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Abstract
Plotkin and Pretnar’s handlers for algebraic effects provide a compelling alternat-
ive to monads as a basis for effectful programming. In their programming model
computations are composed from abstract operations. Handlers interpret abstract
operations by instantiating them with concrete implementations. Consequently,
the model promises a high degree of modularity.

We provide an implementation of handlers for algebraic effects using row poly-
morphism in the strict functional programming language Links. Row polymorph-
ism enable us to truly compose computations from operations in any order.

Through a series of examples we demonstrate that the handler abstraction
makes it easy to write modular, effectful programs. Furthermore, we show that
the compositionality of handlers enable of us to extend the functionality of ef-
fectful programs effortlessly.

Finally, we also include a discussion of our implementation as well as an
evaluation of our programming model, how handlers and effects fit into the Links
language, and an account of the performance of handlers.
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Preface
This report contains a variety of examples. Some of the examples elide aesthetic
details to condense the code. The complete source code for every example, includ-
ing instructions, is available at https://github.com/dhil/msc-dissertation.
The repository also contains additional examples that are not presented in this
report. Furthermore, the source code for the handlers implementation in Links
is available at https://github.com/dhil/links-effect-handlers.
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Chapter 1

Introduction

Programs are effectful, i.e. they may operate on some state, divide by zero,
halt prematurely. Imperative programs are inherently effectful as computations
perform a series of implicit effects on a shared global state. Most imperative pro-
gramming languages are not explicit effects, even though, effects underpin their
foundational assumption [14]. In contrast pure functional programming languages
often use monads as a basis for effectful programming. Unfortunately, monads
impose an ordering on effects which impairs compositionality and modularity [7].

Plotkin and Pretnar’s handlers for algebraic effects [18] provide an alternative
to monads, where effectful computations are composed from abstract operations
which are interpreted by handlers. In this thesis, we join handlers and algebraic
effects with row polymorphism. The result is a compelling programming model
which unifies compositionality, modularity and explicit effectful programming.
We implement and examine our programming model in the functional program-
ming language Links.

The remainder of the chapter analyses the problem with monads as a basis
for effectful programming.

1.1 Problem analysis

Programming languages vary greatly in their approach to effects. Some languages
do not disclose potential runtime effects, e.g. the ML-family of languages. For
example consider the signature readFile : string → [string] for a function
in SML, its suggestive name hints that given a file name the function reads the
file and return the contents line by line. In order to read a file the function

1



2 Chapter 1. Introduction

must inevitably perform a side-effecting action, namely, accessing some storage
medium. But this information is not conveyed in the function signature.

Other languages disclose effects, albeit with varying degree. For example Java
requires programmers to annotate method signatures with potential unhandled
checked exceptions that may may be raised during runtime, e.g. the signature
above may be written String[] readFile(String f) throws IOException in
Java. But programmers can circumvent this requirement by raising unchecked
exceptions, which appears to defeat the purpose of the effect system. Moreover,
due to Java’s inheritance and subtyping it is a code breaking change to extend
an interface with an additional effect annotation. Thus, often, programmers find
it easier to avoid the effect system altogether [22].

The Haskell programming language is also explicit about effects, but, in con-
trast to Java, it offers no escape hatch to be implicit. Haskell insists that every
effectful computation is encapsulated inside an appropriate monad.1 In Haskell
the above signature could be written as readFile :: String → IO [String],
where the IO-annotation signifies that the function might perform an input/out-
put side-effect. We can think of IO as an effect type. In fact, Wadler and
Thiemann gave the theoretical foundation for interpreting any monad as an ef-
fect type [23]. Section 1.1.2 continues the discussion about monads as effects.

1.1.1 Benefits of being explicit about effects

An effect is a static description of the possible state-changing actions that a com-
putation might perform. Types and effects are complementary, together they
characterise computations. A type determines the possible outputs of a compu-
tation and an effect conveys information about what might happen during evalu-
ation. This information may be exploited by an optimising compiler to transform
a computation into an equivalent, more efficient computation. For example, fine-
grained effects can tell us precisely when it is safe to reuse a particular piece of
code [8], run it parallel, etc. Moreover, effects endow additional safety as they
can aid in verification of programs up-front [3].

Finally, explicit effects provide additional documentation to the programmer
about the code. As a result the programmer gain better insight into what the
computation actually does without breaking the abstraction.

1Strictly speaking it is not true as any function can be defined in terms of side-effecting
error function without being reflected in the type signature.
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1.1.2 A monadic effectful coffee dispenser

Monads are powerful abstractions for structuring computations. In particular,
monads have a simple interface. For instance in Haskell programmers often only
need to concern themselves with the following two monadic operators:

• Bind operator (»=), whose type is ma→ (a→mb)→mb, takes a monadic
value of type ma and a function, which is applied to the value inside the
monad to yield a monadic value of type mb.

• Pure operator (return), which has type a→ma, lifts a pure value of type
a into a monadic value of type ma.

Monads combine using the bind operator, which works well as long as we are
working inside the same monad. Because, sadly, monads do not compose well
[7], and consequently it is difficult to give a monadic description of computations
that might perform multiple effects. Consider the following attempt at modelling
a coffee dispenser in Haskell:

Example 1.1 (Coffee dispenser using monads). The coffee dispenser is effectful,
that is, it reacts to user input and may fail. Furthermore, we want to be explicit
about the effects that the dispenser may perform.

First we define the sum type Dispensable with two labels Coffee and Tea

which represents dispensable drinks:
data Dispensable = Coffee | Tea deriving Show

type ItemCode = Integer
type Inventory = [( ItemCode , Dispensable )]
inventory = [(1, Coffee ) ,(2,Tea)]

The ItemCode type models a button on the coffee machine, and Inventory as-
sociates buttons with dispensable items. The inventory will not change during
runtime. We can capture this property in the effect signature by encapsulating
the inventory inside a Reader-monad. Furthermore, we use the Maybe-type to
capture the possibility of failure, e.g.

dispenser :: ItemCode → Reader Inventory (Maybe Dispensable )
dispenser n = do inv ← ask

let item = lookup n inv
return item

The type Reader Inventory (Maybe Dispensable) tells us that dispenser ac-
cesses a read-only instance of Inventory and maybe returns an instance of
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Dispensable. The Maybe-type tell us that in the event of an error we get Nothing,
for instance if the user requests an item that is not in the inventory, otherwise we
get Just the requested item. The monadic operation ask retrieves the inventory
from inside the Reader-monad and lookup checks whether the item n is in the
inventory.

Although, Maybe is a monad we cannot use its monadic interface, because we
are in the context of the Reader-monad. For this simple computation it is not an
issue, but it would be desirable to be able to use the failure handling capabilities
of the Maybe-monad. Ideally, we would want to be able to write

do inv ← ask
item ← lookup n inv
return item

But using regular monads it is not possible to construct this type. To see why,
let us desugar the above expression:

do inv ← ask
item ← lookup n inv
return item

⇒
ask >>= \inv →

lookup n inv >>= \item →
return item

The bind operator (»=) is the problem. Recall its type

Monadm⇒ma→ (a→mb)→mb

Essentially, this type tells us that we cannot compose monads of different types as
the monad type m is fixed throughout the computation. Consequently, it is not
immediately clear how we may extend the coffee dispenser model with additional
capabilities such as logging.

Suppose we want log when tea or coffee is being dispensed. The Writer-
monad provide such capabilities. Ideally, we would want a monadic computation
like:

do inv ← ask
item ← lookup n inv
tell (show item)
return item

Here the monadic operation tell writes to the medium contained in the Writer-
monad. However as noted above we cannot achieve this using regular monads.
Basically, we want a monad whose type is something like

Writer w � Reader e � Maybe Dispensable
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where w is the type of the writable medium, e is the type of an environment and
� is some “type-glue” that joins the types together. This type is an instance of
Monad Transformer type which we will discuss in Section 1.1.3.

Effect granularity

It is possible to solve the problem using regular monads. However, it comes at a
cost as suggested by the type signature of the bind operator we can compose one
monad with another as long as they got the same monadic type. So, we could
just use one monadic type to describe all effects. It is very tempting to bake
everything into an IO-monad as we possibly want to I/O capabilities at some
point. Albeit, IO is a very conservative estimate on which effects our computa-
tion might perform. Consequently, we obtain coarse-grained effect signatures as
opposed to more specific, fine-grained effect signatures.

1.1.3 A better monadic effectful coffee dispenser

Monad Transformers enable us to combine two different monads by stacking one
on top of the other. In particular, any Monad Transformer is itself a monad,
and hence we can construct arbitrarily complex compositions. Incidentally, we
can use Monad Transformers to describe computations that may perform several
different effects. The following example rewrites the coffee dispenser model from
Example 1.1 using Monad Transformers.

Example 1.2 (Coffee dispenser using Monad Transformers). Most monads have
a Monad Transformer cousin; by convention Monad Transformers have a capital
T suffix, e.g. the Reader-monad’s transformer is named ReaderT.

We rewrite Example 1.1 to use the WriterT, and ReaderT monad instead of
Reader:

dispenser1
:: ItemCode →

WriterT String ( ReaderT Inventory Maybe ) Dispensable

dispenser1 n = do inv ← lift ask
item ← lift ◦ lift $ lookup n inv
tell (show item)
return item

The type may look dubious. Basically, we have built a Monad Transformer stack
with three monads:
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• Top of the stack: WriterT with a writable medium of type String.

• Middle: ReaderT with read access to an environment of type Inventory.

• Bottom: Maybe provides exception handling capabilities.

Monad Transformers allow us to express something reminiscent of the “ideal”
monadic computation that we sought after in Section 1.1.2. It is worth noting
that, now, Maybe is employed as a monad as opposed to a ordinary type. The
benefits are obvious as we get the error handling capabilities of Maybe for “free”.

However, it is not entirely free as we have to introduce lift operations. The
lift operations are necessary in order to work with a specific effect down the
transformer stack. For example in order to use ask we have to lift once as the
ReaderT is the second type in the stack. Moreover, to use the monadic capabilities
of Maybe we have to lift twice because it is at the bottom of the stack. Using
tell requires no lifts in this example as WriterT is the top type. Consider
what happens when we add yet another monad to the stack:

dispenser2
:: ItemCode →

RandT StdGen ( WriterT String ( ReaderT Inventory Maybe ))
Dispensable

dispenser2 n
= do r ← getRandomR (1 ,20)

inv ← lift ◦ lift $ ask
item ← lift ◦ lift ◦ lift $ lookup ’ r n inv
lift ◦ tell ◦ show $ item
return item
where

lookup ’ r n inv = if r > 10
then lookup n inv
else Nothing

Here we extended our model with randomness to capture the possiblilty of failure
caused by the system rather than the user. The RandT monad provides random
capabilities. Moreover, we added it to the top of the transformer stack. Accord-
ingly, we now have to use an additional lift operation everywhere, in particular,
we have to lift in order to use tell now.

