function is quite simple.
Most of the work is concerned with getting the type signature right. The signature
enforces any interpretation of pspawn to at least return a process handle. In a
similar fashion we define an operation for suspending a computation:

sig yield : () {Yield :() |_}-> ()
fun yield () { do Yield }

This function is completely trivial. Next, we need to give a concrete interpretation
of operations Spawn and Yield.

4.2.2 A basic round-robin scheduler

An interpretation of Spawn and Yield amounts to scheduling processes. Our pro-
grams will be running in the a single thread of control and therefore it is the
responsibility of the scheduler to share execution time among processes.

We will begin by considering a simple fair, round-robin scheduler in the style
of Bauer and Pretnar (2015). The main idea is to maintain a process queue with
first-in-first-out (FIFO) semantics. There are two obvious scheduling policies to
choose from when a process invokes the Spawn operation. The scheduler either
enqueues the parent process and runs the child process immediately or enqueues
the child process and resumes the parent process. We adopt the former policy.
Using this policy an invocation of Yield simply enqueues the yielding process and
dequeues the next process to run. The scheduler is implemented as follows:
1 handler basicRoundrobin {
2 case Spawn(f, resume ) ->
3 var child = makeProcessHandle (f, 0);
4 enqueueProcess (fun () { resume (child) });
5 basicRoundrobin (f)()
6 case Yield( resume ) ->
7 enqueueProcess (fun () { resume (()) });
8 dequeueProcess ()()
9 case Return (_) ->

10 dequeueProcess ()()
11 }

We describe the handler line by line.

Lines 2-5 handle the Spawn operation by first creating an process handle of type
EProcess(·) for the new child process. Note that for now we carelessly assign
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the identifier 0 to every process. Later we will rectify this. The handle is
returned to the parent via the resumption function, resume. However, the
evaluation of the resumption function is delayed as we store it inside a
thunk. This effectively amounts to suspending the process. The thunk goes
into the process queue. Afterwards the scheduler transfers control to the
forked computation f. It is crucial that the scheduler is invoked recursively
in order to handle any effects that f may perform.

Lines 6-8 suspend the yielding process and transfers control to the next process
in the queue. The dequeueProcess returns a thunk which starts evaluating
immediately.

Lines 9-10 handle the case when a process terminates. This leaves room for
another process to run hence we dequeue the next process.

The process queue is inherently stateful as it changes every time a process is
spawned or suspended. The auxiliary functions enqueueProcess and dequeueProcess

use the abstract state operations Get and Put that was introduced in Section 2.3
to maintain the queue. The underlying queue data structure is the one we im-
plemented in Section 2.1. The enqueueProcess simply retrieves and updates the
queue, i.e.

sig enqueueProcess :
(() -e-> ()) {Get: Queue (() -e-> ())

,Put :( Queue (() -e-> ())) {}-> ()|_}~> ()
fun enqueueProcess (f) {

var q = enqueue (get (), f);
put(q)

}

Similarly, dequeueProcess retrieves and removes a process from the queue. How-
ever if the queue is empty then it returns the trivial process. This way the
scheduler does not need to handle any special cases. The implementation is
straightforward:

sig dequeueProcess :
() {Get: Queue (() -e-> ())

,Put :( Queue (() -e-> ())) {}-> ()|_}~> (() -e-> ())
fun dequeueProcess () {

switch ( dequeue (get ())) {
case (Just(p), q) -> put(q); p
case (Nothing , q) -> fun () { () } # The trivial process

}
}
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Now all the necessary infrastructure is in place to spawn simple non-interacting
processes. The following small example spawns a family of non-interacting pro-
cesses:

fun spawnSiblings (n)() {
if (n == 0) ()
else {

var p1 = pspawn ( spawnSiblings (n -1));
print(" Spawned " ^^ showProcess (p1));
var p2 = pspawn ( spawnSiblings (n -1));
print(" Spawned " ^^ showProcess (p2))

}
}

To run this example we plug our handlers together, i.e.
run -<- evalState ( emptyQueue ())

-<- basicRoundrobin -< spawnSiblings (2);

Initially the process queue is empty hence why we seed the state handler with
the empty queue. The program compiles and runs:

$ ./ links -c basic_concur_model .links -o basic_model
$ ./ basic_model
Spawned P#0
Spawned P#0
Spawned P#0
Spawned P#0
Spawned P#0
Spawned P#0

Under the basicRoundrobin scheduler a parent and its child process are indistin-
guishable because the scheduler assigns both of them the 0 identifier.