Example 1.2 demonstrates that we can compose monads at the cost of lifting.
The lift operations are additional boilerplate code that become necessary, be-
cause the transformer stack enforce a static ordering on effects and interactions
between effect layers [9].
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Furthermore, the ordering leaks into the type signature which complicates
modularity. For example, we may have a function which takes as input an effectful
computation with type signature, say, WriterT w Reader e a. Now, the actual
effectful computation has to have a type signature with the exact same ordering
of effects even though Writer and Reader commute, i.e. the following types are
isomorphic:

WriterT w Reader e a' ReaderT e Writer w a.

So, we would have to permute the type signature of the actual computation [3],
e.g.

permute :: ReaderT e Writer w a → WriterT w Reader e a

In this case it is safe because the two monads commute. But in general monads do
not commute and therefore the consequence of permuting monads can be severe
as we shall see in the next section.

The importance of effect ordering

The effect ordering hard wires the semantics and syntactical structure of compu-
tations. Consider the following example adapted from O’Sullivan et. al [15]:

Example 1.3 (Importance of effect ordering [15]). We will demonstrate that the
Writer and Maybe monads do not commute. Let A be the type WriterT String

Maybe and B be the type MaybeT (Writer String). The two types differ in their
ordering of effects; type A has Writer as its outermost effect, whilst B has Maybe
as its outermost effect. Now consider the following small program that performs
one tell operation and then fails:

problem :: MonadWriter String m ⇒ m ()
problem = do

tell "this is where I fail"
fail "oops"

We have two possible concrete type instantiations of m, namely, either A or B. But
as we shall see the two types enforce different semantics:

ghci > runWriterT ( problem :: A ())
Nothing
ghci > runWriterT $ runMaybeT ( problem :: B ())
(Nothing , "this is where I fail")

When using type A we lose the result from the tell operation. Type B preserves
the result. Hence the two monads do not commute, and as a result the ordering
of effects determine the semantics of the computation.
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We have seen that, while we gain monad compositionality with Monad Trans-
formers, we lose modularity.

1.2 Problem statement

In the previous section we argued that programming with explicit effect is desir-
able, but we pointed out that it is not painless to program with explicit effects.
In particular, we demonstrated that the monadic approach lacks compositional-
ity and modularity. But we could regain compositionality using Monad Trans-
formers, however the transformer stack imposes a statical ordering on effects
which impedes modularity. Compositionality and modularity are cornerstones
of programming which we ideally would like to retain while being explicit about
effects. This observation leads us to the following problem statement:

How may we achieve a programming model with modular, composable
and unordered effects?

The desired programming model should unify the three concepts, and thereby
make it easier to program with explicit effects. In the next section we propose a
solution to the problem.

1.3 Proposed solution

Plotkin and Pretnar’s handlers for algebraic effects [18] affords a very attract-
ive model for programming with effects. The principal idea is to decouple the
semantics and syntactic structure of effectful computations, i.e. an effect is a
collection of abstract operations. By abstract we mean that the operation by
itself has no concrete implementation. Abstract operations compose seamlessly
to form the syntactical structure of computations. Independent of the structure
handlers instantiate abstract operations with concrete implementations.

We suppose that handlers for algebraic provide the basis for a suitable model
for effectful programming. However, handlers and algebraic effects alone do not
make any promises to eliminate the effect ordering issue. Therefore, we propose
handlers for algebraic effects with a small twist: We will use row polymorphism
to eliminate effect ordering. By definition a row is orderless. We discuss row
polymorphism in greater detail in Section 2.2.
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1.3.1 Objectives, aim and scope

The aim is to examine the programming model achieved by combining handlers
and row polymorphism. In order to examine the model we must first implement it,
thus the primary objective is to implement handlers and support for user-defined
effects in Links.

Links is a web-oriented functional programming language that already has a
row-based effect system in place. Because Links has built-in support for numerous
web-oriented features that are not key to our treatment, we restrict the scope to a
working implementation in top-level Links. We will introduce the relevant parts
of Links in Section 2.3.

1.3.2 Contributions

The main contributions are:

• An implementation of effect handlers in Links.

• Support for row polymorphic user-defined effects in Links.

• An examination of programming with handlers and row polymorphic effects.

1.4 Thesis structure

The remainder of the report is structured as follows: Chapter 2 introduces row
polymorphism, handlers and algebraic effects. Additionally, it contains a brief
introduction to Links which covers the relevant constructs that we will use later
on. Finally, it includes a discussion of related work.

Chapter 3 dives right into programming with handlers in Links. A series of
examples cover both closed and open handlers.

Chapter 4 gives a high level description of the implementation. Furthermore,
the chapter discusses various design decisions.

Chapter 5 evaluates handlers for algebraic effects using row polymorphism
as a model for programming with effects. Moreover, the retrofitting of handlers
and user-defined effects into Links is evaluated. Finally, the chapter contains a
relative performance comparison between handler-based and pure programs.

Chapter 6 concludes the work, and discusses future work.





Chapter 2

Background

2.1 Handlers and algebraic effects

Algebraic effects and handlers have their foundation in category theory [17, 18].
Plotkin and Power [16, 17] gave a categorical treatment of algebraic effects. The
term “algebraic” implies that an effect ought to be accompanied by a set of equa-
tions, however we will only consider free algebras, which implies the theories we
consider are equationless. Therefore we will not delve into the theoretical found-
ations of algebraic effects and handlers, rather, we will take a more pragmatic
approach. Moreover, we will use the terms algebraic effect and effect interchange-
ably.

2.1.1 Algebraic effects

An algebraic effect is a collection of operation signatures [11]. For example, we
might define an algebraic effect Choice for making a boolean choice with the
following signature:

Choice def= {Choose : ()→ Bool}

Here Choose is a nullary operation whose return type is boolean. The effect
Choice is the singleton set whose only member is Choose.

The operation Choose is abstract, that is, it has no concrete implementation.
We say that computations composed from algebraic effects are abstract compu-
tations. Without handlers abstract computations are meaningless as handlers
faithfully interpret effects by instantiating them with concrete implementations.

11



12 Chapter 2. Background

Choose ()

Choose ()

10 18

true

Choose ()

12 20

false

Figure 2.1: Interpretation of the conditional expression as a computation tree.
The left edges correspond to Choose being instantiated with true. Analogously,
the right edges correspond to an instantiation of Choose with false.

2.1.2 Effect handlers

Benton and Kennedy generalised exception handlers [2] (as known from SML,
C#, Java, etc) to expose a continuation to the programmer. Later their work
was adapted by Plotkin and Pretnar [18] to include arbitrary effects, thus they
pioneered handlers for algebraic effects.

Intuitively, an effect handler is a generalised function which takes an abstract
computation as input, and interprets the operations that may be discharged dur-
ing evaluation of the computation.

2.1.3 Interpreting effects as computation trees

To develop intuition about handlers and effects we illustrate a diagrammatic
interpretation of effects as computation trees [11]. We are going to assign different
semantics to the same abstract computation:

x = if Choose () then 2
else 4

y = if Choose () then 8
else 16

x + y

The expression assigns either the value 2 or 4 to the variable x, and similarly, it
assigns either 8 or 16 to the variable y, and adds x and y. We can picture this
expression as a tree where the nodes encode operations. The range of an operation
determines the number of children. In this example the range of Choose is Bool
which have two members: true and false. Therefore, Choose-nodes will have
two children. Leaves encode concrete values (results, i.e. x + y). Figure 2.1
depicts the above expression as a computation tree.
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During evaluation of the expression we eventually have to interpret the root
node Choose in Figure 2.1 and possibly its immediate subtrees. There are multiple
possible interpretations. One interpretation is to always interpret Choose as true
which figuratively corresponds to taking the left branch. The node we arrive at
is also a Choose-node, so again we choose the left branch to arrive at a leaf
that contains the concrete value 10. Hence under this interpretation the handler
collapses the computation tree into the leaf 10. Dually, we could always choose
false which leads to the output value 20. Figures 2.2a and 2.2b illustrate the
two interpretations respectively. Alternatively, we could make a random choice
between true and false at each branch. Again, this interpretation leads to one
single output value. Albeit, the output value would be non-deterministic under
this interpretation.

Yet another interpretation is to enumerate all possible choices. For example,
we can decide to explore the left branch and thereafter the right branch at each
node. This interpretation corresponds to performing a depth-first traversal of
the computation tree. Therefore, under this interpretation the computation tree
collapses into a set of its leaves. Figure 2.3 illustrates the tree traversal.

Essentially, our interpretations (handlers) correspond to particular folds over
syntax trees (abstract computations) [7].

Choose ()

Choose ()

10 18

true

Choose ()

12 20

false

(a) The “positive” interpretation: Always
choose true. Output: 10.

Choose ()

Choose ()

10 18

true

Choose ()

12 20

false

(b) The “negative” interpretation: Always
choose false. Output: 20.

Figure 2.2: Two different interpretations.
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Choose ()

Choose ()

10 18

true

Choose ()

12 20

false

Figure 2.3: Enumerate all possible choices. Output: {10,18,12,20}.

2.2 Row polymorphism

Row polymorphism is a typing discipline for row-based types such as records and
variants [19]. A row is an unordered collection of labels, e.g.

Employee def= {name : String,dept : String}

denotes a row type with two fields: name of type String and dept of type String.
We use set notation to emphasise that a particular field may only appear once
in a row. The record emp def= {name = ”John”,dept = ”Finance”} is a possible
instance of the row type Employee.

Consider a function which returns the projection of the name component and
the row itself, e.g. get_name(r) def= (πname(r), r), where πl(r) is the projection of
label l in row r. This raises the question of how to type the function. One possible
typing is

get_name : {name : a}→ a×{name : a}

The type looks innocuous, however, assuming for a moment that the type Employee
is a subtype of {name : String}, then

get_name(emp) = (”John”,{name = ”John”})

The output lost the dept field, because subtyping subsumed the field. However
using row polymorphism, we can prevent the loss of information. The principal
idea is to extend row types with a row variable ρ which can be instantiated with
additional fields, thus we may type get_name as

get_name : {name : a | ρ}→ (a×{name : a | ρ})

The row {name : a | ρ} is said to be open due to the presence of ρ, conversely, the
row Employee is said to be closed. Additionally, row polymorphism equip field



2.3. Links toplevel 15

types with a presence flag which indicating whether a field is present or absent
[19]. We will denote presence by pre(τ) and absence by abs where τ is the type of
the field in question. If we attempt to apply get_name to emp under this typing
then we obtain (“John”, emp) as desired. Under the hood the type system has
to solve the equation

{name : pre(a) | ρ} ∼ {name : pre(String),dept : pre(String)}

that is the two row types must be unified. The goal is to obtain a row where
everything that is present on the left and right hand side are present in the
solution. This implies that rows only can grow monotonically. The solution is to
first instantiate the type variable a with String, and then instantiate ρ with the
additional field dept of type pre(String). The result is a row that is identical in
structure to the row type Employee. It is crucial that the left hand side row is
open, otherwise the equation would have no solution.