4.2.3 Unique processes

The scheduler basicRoundrobin neatly demonstrates that the essence of the schedul-
ing is fairly simple: variations on enqueuing and dequeuing of processes. In order
to have interacting processes we must to be able to uniquely identify processes.

In order to obtain a robust unique identifier generation scheme we have to
detach the identifier generation from the state of the executing process. We can
achieve this by turning identifier generation into an abstract operation then we
can give it a stateful interpretation. Thus we introduce an operation FreshName

that generates a new name (or identifier) of type a:
sig freshName : () { FreshName :a|_}-> a
fun freshName () {do FreshName }

To interpret the operation we implement a parameterised handler, pidgenerator

that generates an increasing sequence of integers:
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sig pidgenerator : (Int) ->
(Comp ({ FreshName :Int |e}, b)) ->

Comp ({ FreshName {_} |e}, b)
handler pidgenerator ( nextPid ) {

case Return (x) -> x
case FreshName (k) -> k( nextPid )( nextPid +1)

}

Observe that the handler essentially interprets the FreshName operation as per-
forming both state operations Get and Put.

Now, we have to update our round-robin scheduler to use the name generation
operation. However, simply using freshName in the Spawn-clause will not be enough
as the initial process is spawned through the handler. Thus the initial process
would be nameless. The workaround is to define a function upRoundrobin (“up”
for unique processes) that embeds a scheduler. Prior to invoking the scheduler
the function generates a name for initial process:

fun upRoundrobin (m)() {
var root = makeProcessHandle (m, freshName ());
handler scheduler {

case Spawn(f, resume ) ->
var child = makeProcessHandle (f, freshName ());
enqueueProcess (fun () { resume (child) });
scheduler (f)()

case Yield( resume ) ->
enqueueProcess (fun () { resume (()) });
dequeueProcess ()()

case Return (_) ->
dequeueProcess ()()

}
run( scheduler (m))

}

The implementation of scheduler is similar to basicRoundrobin. The important
differences from the previous scheduler roundrobin are highlighted. The first in-
vocation of freshName generates a name for the initial process which is the input
computation m. The scheduler gets applied to the initial process in order to handle
its effects. We end up with the following pipeline of handlers:

run -<- pidgenerator (0)
-<- evalState ( emptyQueue ()) -<- upRoundrobin
-< spawnSiblings (2);

Compiling and running the program yields:
$ ./ links -c up_concur_model .links -o up_model
$ ./ up_model
Spawned P#1
Spawned P#2
Spawned P#3
Spawned P#4
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Spawned P#5
Spawned P#6

As we see every process gets a unique name.

4.2.4 Self-referral

Lastly, we consider a final refinement of the round-robin scheduler: process self-
referral. We introduce a new operation Myself:

sig myself : () { Myself : EProcess ({ |e}) |_}-> EProcess ({ |e})
fun myself () {do Myself }

The idea is that an invocation of Myself should return the handle of the calling
process. We may implement this functionality through a small extension to our
scheduler. The main idea is to let the scheduler keep track of the executing
process. One possible way to enable this tracking is to parameterise the scheduler
by the executing process:
1 fun roundrobin (m)() {
2 var root = makeProcessHandle (m, freshName ());
3 handler scheduler ( activeProcess ) {
4 case Spawn(f, resume ) ->
5 var childPid = freshName ();
6 var child = makeProcessHandle (f, childPid );
7 enqueueProcess (fun () { resume (child)( activeProcess ) });
8 scheduler (child)(f)()
9 case Yield( resume ) ->

10 enqueueProcess (fun () { resume (())( activeProcess ) });
11 dequeueProcess ()()
12 case Myself ( resume ) ->
13 resume ( activeProcess )( activeProcess )
14 case Return (_) ->
15 dequeueProcess ()()
16 }
17 run( scheduler (root)(m))
18 }

We describe the changes line by line.

Line 3 begins the definition of scheduler which takes a parameter activeProcess

that is a handle of the current executing process.

Lines 7-8 suspend the parent process. As usual the resume function returns the
child handle. In addition it also sets the executing process. Once resume

gets invoked control gets transferred back to the parent process, hence the
parent process becomes the active process. The scheduler is invoked with
child as the active process.
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Line 10 suspends the executing process and wakes up the next process to run.

Lines 12-13 returns a handle to the executing process. This clause, unlike the
two previous clauses, does not alter the state of the executing process.

To illustrate the extension in action consider a variation of the spawnSiblings

example:
fun spawnFamily (n)() {

var self = myself ();
print(" Spawned " ^^ showProcess (self));
if (n == 0) { () }
else {

var _ = pspawn ( spawnFamily (n -1));
var _ = pspawn ( spawnFamily (n -1));
()

}
}

In this example each process announces that it has been spawned rather than its
parent. Thus, we do not care about the process names returned by the calls to
pspawn. We wire everything together as follows:

run -<- pidgenerator
-<- evalState ( emptyQueue ()) -<- roundrobin
-< spawnFamily (2);

Compiling and running the program produce the desired result:
$ ./ links -c rr_concur_model -o rr_model
$ ./ rr_model
Spawned P#0
Spawned P#1
Spawned P#2
Spawned P#3
Spawned P#4
Spawned P#5
Spawned P#6

Every process gets handled uniformly by this scheduler.

4.3 Handling communication

In this section we will augment the implementation of the concurrency model
with primitives for interaction between processes. Our concurrency model is an
instance of a message-passing model, thus we need at least a primitive for sending
messages and another for receiving them.
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4.3.1 Sending and receiving

The built-in concurrency model of Links implements both blocking send and
receive. We encode these as two abstract operations Send and Recv. The former
is a binary operation which takes the process name of the target process and the
message to send. We wrap it inside a function psend (for process send):

sig psend :
( EProcess ({ |e}), a) {Send :( EProcess ({ |e}), a) {}-> (),

Yield :()|_}-> ()
fun psend(proc , msg) { do Send(proc , msg); yield () }

Besides sending a message the function, in a rather ad-hoc fashion, also yields.
However, it seems like a reasonable heuristic to yield after sending a message
under the assumption that another process will be able to receive the message
and make progress.

To obtain the look-and-feel of the bang operator, !, we define an infix operator
that looks similar:

op proc !! msg { psend(proc , msg) }

Since the bang operator built deeply into the parsing level of Links we cannot
override its definition in programming language level. Thus !! is the closest we
can get.

There are several interesting designs to choose from for implementing a block-
ing receive. We may do the straightforward thing of “just” performing an abstract
operation Recv leaving it for a handler to implement the blocking semantics. Al-
ternatively, we may use type system to provide a hint to handlers of Recv that it
is not important whether the operation is blocking or not, but rather whether a
message was received or not. It is easy implement a blocking receive in terms of
a non-blocking receive, e.g.

sig precv : () {Recv: ( EProcess ({ |e})) {}-> Maybe(a)
,Myself : EProcess ({ |e}),Yield :()|_}~> a

fun precv () {
fun loop(proc) {

var msg = do Recv(proc);
switch (msg) {

case Nothing -> yield (); loop(proc)
case Just(msg) -> msg

}
}
loop( myself ())

}

This code implements a blocking receive. The loop function takes a process handle
as its input and keeps looping until a message has been received. To obtain the



48 Chapter 4. A reconstruction of the Links concurrency model with handlers

process handle we invoke Myself operation. The loop-body invokes the operation
Recv which returns a Maybe-value. If there are no messages then the function
invokes itself in order to retry. Prior to the recursive call the function yields,
again this is a rather ad-hoc heuristic, but as with send it seems reasonable to
transfer control when there are no messages available.

4.3.2 Facilitating communication

In the sieve example we do not know the precise number of processes, and hence
the number of mailboxes, that we need ahead of time1. Furthermore, a mailbox
is essentially a FIFO queue of messages that is private to some process. Thus we
can represent a single mailbox as a pair of a process identifier and a queue. Many
such pairs can be conveniently represented as a dictionary type that maps process
identifiers to mailboxes. We omit the implementation details of the dictionary
for brevity, however, we do present its interface:

• A type Dictionary(k,a) that classifies mappings from keys of type k to ele-
ments of type a.

• A function dictEmpty : () -> Dictionary(k,a) that returns an empty dic-
tionary.

• A function dictLookup : (k, Dictionary(k,a)) ~> Maybe(a) that given a key
and a dictionary returns Just the element associated with the key or Nothing

if the key is not present in dictionary.