As a final example, consider the row type {name : String,at_job : θ}, where
θ denotes the field is polymorphic in whether it is present or absent. A possible
instance is {name = ”Paul”} because the field at_job does not have to be present.
Applying the function get_name to the row gives rise to a similar equation:

{name : pre(a) | ρ} ∼ {name : pre(String),at_job : abs}

Again, we unify field by field: The case for name is easy, we simply instantiate
the type variable a with String. Next, we instantiate ρ with at_job set to abs.
For all practical matter the two row types

{name : pre(String)}u {name : pre(String),at_job : abs}

are identical in structure, because at_job is never accessed in an instance. In the
remainder of the thesis we continue to use θ to denote presence polymorphism,
but we omit the presence annotation pre as we will mostly work with rows where
all fields are present.

2.3 Links toplevel

Links is a strongly-, statically-typed, web-oriented functional programming lan-
guage that renders webprogramming tierless by enabling programmers to write
their code in one single source language [4, 13]. However, we will not address
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Links’ web-oriented features, instead we will give a brief introduction to relevant
parts of the functional core language.

2.3.1 The basics

Links is an interpreted language. Launching the Links interpreter leaves us in a
read-eval-print-loop (REPL), where we can execute arbitrary Links expressions.
We will use the notation “links>” to denote when we use the REPL. The syntax
of Links is similar to JavaScript’s syntax.

Functions and variables. Variables are declared using the var keyword fol-
lowed by a variable name and definition:

links > var x = 42;
x = 42 : Int

Note, variables are single-assignment, there is no concept of mutable references
in Links. Similarly, functions are declared using the fun keyword, followed by a
list of parameters and a body definition. Furthermore, functions can be either
anonymous or named:

links > fun id(x) { x };
id = fun : (a) → a
links > fun(x) { x };
fun : (a) → a

The above functions are the named and unnamed versions of the identity function.
A slightly more interesting function is the following:

fun meaning_of_life (y) {
if (y == 42) { true }
else { false } }

links > meaning_of_life (x); # The same x as defined above
true : Bool
links > meaning_of_life (x -1);
false : Bool

The body of the function meaning_of_life is a conditional expression with two
branches. Because it is an expression it must return a value, hence a conditional
expression must have at least two branches to cover true and false cases.

Type annotation and aliasing. The Links type checker automatically infers
types for expressions. But, we can define our own types using the typename

keyword. Type and data constructors start with a capital letter. For instance,
we can define a Maybe type constructor:
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links > typename Maybe(a) = [| Just:a| Nothing |];
Maybe = a . [| Just:a| Nothing |]

The variable a is a type variable. So, the type constructor Maybe takes one type
a as input. The brackets ([|...|]) are syntax for denoting variant types. The
data constructor Just wraps an element of type a. Let us make an instance:

links > Just (2);
Just (2) : [| Just:Int|ρ|]

The Links type checker infers type a polymorphic variant type which is made
explicit by the presence of ρ. Links employ structural typing, that is, two types
are equivalent if and only if they have identical structure. Often Links infers a
more general type than needed, we can help the type checker by annotating an
expression:

links > Just (2) == (Just (2) : Maybe(Int));
true : Bool

Indeed, the two types are compatible due to row polymorphism.

Pattern matching. We can use the switch-construct to pattern match on an
expression. For example, we can define a function converts an instance of Maybe
into an instance of Bool:

fun maybe2bool (maybe : Maybe( String )) {
switch (maybe) {

case Just(p) → true
case Nothing → false

} }
links > maybe2bool (Just (42));
true : Bool

The case-statements pattern matches on the expression maybe. Links supports
deep pattern-matching, so the switch-construct can be used to decompose an
expression.

2.3.2 The effect system

Links has a row-based effect system. Function types are annotated with effects,
e.g. (A1, . . . ,xAn) E−→B denotes the type of a function that takes n arguments of
types A1, . . . ,An, and might perform effects E before returning a value of type B
[13]. The effects E are represented as a row type, where presence indicates that
the effect might happen during runtime, while absence indicates that the effect
will definitely not happen at runtime. Only function types can be annotated with
effect, this implies that effects can only occur during function application.
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For example the built-in function print prints a string to the standard out-
put. Printing to standard output is an effectful action. Links assigns print the
type (String) {wild | ρ}−−−−−−→ (). The wild effect is a syntactic, built-in effect [13].
The effect system will also capture divergence. Consider the following recursive
function:

fun div () { div () }

Links assigns div the type () {wild | ρ}−−−−−−→ a. Most higher-order functions in the
prelude (standard library) have open effect rows, thus allowing effectful functions
to be passed as input.

2.4 Related work

This section discusses and evaluates related work on programming models with
handlers and effects.

2.4.1 Languages with effects

Eff. The Eff programming language, by Bauer and Pretnar [1], has first-class
support for effect handlers and algebraic effects. The language has the look
and feel of OCaml. Eff employs nominal typing for effects, therefore an effect is a
named collection of abstract operations. To discharge an operation, the program-
mer has to generate an effect instance. Operations can be discharged through the
effect instance. This interface is similar to the object-oriented interface in OCaml.
Eff achieves unordered effects through effect subtyping.

Frank. The Frank programming language by McBride [12] takes the notion of
effect handlers to the extreme. In Frank there are no functions, there are only
handlers. Consequently, a function is a special case of a handler. In particular, it
only supports shallow handlers whereas our implementation only supports deep
handlers. Shallow handlers handle computations nonuniformly. Additionally,
Frank employs “call-by-push-value” (CBPV) evaluation semantics. Essentially,
CBPV makes the distinction between computations and values explicit. Since
Frank distinguishes between computations and values side-effects can only occur
in computations. Hence there is a clear separation between segments of code
where effects might occur and where effects are guaranteed never to occur.
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Koka with row polymorphic effects. Leijen’s programming language Koka
employs a row-based effect system [10] with support for arbitrary user-defined
effects [21]. Notably, Koka uses row polymorphism to capture unordered effects,
however, in contrast to our approach Koka allows an effect to occur multiple times
in a row. Effect duplication is crucial to support scoping of effects. Furthermore,
Koka has no notion of effect handler except for exception handlers which are to
some extent reminiscent of those in Java, C#, etc.

2.4.2 Haskell libraries

There is no first-class support for handlers in Haskell, however there are several
embeddings of effect handlers in Haskell. Furthermore, the implementations take
advantage of Haskell’s lazy evaluation strategy.

Data types á la carte. In his functional pearl, Swierstra illustrates how to
write effectful programs using free monads [20]. Free monads gives rise to a
natural encoding of effect handlers [12].

Handlers in action. Kammar et al. [7] considers two different implementa-
tions of handlers in Haskell. One implementation is based on free monads, while
the other is based on continuations.

They achieve unordered effects by encoding handlers as type classes. There-
fore handlers also inherit the limitations of type classes. Type classes are not
first-class in Haskell, so neither are handlers. Haskell do not permit local type
class definitions, therefore handlers must be defined in the top-level. Furthermore,
the order in which handlers are composed leak into the type signature, because
their (open) handlers explicitly mention a parent handler [7]. However, this is
less problematic than the effect ordering problem. They propose that using row
polymorphism may yield a cleaner design [7]. To a large extent our implementa-
tion is inspired by their work. Moreover, they present a collection of examples,
some of which we have reproduced in Links. We also take a similar approach to
evaluating the relative performance of handlers.

Notably, they provide a Template Haskell interface which makes it easier to
use their library.
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Extensible effects. Kiselyov et al. presents an alternative framework to Monad
Transformers based on free monads [9]. Their framework is modelled after the
syntax of Monad Transformers, but, allows effects to be combined in any order.
Like Frank their framework only supports shallow handlers which gives the pro-
grammer additional flexibility, but, shallow handlers are often less efficient than
deep handlers [9].

Handlers in scope Wu et al. investigates scoping constructs for handlers to
delimit the scope of effects [24].

They present two solutions: The first solution extends an existing effect hand-
ler framework based on free monads with so-called scope markers to mark the
beginning and ending of blocks that should be handled in a self-contained con-
text. However they demonstrate that handlers along with scope markers are
insufficient to capture higher-order scoped constructs properly. Their second ap-
proach provides a higher-order syntax which carries the scoped blocks directly
[24]. In addition, the second approach gives finer control how handlers traverse
the syntax tree.

2.4.3 Idris’ Effects

Brady provide a library implementation of handlers called Effects for the
dependently-typed, functional programming language Idris [3]. The purpose
is to investigate the use of effects to reason about programs. So, the type checker
does not infer effect types, rather it checks that effects are used correctly accord-
ing to some specification given by the programmer.
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Programming with handlers in
Links

Through a series of examples we will explore programming with two types of
effect handlers in Links. Section 3.2 introduces closed handlers and in particular
emphasises the high degree of modularity afforded by closed handlers. Section
3.3 introduces the slightly more generalised open handlers and focuses mainly on
the compositionality of (open) handlers.

3.1 Discharging operations

Syntactically, operations are similar to type and data constructors in Links. Every
operation name starts with a capital letter, e.g. Get, Put, etc. Every operation
takes an input and yields an output. The output from discharging an operation
is entirely decided by effect handlers in the evaluation context. That is, alone an
operation does not have any semantics.

Operations are discharged using the do-primitive. However discharging an
operation in an unhandled context yields an evaluation error:

links > do Get ();
∗∗∗ Error: Unhandled operation : Get ()

The typing of operations is uniform because every operation takes exactly one
input. Therefore the type of an operation is on the form a→ b where a and b are
type variables. In order to simulate multiple parameters one can instantiate a to
a record type, e.g. Put((true,1)) is an operation of type (Bool,Int)→ b.

21
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3.2 Closed handlers

A handler assigns semantics to abstract operations. In Links, this is reflected in
the syntax as a handler embodies a collection of pattern-matching cases, which
map operation names to computations, e.g.

handler h(m) {
case Get(p,k) → mGet
case Put(p,k) → mPut
case Return (x) → mReturn

}

The above defines a handler h that handles two operations Get and Put. In
the previous section we said that every operation takes exactly one argument,
yet, an operation case matches on two parameters. The first parameter p is the
operation argument, whilst the second parameter k exposes a delimited continu-
ation that accepts a single parameter. Invocation of the continuation transfers
control back to the handled computation m at the point where the said opera-
tion was discharged. Both parameters may be referenced multiple times in their
respective case-computation mGet or mPut. There may be a variable number of
operation-cases, however, there must be at least one Return-case in every hand-
ler. The Return-case is a special case that is implicitly invoked when the handled
computation m finishes. The purpose of Return is discussed in Section 3.2.2.