• Another function dictModify : (k, a, Dictionary(k,a)) ~> Dictionary(k,a)

which adds a binding from a key of type k to an element of type a to a given
dictionary. If the key is already bound, then that binding is overwritten.

This data structure enables us implement an auxiliary function enqueueMessage

that appends a given message, msg, to the message queue belonging to the process
with the given identifier, pid. In order to maintain the collection of mailboxes we
will make use of yet another state interpretation, i.e.

1Although, in this particular example we could approximate the number of primes, π(n),
less than n (and thereby the number of processes) using the asymptotic law of distribution of
prime numbers: π(n)≈ n

log(n) .
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sig enqueueMessage :
(Int , a) {Get: Dictionary (Int ,Queue(a))

,Put :( Dictionary (Int ,Queue(a))) {}-> ()|_}~> ()
fun enqueueMessage (pid , msg) {

var dict = get ();
var q = switch ( dictLookup (pid , dict)) {

case Nothing -> enqueue ( emptyQueue (), msg)
case Just(q) -> enqueue (q, msg)

};
put( dictModify (pid , q, dict))

}

First we retrieve the dictionary using the state operation get. Afterwards, we
attempt to look up the message queue associated with pid. If no such queue
exists, then we create a new empty queue and append the message msg onto it.
Thus, we delay construction of a mailbox until we have some data to put inside of
it. Conversely, if a queue already exists then we simply append the new message
onto that queue. Finally, we bind pid to the new queue q in the dictionary.

The dual operation dequeueMessage dequeues a message from a mailbox. We
let the function return a Maybe-value to account for when a mailbox is empty:

sig dequeueMessage :
(Int) {Get: Dictionary (Int ,Queue(a))

,Put :( Dictionary (Int ,Queue(a))) {}-> ()|_}~> Maybe(a)
fun dequeueMessage (pid) {

switch ( dictLookup (pid , get ())) {
case Nothing -> Nothing
case Just(q) ->

switch ( dequeue (q)) {
case (Nothing , _) -> Nothing
case (msg , q) ->

put( dictModify (pid , q, get ())); msg
}

}
}

We attempt to look up the message queue associated with pid. If no such queue
has been constructed yet, then there are no messages to dequeue hence we simply
return Nothing. However, if a queue has already been constructed then there are
two cases to consider:

1. The queue is empty: we simply return Nothing

2. The queue is non-empty: we dequeue a message. The dequeue function
returns a message and the modified queue. We modify the dictionary by
rebinding pid to point to the modified queue.

Using these two functions we give an interpretation of Send and Recv:
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handler communication {
case Return (x) -> x
case Recv(proc , resume ) ->

var msg = dequeueMessage ( getPid (proc));
resume (msg)

case Send(proc ,msg , resume ) ->
enqueueMessage ( getPid (proc), msg);
resume (())

}

The implementation is straightforward.

4.4 Sieve of Eratosthenes example revisited

We need to make a few changes to sieve example from Section 2.4.1 in order to ad-
apt it to our new concurrency implementation. The changes are only syntactical.
For example, we changes the generator function as follows:

fun generator (n)() {
var first = pspawn (sieve);
foreach ([2..n], fun(p) { first !! Candidate (p) });
first !! Stop }

The function has become a curried function whose second parameter is unit. This
means that applying n effectively returns a thunk which is precisely the type of
function we can apply to a handler. The other changes are mundane: spawn

becomes pspawn and ! becomes !!.
We have to make the same changes in the sieve function. In addition to the

aforementioned changes we also have to rewrite recv as precv:
fun sieve () {

var myprime = fromCandidate (precv ());
print( intToString ( myprime ));
fun loop( neighbour ) {

switch (precv ()) {
case Stop -> stop( neighbour )
case Candidate (prime) ->
if ( prime ‘mod ‘ myprime == 0) {

loop( neighbour )
} else {

var neighbour =
switch ( neighbour ) {

case Just(pid) -> pid
case Nothing -> pspawn (sieve)

};
neighbour !! Candidate (prime);
loop(Just( neighbour ))

} } }
loop( Nothing )

}
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Now we can wire everything together
run -<- pidgenerator

-<- evalState ( emptyDictionary ()) -<- mailbox
-<- evalState ( emptyQueue ()) -<- roundrobin
-< generator (10);

Next, we can compile the program and run it:
$ ./ links -c concur_model .links -o concur_model
$ ./ concur_model
2
3
5
7

The resulting program yields the same output as the original program we de-
scribed in Section 2.4.1.