The formal parameter m is a name for the abstract computation which the
handler interprets. Because Links employ a strict evaluation strategy computa-
tions are modelled as thunks, that is, the type of m is () E−→ b where E is the set
of operations that m may discharge.

3.2.1 Typing closed handlers

A closed handler handles a fixed set of effects, that is, it puts an upper bound on
which kind of effects a computation may perform. In Links this bound is made
explicit in the handler’s type, e.g. the closed handler h above has the following
type

(() {Get:a1→a2,Put:a3→a4}−−−−−−−−−−−−−−−→ b)→ c

where b is the return type of the computation m, and c is the type of mReturn,
mGet and mPut. The absence of a row variable in the effect signature implies
that the computation m may not perform any other effects than Get and Put.
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It is considered a type error to attempt to handle a computation whose effect
signature is not unifiable with the effect signature of m.

This restriction introduces slack into the type system [6]. To illustrate the
slack consider the following computation:

fun comp () {
s = do Get ();
if (false == true) { do Foo (); s }
else { true }

}

The computation comp has type () {Get:()→Bool,Foo:()→() | ρ}−−−−−−−−−−−−−−−−−→ Bool. Obviously, Foo
never gets discharged. However, attempting to handle comp with the handler h
gives rise to the following unsolvable equation

{Get : a1→ a2,Put : a3→ a4} ∼ {Get : ()→ Bool,Foo : ()→ () | ρ}

There is no solution as we cannot remove Foo from the right hand side.
The following sections will show increasingly interesting examples of program-

ming with closed handlers in Links.

3.2.2 Transforming the results of computations

The first two examples show how to transform the output of a computation using
handlers. We begin with a handler that appears to be rather boring, but in fact
proves very useful as we shall see later in Section 3.3.

Example 3.1 (The force handler). We dub the handler force as it takes a
computation (thunk) as input, evaluates it and returns its result. It has type
(()→ a)→ a and it is defined as

handler force(m) {
case Return (x) → x

}

Essentially, this handler applies the identity transformation to the result of the
computation m. Running force on a few examples should yield no surprises:

fun fortytwo () { 42 }
links > force( fortytwo );
42 : Int

fun hello () { "Hello" }
links > force(hello);
"Hello" : String

The handler force behaves as expected for these trivial examples. The force

handler also runs side-effecting computations:
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links > force(fun () { print("Hello World") });
"Hello World"
() : ()

The force handler’s effect row implicitly contains the wild effect. Without the
presence of the wild effect closed handlers would not be able to run computations
that might diverge. Therefore disallowing the wild effect severely limit the class
of computations that a closed handler can accept as input.

The next example demonstrates an actual transformation.

Example 3.2 (The listify handler). The listify handler transforms the result
of a handled computation into a singleton list. Its type is (()→ a)→ [a] and its
definition is straightforward:

handler listify (m) {
case Return (x) → [x]

}

Running it on a few examples we obtain:
links > listify ( fortytwo );
[42] : [Int]
links > listify (hello);
["Hello"] : [ String ]
links > listify (fun () { [1 ,2 ,3] });
[[1 ,2 ,3]] : [[ Int ]]

This example also illustrates that the Return-case serves a similar purpose to
the monadic return-function in Haskell which lifts a value into a monadic value,
similarly, the Return-case lifts a value into a “handled” value.

In a similar fashion to the handler listify in Example 3.2 we can define
handlers that increment results by 1, perform a complex calculation using the
result of the computation, or wholly ignore the result. However, it must ensure
that the type of the output is compatible with the output type of the handler.
In the case for listify the output must be a list of whatever the computation
yielded.

3.2.3 Exception handling

Until now we have only seen some simple transformations. Let us make things
more interesting. Example 3.3 introduces our first practical handler maybe. It
is similar to the Maybe-monad in Haskell. For reference we briefly sketched the
behaviour of the Maybe-monad in Section 1.1.2.
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Example 3.3 (The maybe handler). The maybe handler handles one operation
Fail : a1→ a2 that can be used to indicate that something unexpected has oc-
curred in a computation. The handler returns Nothing when Fail is raised, and
Just the result when the computation succeeds, thus its type is

(() {Fail:a1→a2}−−−−−−−−−→ b)→ Maybe(b).

It is defined as
handler maybe(m) {

case Fail(_,_) → Nothing
case Return (x) → Just(x)

}

When a computation discharges Fail the handler discards the remainder of the
computation and returns Nothing immediately, e.g.

fun yikes () {
var x = "Yikes!";
do Fail ();
x

}
links > maybe(yikes);
Nothing () : Maybe( String )

and if the computation succeeds it wraps the result inside a Just, e.g.
fun success () {

true
}
links > maybe( success );
Just(true) : Maybe(Bool)

3.2.4 Handling choice

In Section 2.1.3 we visualised some interpretations the abstract computation
fun choice () {

var x = if (do Choose ()) { 2 }
else { 4 };

var y = if (do Choose ()) { 8 }
else { 16 };

y + x
}

which uses the operation Choice : ()→ Bool. For completeness we show how
to implement these interpretations in Links. Example 3.4 shows the positive
interpretation and Example 3.5 shows the enumeration interpretation.
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Example 3.4 (The “positive” interpretation (Figure 2.2a)). Whenever the oper-
ation Choose is discharged in the computation choice the handler has to decide
whether to pick true or false. Therefore the type of the handler positive must
be (() {Choose:()→Bool}−−−−−−−−−−−→ a)→ a. The positive handler always picks true. To im-
plement this behaviour, we invoke the continuation once with the argument true.
The value true becomes the concrete output of do Choose in the computation:

handler positive (m) {
case Choose (_,k) → k(true)
case Return (x) → x

}

Running the handler on the computation choice yields the expected result:
links > positive ( choice );
10 : Int

The definition of the handler negative from Section 2.1.3 is analogous to positive.

Example 3.5 (The enumeration handler (Figure 2.3)). The handler enumerate
traverses the entire computation tree as shown in Figure 2.3. To encode this
behaviour we will invoke the continuation twice: First with true and then with
false. The results of both invocations have to be collected in a list. It is the
job of Return to lift a single result into a list. Therefore the type of enumerate
is (() {Choose:()→Bool}−−−−−−−−−−−→ a)→ [a]. The Return-case lifts a single element into a
singleton list. Hence the two invocations of the continuation give us two lists
which we can join together to form a single list, e.g.

handler enumerate (m) {
case Choose (_,k) → k(true) ++ k(false)
case Return (x) → [x]

}

Applying enumerate to the computation choice yields the result we arrived at
in Section 2.1.3:

links > enumerate ( choice );
[10, 18, 12, 20] : [Int]

3.2.5 Interpreting Nim

The previous examples built intuition for how handlers work. In this section we
will use the mathematical game Nim to demonstrate the power of modularity
afforded by handlers. Nim is a strategic game in which two players take turns to
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pick sticks from heaps on a table, and whoever takes the last stick wins. We will
use a simplified version of Nim to demonstrate how handlers can give different
interpretations of the same game. In our simplified version there is only one heap
of n sticks. Any player may only take between one and three sticks at a time.
Furthermore, we name players: Alice and Bob, and Alice always starts. Our
model is adapted from Kammar et. al [7].

We encode the players as the sum type Player def= [|Alice|Bob|] and model the
game as two mutual recursive abstract computations, e.g.

When Alice plays When Bob plays
fun aliceTurn (n) {

if (n == 0) { Bob }
else {

var take = do Move (( Alice ,n));
var r = n - take;
bobTurn (r)

} }

fun bobTurn (n) {
if (n == 0) { Alice }
else {

var take = do Move ((Bob ,n));
var r = n - take;
aliceTurn (r)

} }

The two computations are symmetrical. The input parameter n is the number
of sticks left in the heap. First, Alice checks whether there are any sticks left, if
the heap is empty then she declares Bob the winner, otherwise she performs her
move and then she gives the turn to Bob. The game uses one abstract operation
Move which has the type Move : (Player,Int)→ Int, i.e. it takes the current
game configuration as input:

1. Who’s turn it is,

2. and the number of remaining sticks.

The operation Move returns the number of sticks that the current player takes.
At this point Move does not have a clear semantic interpretation. We only know
that its range, the integers, is infinite, so take may be assigned any integer value.
The types of aliceTurn and bobTurn are

(Int) {Move:(Player,Int)→Int | ρ}−−−−−−−−−−−−−−−−−−→ Player

Because it is an unary function it cannot be used as an input to any handler. We
rectify the problem by using a closure, i.e. we wrap the game function inside a
nullary function like fun(){aliceTurn(n)} where n is a free variable captured
by the surrounding context. For conveniency, we define an auxiliary function
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play to abstract away these details. It takes as input a game handler gh and
the number of sticks at the beginning of game n. Moreover, the function play

enforces the rule that Alice always starts, e.g.
fun play(gh , n) {

gh(fun () {
aliceTurn (n)

})
}

The following examples demonstrates how to use handlers to encode the strategic
behaviour of the players.

Example 3.6 (A naïve strategy). A very naïve strategy is to take only one
stick at every turn. We encode this behaviour by invoking the continuation with
argument 1. This assigns 1 to take in aliceTurn or bobTurn depending on whom
discharged Move. The implementation of the handler is straightforward:

handler naive(m) {
case Move(_,k) → k(1)
case Return (x) → x

}

The operation Move is handled uniformly, that is, independent of the current
game configuration the handler always invokes the continuation k with 1.