4.5 Shortcomings and limitations

Our implementation have some short comings and natural limitations. In our
encoding we codify syntactic constructs like spawn { ... } and ! as regular func-
tions. An obvious implication of this is that our implementation is not backwards
compatible. This is not a major issue for us since it was never our goal to stay
backwards compatible. Nevertheless it is worth noting that using adapting this
approach on an existing codebase is not free.

A further limitation of our implementation is that every concurrent computa-
tion must be given as a thunk to prevent premature evaluation of the concurrent
computation, because spawn has been replaced by the function pspawn. In the
built-in implementation one can spawn an arbitrary piece of Links code because
the interpreter has special support for spawn primitive.

A shortcoming of our implementation is that process handles are simple aliases
for integers thereby rendering the implementation unsafe as it becomes possible
to manufacture process handles for non-existing processes. But this issue is or-
thogonal to the implementation of the concurrency model. The correct solution
to this issue is to make EProcess an abstract type. However without a module
system á la the ML module system it cumbersome to encode abstract types. Thus
encoding EProcess as an abstract type in Links would obscure rather than clarify.

Perhaps the biggest advantage and disadvantage of our implementation is that
it does not provide preemptive concurrency. On one hand it not being preemptive
makes it considerably easier to reason about concurrent programs because in most
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cases we can predict the interleaving of processes. On the other hand it places
a burden on the programmer to control the interleaving of processes. We can
relieve the programmer from this burden to some extend by inserting yields into
standard library functions. In addition, we can have the compiler silently insert
yields into user functions. In order to do so successfully requires great care as
we have to make sure that any yield the compiler inserts appears in a handled
context.

4.6 Summary

This chapter described an implementation of the message-passing concurrency
model of Links. By using effect handlers to drive the implementation, we were
able to modularly define scheduling policy and the communication protocol in-
dependently of one and another. We composed the handlers seamlessly to give a
full interpretation of the sieve program. Furthermore, we identified and discussed
some shortcomings and limitations.
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Experiments

In this chapter we discuss some experiments that we have performed with the
compiler in order to obtain some insight into how it performs against the Links
interpreter and the OCaml compiler. Furthermore, we also consider how to im-
prove the performance of generated code.

5.1 Methodology

We have picked three benchmarks to discuss: state interpretation (Section 5.2),
n-queens (Section 5.3), and our concurrency implementation (Section 5.4). The
state interpretation benchmark provides insight into the cost of using a state
handler. The n-queens benchmark is interesting because it crucially relies on
multi-shot handlers. Lastly, the concurrency benchmark is interesting because it
provides insight into how well the concurrency implementation performs against
the built-in.

Our data collection method is similar to the method of Harris (2016). In
the beginning of each experiment we log many environment settings, computer
hardware details, number of users logged in at the time, etc. in order to be
able to analyse the result meticulously. Each experiment consists of a single
benchmark that we run with different configurations. For each configuration we
run the particular benchmark 25 times. In our analysis we report the median
execution time of the 25 runs either in raw time or relative to some baseline, each
subsequent section clearly states which.

Our benchmark machine is a fairly standard desktop machine provided by
the Informatics CaRD group. The hostname of the machine is “pamina”. The
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machine has a quad-core Intel i5-2400 processor where each core operates at 3.1
GHz. The four cores share a 6 MB Intel SmartCache. Furthermore, the machine
has 8 GB of physical memory. It is running a 64 bit version of openSuSE 13.2
Linux with kernel version 3.16.7-24-desktop. The experiments were compiled
using an experimental OCaml compiler 4.02.2+effects, and further, they were
ran with the runtime parameter OCAMLRUNPARAM="s=300M".

5.2 State interpretation

State handling arises naturally in many applications. For example, our imple-
mentation of the concurrency model of Links in Chapter 4 makes extensive use
of state and state-like interpretations. Ideally, we would want the state inter-
pretation using handlers to be cost-free as it is the case with the state monad
in Haskell (Kammar et al., 2013). To achieve this in practice we would have to
heavily optimise handlers — something which the Links compiler does not do.

Nevertheless, we will consider how well our compiler performs compared to the
Links interpreter and OCaml compiler. We use the stateful counting benchmark
of Kammar et al. (2013) to benchmark state interpretations. The benchmark is
fairly simple; the following is a Links port of the benchmark:

fun count () {
var i = get ();
if (i == 0) { i }
else { put(i - 1); count () }

}

We consider three different variations of this program: a handler variation (one
program given above), a monadic variation which uses a state monad to inter-
pret get and put, and a “pure” variation which implements state as a parameter
to count. The latter variation represents in some sense the “abstraction-free”
implementation of the counting program. We consider the monadic variation be-
cause it is (nowadays) a standard functional approach to handling state. Though,
the Links compiler does not provide any special support for monads. For each
implementation we instantiate the state parameter with 10000000.

Table 5.1 shows the speed of the different state implementation relative to the
pure implementation compiled using the OCaml compiler (ocamlopt). Figure 5.1
visualises the results as a bar plot. As expected the Links interpreter performs
much worse than the Links and OCaml compilers. Though, it is interesting to
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State implementation
Compilation tool Handler Monadic Pure
Links interpreter 0.0030 0.0001 0.0170
Links compiler 0.0089 0.0370 0.2315
ocamlopt 0.0250 0.0753 *1.0000

Table 5.1: Relative speed up of state implementations. The component marked
with * is the baseline.

note that the handler interpretation performs better than the monadic interpret-
ation. This is because the monadic implementation involves a larger series of
function calls than the handler implementation, and as noted in previous work
(Hillerström, 2015) function calls are rather expensive in the Links interpreter.
More interestingly, we can see the Links compiler performs much worse than the
OCaml compiler across all implementations. The low number for the handler
implementation we can account for since the Links compiler compiles the hand-
ler as a multi-shot handler even though the state handler uses its continuation
linearly, thus the handler unnecessarily copies its continuation before each invoca-
tion. However, we might reasonably expect that the performance of the pure state
program should be similar for both the Links and OCaml compilers. The state
program compiled by the Links compiler performs only at 23% of the program
compiled by the OCaml compiler. We explore the reason for this performance in
Section 5.2.1.

It is interestingly to note that the OCaml handler is rather slow. The handler
performs only at 2.5% of the baseline program. In other words, the handler
program is 97.5% slower than the baseline. Thus we can note that the handler
abstraction is rather expensive in OCaml.

5.2.1 Recovering performance

We noted that the state programs compiled using the Links compiler performed
rather poorly compared to the baseline implementation in OCaml. In this section
we will try to account for difference in performance. Moreover, we will demon-
strate how we can equilibrise some of the performance.

Given that the Links compiler conservatively implements the state handler as
a multi-shot handler we can try to enforce linearisation of handlers in order to
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Figure 5.1: Bar plot of data from Table 5.1 (higher is better).

obtain some insight into how expensive it is to copy the continuation.
However, linearisation does not explain the poor performance of the pure state

program. The explanation is, again, that the Links compiler does not perform
any optimisations. In particular, the polymorphic built-in comparison operators
are translated into their generic counterparts in OCaml/Lambda. This means
that the equality operator in the state program gets translated into the generic
equality operator in OCaml instead of the more efficient, hardware supported
integer comparison operator. Since the equality testing occurs 10000000 times in
the state program the overhead in occurred by the generic operator is going to
be significant. This claim is supported by the results shown in Table 5.2. The
“Links compiler/lin+eq” denotes a special version of the Links compiler in which
we have hand-coded handlers linearisation and equality testing specialisation.

Figure 5.2 visualises the data. We achieve significant speed ups. In particular,
the Links compiler out performs the OCaml compiler on the pure state program.
The Links compiler achieves roughly 19% performance than the OCaml compiler
on that particular program. The explanation for this difference is rather subtle:
it relates to the module system of OCaml and the lack of a module system in
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State implementation
Compilation tool Handler Monadic Pure
Links interpreter 0.0030 0.0001 0.0017
Links compiler 0.0089 0.0370 0.2315
ocamlopt 0.0250 0.0753 *1.0000
Links compiler/lin+eq 0.0222 0.0438 1.1905

Table 5.2: Relative speed up of state implementations. The component marked
with * is the baseline.
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Figure 5.2: Bar plot of data in Table 5.2 (higher is better).



58 Chapter 5. Experiments

Links. Every OCaml source file constitutes a module. Furthermore, an accessible
top-level function in one module can be invoked from another module in OCaml.
In order to support cross-module invocation of functions OCaml maintains per
module a global table which contains the callable top-level functions of that par-
ticular module. Since the function count in the state program is a global function
it gets registered in the global table, which means the first invocation of count

costs one look up in the global table in order to locate the function. In Links
every function is resolved statically, because there is no concept of cross module
function invocation. Therefore, we do not pay the initial look up cost.