A moment’s thought reveals that we can easily predict the winner when using
the naive strategy. The parity of n, the number of sticks at the beginning,
determines the winner. For odd n Alice wins and vice versa for even n, e.g.

links > play(naive , 9);
Alice () : Player

links > play(naive , 18);
Bob () : Player

links > play(naive , 101);
Alice () : Player

Example 3.7 (A perfect strategy [7]). A perfect strategy makes an optimal move
at each turn. In particular, an optimal move depends on the remaining number
of sticks n. Therefore the perfect move can be defined as a function of n, e.g.

perfect(n) = max{nmod 4,1}

In our restricted Nim game a perfect strategy is a winning strategy for Alice if
and only if the number of remaining sticks is not divisible by 4.
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We implement the function perfect above with an addition: We pass it a
continuation as second parameter:

fun perfect (n, k) {
k(max(mod(n ,4) ,1))

}

The continuation is invoked with the optimal move. Now we can easily give a
handler that assigns perfect strategies to both Alice and Bob, e.g.

handler pvp(m) {
case Move ((_,n),k) → perfect (n, k)
case Return (x) → x

}

Notice that this time we pattern match on Move’s argument to obtain the game
configuration. By running some examples we witness that Alice wins when n is
not divisible by four:

links > play(pvp , 9);
Alice () : Player

links > play(pvp , 18);
Alice () : Player

links > play(pvp , 36);
Bob () : Player

Example 3.8 (Mixed strategies). A strategy often encountered in game theory
is mixing which implies a player randomises its strategies in order to confuse the
opponent. In similar fashion to perfect from Example 3.7 we define a function
mix which chooses a strategy

fun mix(n,k) {
var r = mod( nextInt (), 3) + 1;
if (r > 1 && n ≥ r)) { k(r) }
else { k(1) }

}

The function nextInt returns the next integer in some random sequence. The
random integer is projected into the set of valid moves {1,2,3}. If the random
choice r is greater than the number of remaining sticks n then we default to take
one (even though the optimal choice might be to take two).

The mixed strategy handler is similar to perfect-vs-perfect handler from Ex-
ample 3.7

handler mixed(m) {
case Move ((_,n),k) → mix(n,k)
case Return (x) → x

}
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Replaying the same game a few times ought eventually yield the two possible
outcomes:

links > play(mixed , 9);
Bob () : Player

links > play(mixed , 9);
Alice () : Player

Example 3.9 (Brute force strategy [7]). Examples 3.6-3.8 only invoked the con-
tinuation once per move. However, we can invoke the continuation multiple times
to enumerate all possible future moves, this way we can brute force a winning
strategy, if one exists. In order to brute force a winning strategy, we define a con-
venient utility function which computes the set of valid moves given the number
of remaining sticks:

fun validMoves (n) {
filter (fun(m) { m ≤ n }, [1 ,2 ,3])

}

The function simply filters out all illegal moves for a given game configuration n.
The function bruteForce computes the winning strategy for a particular player
if such a strategy exists:

fun bruteForce (player , n, k) {
var winners = map(k, validMoves (n));
var hasPlayerWon = indexOf (player , winners );
switch ( hasPlayerWon ) {

case Nothing → k(1)
case Just(i) → k(i+1)

} }

The first line inside bruteForce is the critical point. Here we map the continu-
ation k over the possible moves in the current game configuration. Accordingly,
the function simulates all possible future configurations yielding a list of possible
winners. The auxiliary function indexOf looks up the position of player in the
list of winners. The position plus one corresponds to the winning strategy be-
cause lists indexes are zero-based. If the player has a winning strategy then the
(zero-based) position is returned inside a Just, otherwise Nothing is returned.

We let Alice play the brute force strategy and Bob play the perfect strategy:
handler bfvp(m) {

case Move (( Alice ,n),k) → bruteForce (Alice ,n,k)
case Move ((Bob ,n),k) → perfect (n,k)
case Return (x) → x

}
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Here we take advantage of deep pattern-matching to distinguish between when
Alice and Bob’s moves. Obviously, the brute force strategy is inefficient as it
redoes a lot of work for each move. The winning strategy that it discovers hap-
pens to be the same as the perfect strategy. Albeit, bruteForce computes it in
exponential time whilst perfect computes it in constant time. The following
outcomes witness that bruteForce and perfect behaves identically:

links > play(bfvp , 9);
Alice () : Player

links > play(bfvp , 18);
Alice () : Player

links > play(bfvp , 36);
Bob () : Player

Although, the bruteForce strategy is significantly slower than perfect strategy
in Example 3.9 the point of interest here is not efficiency but rather modularity.
Remark that during Examples 3.6-3.9 the game model remained unchanged. We
interpreted the game by instantiating the operation Move with different imple-
mentations. Moreover, Example 3.9 nicely demonstrated that we may exchange
two observable equivalent implementations (handlers) effortlessly. In practical
terms this implies that one would be able to exchange a slow component with
a faster, improved version effortlessly. The coupling between the game model
and the handlers is low as they interface through the abstract operation Move.
Furthermore, the handlers followed a similar pattern. It would be convenient to
be able to abstract over this pattern by defining a generic game handler that, in
addition to an abstract computation, takes two strategies as input. However, in
the current implementation handlers cannot be parameterised.

Examples 3.6-3.9 gave different interpretations of the same game. Further-
more, they all computed the same thing, namely, the winner. In particular, each
handler applied the identity transformation in the Return-case. However, by tak-
ing full advantage of the Return-case we can use handlers to compute data from
computations. For example we can construct the game tree for a Nim game as
Example 3.10 shows.

Example 3.10 (Game tree generator [7]). In a game tree a node represents a
particular player’s turn, and outgoing edges corresponds to particular moves that
the player may perform. A path down the game tree corresponds to a particular
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sequence of moves taken by the players ending in a leaf node which corresponds
to the winner. Figure 3.2 illustrates an example game tree when starting with
3 sticks. Our game tree is a ternary tree which we represent using a recursive
variant type, e.g.

GameTree def= [|Take : (Player, [(Int,GameTree)]) |Winner : Player|]

Leaves are tagged with Winner, while nodes are tagged with Take. A Take

node embeds a tuple where the first component is current player, and the second
component contains the possible subgames. We define a function reifyMove

which takes a player, the number of sticks, and a continuation to construct a
node in the game tree, e.g.

fun reifyMove (player , n, k) {
var moves = map(k, validMoves (n));
var subgames = zip ([1.. length (moves)], moves);
Take(player , subgames )

}

First, we map the continuation over the possible moves in the current game
configuration to enumerate the subsequent game trees. We compute the subgames
by zipping element-wise the two list {1, . . . , |moves|} and moves. Finally, we
construct a node Take with player and the possible subsequent game trees.

The leaves are constructed by the Return-case in the handler:
handler gtGen(m) {

case Move (( player ,n),k) → reifyMove (player ,n,k)
case Return (x) → Winner (x)

}

Again, we take advantage of full pattern-matching to decompose the game config-
uration. The inferred type for gtGen witnesses that the handler indeed constructs
a game tree:

gtGen : (() {Move:(Player,Int)→Int}−−−−−−−−−−−−−−−−→ Player)→ GameTree

Figure 3.2 depicts the game tree generated by the handler when starting with 3
sticks.
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Figure 3.2: Pretty print of the game tree generated by play(gtGen, 3).

Notice that even though the game model remains unchanged we have been able
to encode strategic behaviours and generate data from the game by interpreting
the game using different handlers. This emphasises the modularity afforded by
handlers.

3.3 Open handlers

Open handlers are the dual to closed handlers when we think in terms of bounds
on effects. An open handler give a lower bound on the kind of effects it will
handle. Through composition of open handlers we can achieve a tighter bound
on the handled effects. Consequently, one can delegate responsibility to specialised
handlers that handle a particular subset of the computational effects. Unhandled
operations are forwarded to subsequent handlers. In other words, an open handler
partially interprets an abstract computation and leaves the remainder abstract
for other handlers to interpret.

In Links the concrete syntax for open handlers is similar to that for closed
handlers. To declare an open handler one simply prepends the keyword open in
the handler declaration, e.g.

open handler h1(m) {
case Get(p,k) → mGet
case Put(p,k) → mPut
case Return (x) → mReturn

}
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The type of the open handler h1 is more complex than its closed counterpart:

h1 : (() {Get:a1→a2,Put:a3→a4 | ρ}−−−−−−−−−−−−−−−−−→ b)→ () {Get:θ1,Put:θ2 | ρ}−−−−−−−−−−−→ c

Notice that the effect row of the input computation is polymorphic as signified
by the presence of the row variable ρ. Accordingly, the input computation may
perform more operations than the handler handles. The output type of an open
handler looks very similar to its input type. The input and output are both
thunks. Moreover, their effect rows share the same polymorphic row variable ρ.
But their operation signatures differ. The operations in the output effect row are
polymorphic over their presence.

3.3.1 Composing handlers

It is no coincidence that the input type and output type of open handlers are both
thunks. Both types are compatible with the notion of computation for handlers.
Therefore, we can compose open handlers seamlessly. For example, imagine a
handler h2 whose signature is

h2 : (() {Choose:a′
1→a′

2| ρ′}−−−−−−−−−−−−→ b′)→ () {Choose:θ3 | ρ′}−−−−−−−−−−→ c′

The composition (h2 ◦h1)(m) gives rise to the following equation

{Choose : a′1→ a′2| ρ′} ∼ {Get : θ1,Put : θ2 | ρ}

which has the following solution

{Choose : a′1→ a′2,Get : θ1,Put : θ2 | ρ′}

The solution encompasses the three fields, where Get and Put remains poly-
morphic in their presence unless they are discharged by either handler. It is
worth to emphasise that the row variable ρ′ is shared by the input and output
effect row. The implication is that additional operation names are propagated
throughout composition. Hence (h2 ◦ h1)(m) ultimately yields a computation
with type

() {Get:θ1,Put:θ2,Choose:θ3| ρ′}−−−−−−−−−−−−−−−−−−→ b′

This is under the assumption that neither handler discharges any of the opera-
tions, otherwise the said operations would have to be present in the effect row.
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To see why the operations are presence polymorphic in the output effect row, con-
sider a closed handler h3 : (()→ b′)→ b′ then the composition (h3 ◦h2 ◦h1)(m)
gives rise to the equation:

∅ ∼ {Get : θ1,Put : θ2,Choose : θ3 | ρ′}

Since we cannot shrink rows, there can only be one solution which is identical in
structure on runtime:

{Get : abs,Put : abs,Choose : abs}

If the operations were not presence polymorphic then we would not be able to
compose an open handler with a closed handler.

Implicit handler stack

The order of composition implicitly defines a stack of handlers. For example
the composition of three handlers (g1 ◦ g2 ◦ g3)(m) applied to some computation
m defines a stack where g3 is the top-most element. Thus the handler stack
is built outside in. When an operation is discharged in m the runtime system
unwinds the handler stack to find a suitable candidate to handle the operation.
The composition order determines the order in which handlers are invoked. First
the top-most handler is invoked, and if it cannot handle the discharged operation
then the operation is forwarded to the second top-most handler and so forth.

Consequently, the order of composition may affect the semantics, say, g1 and
g2 interpret the same operation differently, then, g1 ◦ g2 and g2 ◦ g1 potentially
yield different results. In other words composition is not commutative.

The result of an application of some open handler to some computation is
itself a computation. For example (g1◦g2◦g3)(m) will yield some nullary function
()→ a which we must invoke to obtain the result of the computation m. In order
to avoid this extra invocation recall the force handler from Section 3.2.2. We
may compose force with the open handlers to obtain the result of m directly,
e.g. (force◦g1 ◦g2 ◦g3)(m) yields a value of type a immediately.

3.3.2 An effectful coffee dispenser in Links

In Section 1.1.2 and 1.1.3 we implemented a model of a coffee dispenser in Haskell
using monads (Examples 1.1 and 1.2). However, it was difficult to extend the
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model to include more properties like writing to a display and system failures
without resorting to Monad Transformers due to regular monads’ lack of com-
positionality.

In contrast, the modularity and compositionality afforded by (open) handlers
enable us to easily implement a highly modular coffee dispenser model in Links.
Example 3.11 implements the model.

Example 3.11 (Effectful coffee dispenser). The coffee dispenser performs two
operations directly:

1. Ask : ()→ Inventory retrieves the inventory.

2. Tell : Dispensable→ String writes a description of a drink to some me-
dium.

Indirectly, the coffee dispenser may perform the Fail operation when it looks up
an item. Thus the type of the dispenser is

dispenser : (Int) {Ask:()→Inventory,Fail:()→a,Tell:Dispensable→String | ρ}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ String

We compose the coffee dispenser from the aforementioned operations and the
look-up function, e.g.

fun dispenser (n) {
var inv = do Ask ();
var item = lookup (n,inv);
do Tell(item)

}

The monadic coffee dispenser model used three monads: Reader, Writer and
Maybe to model the desired behaviour. We will implement three handlers which
resemble the monads. First, let us implement Reader-monad as the handler
reader whose type is

(() {Ask:a→Inventory | ρ}−−−−−−−−−−−−−−→ b)→ () {Ask:θ | ρ}−−−−−−→ b

For simplicity we hard-code the inventory into the handler
open handler reader (m) {

case Ask(_,k) → k([(1 , Coffee ) ,(2,Tea)])
case Return (x) → x

}

When handling the operation Ask the handler simply invokes the continuation k

with the inventory as parameter. Like in Example 1.1 we model the inventory as
an association list.
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Secondly, we implement the handler writer which provide capabilities to
write to a medium. We let the medium be a regular string. The handler’s type is

(() {Tell:Dispensable→String |ρ}−−−−−−−−−−−−−−−−−−−−→ a)→ () {Tell:θ | ρ}−−−−−−−→ a

and its definition is
open handler writer (m) {

case Tell(Coffee ,k) → k(" Coffee ")
case Tell(Tea ,k) → k("Tea")
case Return (x) → x

}

Here we use pattern-matching to convert Coffee and Tea into their respective
string representations.

Finally, the lookup function traverses an association list in order to find the
element associated with the given key. If the key exists, then the element is
returned, otherwise the Fail operation is discharged to signal failure. We will
not show its implementation here. To handle failure we reuse the maybe-handler
from Section 3.2.3 with the slight change that we make it an open handler. Now,
we can glue the components together:

fun runDispenser (n) {
force(maybe( writer ( reader (fun () { dispenser (n) }))))

}

Note, that in this example the order in which we compose handlers is irrelevant.
Running a few examples we see that it behaves as expected:

links > runDispenser (1)
Just(" Coffee ") : Maybe( String )

links > runDispenser (2)
Just("Tea") : Maybe( String )

links > runDispenser (3)
Nothing () : Maybe( String )

Observe that when we implemented the monadic version of the dispenser

using Monad Transformers we had to pay careful attention to the ordering of
effects up front because we had to lift certain operations. This issue is no longer
present with handlers. In fact, we first defined dispenser without considering
the concrete the interpretation of the operations Ask and Tell (and Fail). Fur-
thermore, the effect ordering does not leak into the effect row as opposed to
Monad Transformers. The row polymorphism is key to the elimination of the
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effect ordering issue. Additionally, row polymorphism increases modularity, and
eases compositionality. Using this programming model programmers can truly
implement modular and composable components independently.

3.3.3 Reinterpreting Nim

In Section 3.2.5 we gave various interpretations of Nim using closed handlers.
Example 3.12 demonstrates how to use the compositionality of open handlers to
extend the game with an additional cheat detection mechanism without breaking
a sweat. We reuse the game model and auxiliary functions from Section 3.3.3.

Example 3.12 (Cheat detection in Nim [7]). First, we implement a function that
given a player, the number of remaining sticks n, and a continuation k determines
whether the player cheats. We call this function checkChoice, it will perform
two operations: Move and Cheat, the former simulates a particular move whilst
the latter operation is used to signal that cheating has occurred. The type of the
function is

checkChoice : (Player,Int,Int E−→ Player) E−→ Player

where E def= {Cheat : (Player,Int)→ c,Move : (Player,Int)→ Int|ρ}. The fol-
lowing is its implementation:

fun checkChoice (player ,n,k) {
var take = do Move(player ,n);
if (take < 1 || 3 < take) { # Cheater detected !

do Cheat(player ,take)
} else { # Otherwise OK

k(take)
}

}

First, we simulate the player’s move. If the player’s choice is not in the set of valid
moves {1,2,3} then the function signals that cheating has occurred, otherwise the
continuation k is invoked to actually perform the move. Now, it is straightforward
to implement a handler which uses checkChoice to detect cheating, e.g.

open handler checkGame (m) {
case Move (( player ,n),k) → checkChoice (player ,n,k)
case Return (x) → x

}

The type of checkGame is (() E−→ Player)→ () E−→ Player where the effect row
E is the same as above. Hence checkGame is itself an abstract computation.
Therefore we will need two more handlers which interpret the Cheat and Move
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operations. We encode the cheater’s strategy into the handler which handles the
additional Move operation discharged by checkGame:

fun cheater (n,k) {
k(n)

}

open handler aliceCheats (m) {
case Move (( Alice ,n),k) → cheater (n,k)
case Move ((Bob ,n),k) → perfect (n,k)
case Return (x) → x

}

Here a cheater’s strategy is simply to take all sticks in the heap and thereby win
the game in one single move. In the handler aliceCheats we assign the cheater’s
strategy to Alice whilst Bob plays the perfect strategy. Thus if we play without
cheat detection then Alice will always win in a single move because she always
starts.

Finally, we interpret the Cheat operation by halting the game and reporting
the cheater, e.g.

open handler cheatReport (m) {
case Cheat (( Alice ,n),k) → error(" Cheater Alice took " ^^

intToString (n) ^^ " sticks ")
case Cheat ((Bob ,n),k) → error(" Cheater Bob took " ^^

intToString (n) ^^ " sticks ")
case Return (x) → x

}

Here, we pattern match on the player to determine who cheated. The error

function halts the game and reports the cheater along with the number of sticks
the cheater took. Now, we can put everything together and try a few examples:

fun checkedGame (m) {
force( aliceCheats ( cheatReport ( checkGame (m))))

}
links > play( checkedGame , 36);
∗∗∗ Fatal error : Cheater Alice took 36 sticks

links > play( checkedGame , 3);
Alice () : Player

Alice still wins when 0 < n ≤ 3 because in this particular game configuration it
is a legal move to take all sticks. Moreover, observe that the order in which
we compose handlers matters in this example because checkGame is itself an
abstract computation, therefore if we swap aliceCheats and checkGame the
cheat detection mechanism never gets invoked. Accordingly, Alice would always
win because she cheats.
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Like in the previous Nim game examples we changed the strategic behaviour of
the players without changing the game model (aliceTurn and bobTurn), however,
in addition we also extended the game mechanics without changing the game
model.

3.3.4 Simulating state

We can use handlers to simulate stateful computations, and thereby enabling us
to abstract over how state is interpreted. To handle state we need two operations:

• Get : ()→ s that reads the current state.

• Put : s→ () that updates the state.

We will use the following simple stateful computation to illustrate stateful inter-
pretations:

fun scomp () {
var s = do Get (); do Put(s + 2);
var s = do Get (); do Put(s + s);
do Get ()

}

First, the computation reads the current integer state, then the state is incre-
mented by 2. The new state is then read and doubled before returning the final
state. Example 3.13 gives a direct interpretation of state.

Example 3.13 (State handler [7]). Since Links does not have mutable variables
we have to find another way to implement state. A pure functional approach is to
pass the state around as an explicit parameter. Basically, we adopt this approach
to implement state, however, we will introduce an extra layer of indirection to
pass the state around. We will abstract over state by encapsulating it inside
a function. The function will take a concrete state s as input parameter. For
the Get-, Put- and Return-cases the handler returns a new state-encapsulating
function. The state handler is defined as follows

open handler state(m) {
case Get(_,k) → fun(s) { k(s)(s) }
case Put(p,k) → fun(s) { k(())(p) }
case Return (x) → fun(s) { x }

}

The state handler is partially lazy as when either Get and Put are discharged
the handler returns a single parameter function. Therefore the handler basically
suspends the handled computation first time an operation is discharged.
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At first glance the state handler may seem dubious. Essentially, the handler
builds a chain of functions which passes the state around. Let us break it down:
The state function returned by the Get-case invokes the continuation with the
current state which is substituted at the invocation site of Get. The continuation
returns the next state function to which the same state is passed. The Put-case
invokes the continuation with unit and passes the modified state p as input to the
next state function. When a stateful computation finishes the Return-case lifts
the result into a function, that ignores its argument. In addition, the function
ends the chain of functions as it does not invoke another function. The type of
the state handler is

(() {Get:()→s,Put:s→() | ρ}−−−−−−−−−−−−−−−→ a)→ () {Get:θ1,Put:θ2 | ρ}−−−−−−−−−−−→ s→ a

where s→ a is the type of a state function. The type variable s is the type of the
initial state. In order to execute a stateful computation it is convenient to have
a driver function runState which abstracts away these details, e.g.

fun runState (s0 , m) {
force(state(m))(s0)

}

Applying runState to some initial state s0 and scomp we obtain:
links > runState (0, scomp);
2 : Int
links > runState (-2, scomp);
-2 : Int
links > runState (3, scomp);
8 : Int

The state handler in Example 3.13 returns the most recent state. Incident-
ally, taking advantage of the composition, we can give a different interpretation
which track state changes as Example 3.14 demonstrates.

Example 3.14 (Stateful logging [7]). We extend the state handler with a logging
capability, however, we will not add this capability directly to the handler. In-
stead we are going to use composition to construct a stateful handler which keeps
track of state changes. The idea is to introduce a new operation LogPut : s→ ()
which logs some state of type s. Further, we introduce two new handlers:

• putLogger : (() {LogPut:s→(),Put:s→() | ρ1}−−−−−−−−−−−−−−−−−−→ s)→ () {LogPut:s→(),Put:s→() | ρ1}−−−−−−−−−−−−−−−−−−→ s

• logState : (() {LogPut:s→() | ρ2}−−−−−−−−−−−−→ s)→ () {LogPut:θ | ρ2}−−−−−−−−−→ (s, [s])
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The putLogger handler handles a Put operation, however, it also discharges a
Put-operation itself along with a LogPut-operation as signified by their presence
in the output effect signature. We implement putLogger as follows

open handler putLogger (m) {
case Put(p,k) → { do LogPut (p); do Put(p); k(()) }
case Return (x) → x

}

In the Put-case the handler first discharges LogPut to log the state change, and
then it performs the actual state change by discharging Put. In some sense
putLogger acts as a “middleman” because it relies wholly on other handlers to
interpret LogPut and Put.