Unsurprisingly, linearisation speeds up the handler significantly. It almost
brings it on par with the OCaml implementation. Figure 5.3 depicts a compar-
ison of the different state handler implementations relative to the OCaml imple-
mentation. The figure includes an additional special version of the Links compiler
(denoted “Links compiler/lin”) which only performs linearisation of handlers. We
see that linearisation accounts for a large chunk of the overall improvement. Even
with both optimisations the performance is still about 12% worse than the OCaml
implementation. It is likely that we can close this gap by fine tuning the compiler.
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Figure 5.3: Plot of handler data from Table 5.2 with the addition of “Compiler-
/lin” (higher is better).

5.3 N-Queens benchmark

The N -Queens benchmark program makes use of backtracking in order to find a
solution to the queens problem for a given board size N ×N . The handler-based
version of the program relies on multi-shot continuations in order to perform
backtracking. Table 5.3 displays the speed ups relative to the Links interpreter.

Links interpreter Links compiler ocamlopt
Board size No handler Handler No handler Handler Handler

8×8 *1.0 0.97 5.93 5.93 5.93
12×12 *1.0 0.98 16.35 17.37 18.53
16×16 *1.0 0.99 246.62 239.03 621.48
20×20 *1.0 0.86 323.61 289.65 1694.21

Table 5.3: N -Queens benchmark relative speed ups. The component marked with
* is the baseline across the row.
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Figure 5.4: Plot of data from Table 5.3 (higher is better).

The baseline is for every board size the execution time of queens program
without handlers using the Links interpreter. Figure 5.4 displays a bar plot of
data from Table 5.3, whilst Figure 5.5 displays the same plot without the data
for the ocamlopt compiler, which enjoys a massive speed up in 20× 20-case.
As the table and figures show the Links compiler beats the interpreter in every
case. Interestingly, for the Links compiler the performance of the handler based
program keeps well up with the performance handlerless program. This is likely
because there is little or no need for backtracking for the smaller board sizes. As
a result the continuation do not need to be cloned.

The massive speed up achieved by the ocamlopt compiler compared to the
Links compiler is due to difference in data placement. The Lambda IR permits
boxes that contain only primitive values (integers, floats, string, and characters)
to be allocated on the stack rather than the heap. The Links compiler always
allocates its boxes on the heap. Thus, the programs compiled by the Links
compiler will perform more indirections.
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N 101 201 401 601 801 1001
Number of process 27 47 80 111 140 169

Interpreter/handlers [ms] 992 2473 9589 24301 48679 84822
Interpreter/built-in [ms] 56 65 95 136 186 247
Compiler/handlers [ms] 21 38 103 231 409 658

Table 5.4: Concurrency implementation scaling (lower is better).

5.4 Concurrency implementation

We encoded the concurrency model of Links using handlers in Chapter 4. The
motivation was to replace the built-in implementation. It is interesting to com-
pare the handler encoding against the built-in implementation. Table 5.4 contains
the data obtained by running the Sieve example (c.f. Sections 2.4.1 and 4.4) with
different parameters. The variable N is the upper bound given to the gener-
ator process, the second row lists the number of concurrent processes that were
spawned. The execution times are given in milliseconds. Figure 5.6 displays
a line plot of the data. As we might expect the interpreter with the handler
implementation performs poorly compared to the built-in and the compiler im-
plementations. Figure 5.7 zooms in on the two implementations. We see that
compiler implementation does not scale as well as the built-in implementation.
When we have about 80 processes running the compiler implementation starts
performing worse than the other.