The logState handler builds the log, e.g.
open handler logState (m) {

case LogPut (x,k) → {
var s = k(());
var xs = second (s);
(first(p), (x :: xs))

}
case Return (x) → (x, [])

}

The handler returns the final state along with a list of previous state changes. In
the LogPut-case the handler first invokes the continuation in order to advance the
stateful computation. The continuation returns a pair which contains the final
state along with a list of changes. The handler preserves the first component, but
it extends the second component with the previous state x. In order to handle
Get and Put we compose the above handlers with the state handler. Finally, we
can reinterpret the computation scomp:

links > runState (0, scomp);
(2, [1, 2]) : (Int , [Int ])
links > runState (-2, scomp);
(-2, [-1, -2]) : (Int , [Int ])
links > runState (3, scomp);
(8, [4, 8]) : (Int , [Int ])

3.3.5 A handler based parsing framework

The state handler enable us to implement abstract, stateful handlers that employ
the state operations. In this section we will demonstrate how to implement a
simple, but highly modular, backtracking parser as a handler that interprets
parser combinators. The result is a small parser library in Links.
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To demonstrate the library we will implement a parser for the simple language
Palindromes def= {w ∈ {a,b}∗ |w is a palindrome}. The language Palindromes
is generated by the following grammar

P ::= a | b | aPa | bPb | ε (3.1)

The grammar is simple, yet it contains choice, concatenation, recursion and the
empty string (ε) which are sufficient to make an interesting example.

Parser combinators

The principal idea behind parser combinators is to compose parsers from smaller,
simpler parsers. In our library parsers are abstract computations composed using
the following three operations:

• Choose : ()→ Bool that makes a nondeterministic choice.

• Token : ()→ Char that consumes a character from the input stream.

• Fail : ()→ () that signals failure.

The parsers are implemented as functions whose types are () E−→ (), where E is
an open effect row that contains either all, some or none of the above operations.
In other words, a parser is a nullary function which may cause several effects,
and returns unit. From its signature it is not clear, that a parser does anything
sensible. In fact, the purpose of parsers is to capture the structure of a grammar;
concerns regarding the parsing state are left to a handler.

The two simplest parsers are empty and char which accepts the empty string
and one particular character, respectively. Their definitions are given below:

Empty string parser Single character parser

fun empty () {
()

}

fun char(c) {
fun () {

var t = do Token ();
if (t == c) { () }
else { do Fail () }

}}

The parser empty does nothing, it simply returns unit. The function char

is not really a parser, but rather a parser generator. It takes a character c as
input, and generates a parser that checks whether c is the next character in the
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input stream. If c is the next character, then the parser returns unit otherwise
it signals failure.

We require two more basic parser generators: Choice and sequence. The
choice generator takes two parsers as input, and makes a nondeterministic choice
between the two. The sequence generator takes two parsers, and applies them
in sequence. For syntactic conveniency, we define them as binary operators in
Links:

Choice parser Sequence parser
op p <|> q {

fun () {
if (do Choose ())

{ p() }
else { q() }

}
}

op p <∗> q {
fun () {

p(); q()
}

}

Choice (<|>) generates a parser which discharges Choose to decide whether
to apply parser p or q. Sequence (<*>) generates a parser which applies parsers
p and q in sequence.

Later, Example 3.15 demonstrates how to compose these four parsers to con-
struct a parser for Palindromes.

Interpreting parsers

The previous section gave the building blocks for constructing parsers. In this
section we will implement an abstract, stateful handler which interprets parsers.
The handler has to handle the three operations Choose, Token and Fail. Further-
more, it will use the state operations Get and Put to manipulate the parsing state.
The parsing state is a pair PState def= ([Char], [Char]) where the first component
contains parsed symbols, and the second component contains the remainder of
the input stream. Furthermore, if the input string is not in the language then
the handler should produce an error, otherwise it should return the parsed string.
Thus, the handler has the rather involved type

(() {Choose:()→Bool,Fail:a1→a2,Get:()→PState,Put:PState→(),Token:()→Char | ρ}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ b)

→ () {Choose:θ1,Fail:θ2,Get:()→PState,Put:PState→(),Token:θ3 | ρ}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Maybe([Char])

This type witnesses a cosmetic issue with the implementation, because effects are
not explicitly named the effect signature easily blows up and therefore becomes
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difficult to read. The handler is more involved than the previous handlers we
implemented. Therefore, we implement it one case at a time. We name the
handler parserh. The easiest case is Fail which, regardless of the state, returns
Nothing. We will not show it here, instead we begin with the case for Token:

case Token(_,k) → {
var s = do Get ();
var stream = second (s);
switch ( stream ) {

case [] → Nothing
case (x :: xs) → { do Put ((x :: first(s), xs)); k(x) }

} }

First the handler retrieves the current parsing state, and then pattern matches
on the current state of the input stream. In the event that the input stream is
empty the handler returns Nothing. Otherwise, it consumes the next character
x and conses it onto the list of parsed symbols. Thereafter the continuation is
invoked to return the character x to the token-parser that discharged Token. If
the subsequent parsing is successful, then k returns Just the result, otherwise it
returns Nothing. The case for Choose follows a similar pattern:

case Choose (_,k) → {
var s = do Get ();
switch (k(true)) {

case Nothing → { do Put(s); k(false) }
case Just(x) → Just(x)

} }

Again the handler retrieves the current parsing state s. Thereafter we pattern
match on the result of choosing the true-branch. If it leads to failure, then we
restore the previous state s by discharging a Put-operation, and then subsequently
try the false-branch. Further, k returns either Just the result or Nothing. If the
choice led to success, then we simply return the identity. Finally, we implement
the Return-case which is somewhat similar to the Token-case, e.g.

case Return (x) → {
var s = do Get ();
var stream = second (s);
switch ( stream ) {

case [] → Just( reverse (first(s)))
case other → Nothing

} }

Here, we pattern match on the input stream to determine whether all input has
been consumed. If the stream is empty, then we return Just the reversed list of
parsed symbols, otherwise we return Nothing. As a final function we implement
a convenient driver function parse to abstract away the details of running the
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parserh handler. The parse function takes a parser p and a string source as
input parameters:

fun parse(p, source ) {
var s = ([], explode ( source ));
switch ( runState ( parserh (p), s)) {

case Just(r) → Just( implode (r))
case Nothing → Nothing

} }

The function builds the initial state s, where the first component is the empty
list, and the second component contains the input string as a list of characters.
The switch-expression runs the parser with the initial state, and pattern matches
on the result. If the parser was successful, then the list of characters is converted
back into a string, otherwise it returns the identity.

Parsing palindromes

The previous two sections provided the basic building blocks for parsing. Now,
we are ready to put them into action. Example 3.15 demonstrates how to parse
the Palindromes language.

Example 3.15 (Palindromes parser). We implement a parser for the grammar
(3.1) using parser combinators. The structure of the resulting parser will closely
resemble the structure of the grammar e.g.

fun p() {
var a = char(’a’); var b = char(’b’);
var apa = a <∗> p <∗> a;
var bpb = b <∗> p <∗> b;
var p = apa <|> bpb <|> a <|> b <|> empty;
p()

}

The function p is a parser as its type is () E−→ (). The first line in p constructs
two parsers a and b which parses a single character each. Next, the parser apa
parses a palindrome which starts with an ’a’. Similarly, bpb parses a palindrome
starting with a ’b’. Finally, the parsers are combined to form a parser for the
Palindromes grammar (3.1). Notably, the definition of the resulting parser p
corresponds closely to the definition of the nonterminal P in grammar (3.1). Note
that the parsers in p are combined in a carefully chosen order to cope with the
ambiguity of the grammar. Running the parser on a few examples we obtain:

links > parse(p, "abba");
Just("abba") : Maybe( String )
links > parse(p, " bbbbaabaabbbb ");
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Just(" bbbbaabaabbbb ") : Maybe( String )
links > parse(p, "");
Just("") : Maybe( String ) # The empty palindrome
links > parse(p, " aaabbbaa ");
Nothing () : Maybe( String )

The entire implementation is less than 90 lines. Yet, the library is quite gen-
eral. Shifting all parsing state maintenance to a handler greatly simplifies parser
combinators. The combinators do not have to be concerned about the parsing
state, and as a consequence they can focus entirely on recognising structure. On
the other hand the parser handler is not concerned with the syntactic structure
of the language, it only has to focus on maintaining the parsing state. Further-
more, the parser handler has no concerns about the interpretation of state as the
a separate handler is responsible for interpreting state. Accordingly, we obtain a
clear separation of concerns between individual components which communicates
through fine-grained abstract interfaces.





Chapter 4

Implementation

The Links compiler is a multi-pass compiler with several distinct stages. Coarsely,
we can divide the compiler into two major components the front-end and back-
end. We can further subdivide the front-end into

• Parser: Transforms the input source into a syntax tree.

• Early desugar: Performs source-to-source transformations before source
analysis.

• Type checker: Analyses the source, performs type inference, and ensures
terms are well-typed.

The compiler has more front-end components, but these are the most relevant for
our implementation. Similarly, the back-end can be further subdivided

• IR Compiler: Transforms the source into an intermediate representation
used by the interpreter.

• Pattern-matching compiler: Aids the IR compiler by compiling pattern-
matching constructs into the intermediate representation.

Figure 4.1 provides a high level picture of how control flow through the different
relevant stages. The subsequent sections discuss implementation specific details.

4.1 Early desugaring of handlers

The handler and open handler constructs are syntactic sugar. They get de-
sugared into a legacy construct from an early implementation. The initial imple-
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Early desugar
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Figure 4.1: Links compiler phases overview.

mentation used a handle-construct for handlers. Figure 4.2 displays the concep-
tual transformation of handler to handle. This desugaring takes place right after
the parsing phase. The early desugaring is beneficial because it allows us to take
full advantage of the earlier implementation, whilst providing a more convenient
syntax for handlers.

handler (m) {
case Opi(pi,ki) → bi

case Return (x) → b
}

⇒

fun(m) {
handle (m) {

case Opi(pi,ki) → bi

case Return (x) → b
}

}

Figure 4.2: The handler-construct gets desugared into a handle-construct where
the computation m is abstracted over using a function.