The interpreter appears to scale surprisingly well. Needless to say, our com-
piled concurrency implementation should not really be out-performed by an in-
terpreted version. If we enable the optimisations from Section 5.2.1 then we see
that the compiled implementation performs better than the interpreter. Table 5.5
shows the data, and Figure 5.8 displays a visualisation of the data. In particu-
lar, it appears that the compiled implementation scales as nicely as the built-in
implementation.
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Figure 5.6: Concurrency implementation scaling (lower is better).
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N 101 201 401 601 801 1001
Number of process 27 47 80 111 140 169

Interpreter/built-in [ms] 56 65 95 136 186 247
Compiler/handlers [ms] 21 38 103 231 409 658
Compiler/handlers/lin+eq [ms] 17 22 36 61 99 153

Table 5.5: Concurrency implementation scaling with hand-coded optimisations.
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Chapter 6

Conclusions and future work

We presented a compiler for the functional programming Links with an emphasise
on the compilation of effect handlers. The compiler interfaces with the OCaml
Multicore backend to generate native code. Specifically, we demonstrated a trans-
lation from the Links IR to OCaml IR known as Lambda. The Lambda intermedi-
ate language contains primitives to support compilation of linear effect handlers.
Our translation demonstrates how to encode the multi-shot handlers in Lambda
using a cloning primitive to copy continuations prior to invocation. However,
whether our translation is faithful is unclear as Lambda does not have a formally
specified semantics.

By contrast, the Links IR now have a formally specified semantics as we
presented a core calculus λρeff that captures the essence of the Links IR.

Rather than baking concurrency support into the compiler, we presented a
modular implementation of the concurrency model of Links using effect handlers.
Our implementation closely approximates the built-in implementation provided
by the Links interpreter. By taking advantage of the effect system, we manage to
encode a process abstraction akin to the built-in one, which tracks the effects that
a process may perform. We also identified some shortcomings and limitations of
our concurrency implementation (c.f. Section 4.5), in particular, we do not have
preemptive concurrency since the implementation uses cooperative routines to
provide concurrency.
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6.1 Critical evaluation

A constructive criticism is that I have not presented a good example of the use-
fulness of multi-shot handlers in concurrent programming. Though, I imagine
that multi-shot handlers can prove useful in database transactions to implement
a feature such as partial aborts in the style of Le and Fluet (2015). In addition, it
would make a much more natural story to have examples that involve the unique
features of Links.

In the clarity of hindsight, I should have invested more time on setting up a
benchmarking infrastructure early on to provide me with continuous feedback. It
was only in the latter stages of the project that I managed to set this up, and it
was incredible fruitful to see graphs.

6.2 Future work

We can view Links as an experimental frontend to OCaml with a more expressive
type system. Thus we can try to use Links to answer research questions that are
either hard or impossible to answer in OCaml presently.

Optimisations of handlers Given the results presented in Chapter 5 to pro-
mote handlers that use their continuations linearly to linear handlers at compile
time. However, every linear handler in the context of multi-shot handler must
be demoted to a multi-shot handler. Otherwise linear continuations risk being
consumed more than once. We believe that we can use the existing linear type
system of Links to track the linearity of handlers. During code generation we can
specialise the run-time representation of handlers according to their linearity.

Traversal of the handler stack is expensive for deep pipelines of handlers. If the
handler stack, or part of it, is known statically, then we can imagine instantiating
abstract operations already at compile time.

Improving the concurrency implementation In Section 4.5 we identified
several shortcomings of the concurrency implementation. In the future we plan
to improve on these. However, it may turn out be extremely hard to simulate
preemptive concurrency. Caution must be taken if we are to have the compiler
silently inserting yields into user-defined code, because the yields must only be
inserted in the scope of a suitable handler.
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Support for parallelism We have not made use of the multicore capabilities
of the Multicore OCaml backend. We plan to enable multicore support in the
future. Alternatively, we should be able to take an established parallel runtime
such as MPI (MPI Forum, 2012) off the shelf and substitute it in place of the
coroutine implementation.

Applications of multi-shot handlers in concurrency Multi-shot handlers
ought to be useful in applications where we want to replay a computation. For
example, we believe multi-shot handlers could provide an elegant abstraction for
database transactions. In particular, they may be useful for implementing partial
abort transactions (Le and Fluet, 2015) which require delimited continuations.

Shallow handlers In this dissertation we have only discussed so-called deep
handlers which handle abstract operations uniformly. But Links also has so-called
shallow handlers (Kammar et al., 2013). These handlers permit a nonuniform
interpretation of abstract operations. With shallow handlers one must explicitly
reinvoke the handler each time the continuation is used inside an operation clause.
An advantage is that it makes it easy to switch to a different handler midway
through a computation. A disadvantage is that shallow handlers are less easy to
optimise than deep handlers Wu and Schrijvers (2015).

The Multicore OCaml backend does not yet have support for shallow handlers.
It remains a question how to provide compile shallow handlers to native code.
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