The open handler-constructs get desugared in a similar fashion, but, with
a small twist: The handle-construct gets wrapped inside a thunk. The extra
layer of indirection entailed by this transformation is the key to make handlers
composable. The crucial insight is that by transforming every open handler
into a thunk compositionality follows for free. Figure 4.3 shows the conceptual
transformation for open handler-constructs.
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open handler (m) {
case Opi(pi,ki) → bi

case Return (x) → b
}

⇒

fun(m) {
fun () {

handle (m) {
case Opi(pi,ki) → bi

case Return (x) → b
} } }

Figure 4.3: The open handler-construct gets desugared into a thunked handle-
construct.

4.2 Type checking

The type checker implements the following typing rule for open handlers [7]:

Ein
def= {Opi : Ai→Bi}i]ρ

Eout
def= Eforward]ρ

H
def= {Return(x) 7→M}]{Opi(p,k) 7→Ni}i

(Γ,p : Ai,k : UEout(Bi→ C) `Eout Ni : C)i
Γ,m : A `Eout M : C

Γ `H : A Ein Eout⇒ C
(4.1)

The rule says, that if a computation m of type A performs effects Ein, and the
type signatures of the operations handled by the handler H agree with Ein, and
the return clause has type C, then H handles an effectful computation m with
effects Ein, and may itself cause effects Eout and returns a computation of type
M . The typing rule for closed handlers is similar, however, it leaves out the row
variable ρ.

4.2.1 Implementation details

The type checker for handlers take advantage of the existing infrastructure for the
switch-construct which also embodies a collection of case-expressions. Figure
4.4 displays the two constructs side-by-side.

In order to determine which operations a handler handles the type checker in-
vokes the type checking procedure for case-expressions. This procedure returns
a list of the patterns being matched. In the concrete case for handlers the proced-
ure infers that the case-expressions pattern match on a variant type. The tags
in the variant are precisely the names of the operations that the handler handles.
This also reveals why operations resemble type and data constructors so closely.
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Internally, a variant is represented by a row. So, the handler type checker
extracts the row from the inferred variant type, thereafter it applies the typing
rule (4.1) to turn obtain the desired effect row.

4.3 Pattern-matching compilation

Syntactically, the handler-construct and switch-construct are similar. Figure
4.4 depicts their similarities. Notably, their semantics differ as switch allows

handler (m) {
case Opi(pi,ki) → bi

case Return (x) → b
}

switch (e) {
case Patternj → bj

case other → b′

}

Figure 4.4: The handler-construct resembles the switch-construct syntactically.

arbitrary pattern matching on an expression x and handler only allows pattern
matching on possible operation names in some computation m. Furthermore,
switch has a default case other which is not allowed in handler. Their syntactic
similarities give rise to a similar internal representation as well. Although, the
internal representation of handler contains extra attributes such as whether the
handler is open or closed. The resemblance has certain benefits:

• Syntactical commonalities makes handlers feel like a natural integrated part
in Links,

• and we can reuse the switch pattern-matching compilation infrastructure
for handler.

The switch pattern-matching compiler supports deep pattern-matching which we
want for matching on actual operation parameters, but only a handful of patterns
are permitted for matching on continuation parameters. Figure 4.5 shows the
legal pattern-matching on a continuation parameter. Moreover, the Return-case
must only take one parameter. These small subtleties prevent us from using the
switch pattern-matching compiler directly.
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handler (m) {
case Opi1 (_,k) → bi1 # Name binding
case Opi2 (_,k as c) → bi2 # Aliasing
case Opi3 (_,_) → bi3 # Wildcarding
case Return (x) → bi4

}

Figure 4.5: Permissible patterns for matching on the continuation parameter.

Instead we embed the switch pattern-matching compiler along with a pre-
liminary pattern-matching analyser in the handler pattern-matching compiler.
The pattern-matching analyser checks that the patterns are legal, i.e.

• An operation-case has at least two parameters, where the last parameter is
supposed to be the continuation.

• Pattern-matching on a continuation parameter is either name binding, ali-
asing or wildcarding.

• Return-case(s) only take one parameter.

If the pattern-matching analysis is successful then the switch pattern match-
ing compiler is invoked to generate the code. Otherwise, a compilation error,
complaining about illegal patterns, is emitted.

4.4 Interpreter

The Links compiler uses A-Normal Form (ANF) as an intermediate represent-
ation. In particular, the Links interpreter directly interprets ANF code. ANF
is a relatively simple direct-style language which partitions expressions into two
classes: atomic expressions and complex expressions. An expression is considered
atomic if it is pure, i.e. it causes no effects and it terminates [5]. On the other
hand, every complex expression must be assigned a fresh name. For example
the Links expression g(f(h(x))) gets translated into the Links-ANF computa-
tion ({let y = h(x), let z = f(y)}, g(z)) where the first component is a
list of let-bound intermediate computations, and the second component is a tail
computation. Incidentally, it is straightforward to implement first-class control
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in the source language as the current continuation can be built from the Links-
ANF computation. Moreover, the simplicity of ANF makes it amendable as an
interpreted language.

The Links interpreter is written in continuation-passing style (CPS) which
threads the current continuation directly through the program. Originally, the
continuation was implemented as a stack of continuation frames which capture
computations along with their contexts. Formally, a continuation frame is quad-
ruple F def= (S,B,E ,C) where

• C is a computation.

• E is an environment that binds names in C.

• B is a binder for the computation.

• S denotes the scope of the computation.

For example the expression above gets encoded as the following continuation
frame

(scope(y),y, localise(y),({let z = f(y)}, g(z)))

where scope and localise are two functions, that return the scope of a binder and
localises the binder in the current environment, respectively.

This particular notion of continuation is problematic for handlers because we
need delimited control for continuations assigned by handlers. Therefore it is
necessary to generalise the notion of continuation in the Links interpreter. For-
tunately, the generalisation is conceptual simple: Lift the continuation into a
stack, i.e. let it become a stack of stacks of continuation frames. In other words
the generalised continuation embeds the previous continuation layout. Figure
4.6 illustrates the embedding. This scheme effectively turns every stack of con-
tinuation frames into a delimited continuation, i.e. a continuation that returns
control to the caller.
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Fn Fn−1 Fn−2 · · ·

Fn1 Fn1−1 Fn1−2 · · · · · · · · · · · ·

Generalised continuation layout

Original continuation layout

Figure 4.6: The generalised continuation embeds the previous continuation lay-
out.

The generalised continuation is built in parallel with a stack of handlers.
Whenever the interpreter encounters a handler, it pushes the handler onto the
handlers’ stack and allocates a new delimited continuation which is pushed onto
the stack inside the generalised continuation. The top-most delimited continu-
ation grows as the evaluation progresses. Conversely, when the top-most delim-
ited continuation is depleted the proper Return-case of the top-most handler is
invoked. Additionally, both elements are popped from their respective stacks.
The evaluation terminates when the entire generalised continuation has been
consumed.

Operation invocation follows a rather simple scheme: Upon encountering an
operation the interpreter pops and invokes the top-most handler, if the handler
does not handle the operation, then the second top-most handler is popped and
invoked and so forth. If no matching case is found then an “unhandled operation”
error is emitted. The interpreter maintains the popped handlers in a separate
temporary stack along with their corresponding delimited continuations. The
temporary stack is a “slice” of the program state which merged back into the
program state when continuation is invoked. This ensures that the Return-cases
are invoked in the proper order when the handled computation finishes.





Chapter 5

Evaluation

Section 5.1 briefly summarises and evaluates handlers for algebraic effects using
row polymorphism as an effectful programming model with respect to modularity
and compositionality, and Section 5.2 evaluates to which extent handlers and user-
defined effects coalesce with the Links language. Section 5.3 evaluates the relative
performance cost incurred by handlers.

5.1 Handlers with row polymorphic effects

Through a series of examples in Chapter 3 we demonstrated that handlers for
algebraic effects indeed afford a high-degree of modularity, and, that the compos-
itionality of open handlers enables us to extend the interpretation of an abstract
computation effortlessly. In particular, row polymorphism makes programming
with effects an uniform experience as it effectively eliminates the ordering issue
we discussed in Section 1.1.3.

In our experience, we have found that handler code tend to be concise. This
probably stems from the fact that handlers simply map operation names to com-
putations. Hence, in its essence, a handler boils down to a command dispatcher.

Handlers also raise the level of abstraction substantially. Accordingly, it can be
difficult for the programmer to trace a computation. This is especially true when
one has a stack of open handlers. The interaction between handlers can be difficult
to grasp which can make it hard to debug handler-based programs. Even though
a particular composition of handlers type checks, it is by no means a guarantee
that the resulting handler has the desired semantics. Row polymorphism along
with the way open handlers compose in our implementation makes it easy to get
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the composition wrong. Handlers also require the programmer to be confident
with continuations as they are key to programming with handlers.

5.2 Handlers and user-defined effects in Links

Syntax-wise handlers appear as a well-integrated part of Links because they bor-
row their syntax from the switch-construct. Furthermore, handlers are first-class
citizens in Links, i.e. a handler can be passed as argument to a function, returned
from a function or assigned a name. The first-class property is inherited from
functions, because, essentially handlers desugar into functions. As a result the
Links language remains coherent.

User-defined effects exploit Links’ structural typing, therefore the programmer
never has to declare effects or operations in advance. The Links compiler auto-
matically infers the type of operations. This fits well with a read-eval-print-loop
style of development as employed by the Links top-level interpreter. Unfortu-
nately, it may cause effect signatures to blow up. For example, if a computation
is composed from many different operations, or a (closed) handler is recursive.
In such cases the Links interpreter infers some verbose operation signatures. The
issue can be solved to some extent by annotating operation cases and invocations
with types. Currently, effects are implicitly given by the present operations in
the effect row, it would be desirable to have effect-name aliasing, for example
something like

effectname State(s) = {Get : ()→ s,Put : s→ ()}

This would help condense verbose effect signatures. The current design of oper-
ations does not integrate as well with the language as handlers. This is mainly
due to two things:

1. Operations use type and data constructor syntax, but acts like a function,

2. and operations have to be explicitly discharged using the do-primitive.

Neither type constructors nor operations are first-class in Links, but one might
expect to able to pass an operation as parameter or return one. If one tries to
do this, then the type checker will infer a variant type, rather than an operation,
which can steer confusion.



5.3. Relative performance 59

Finally, the do-primitive is rather strange in Links, because it is a syntactic
construct that does not compose with the rest of the language. A do must be
immediately followed by an operation name. Moreover, it appears as a prefix
operator, but “do” is not a legal operator name in Links.

5.3 Relative performance

Since Links is an interpreted language it does not make sense to measure the
raw execution speed of handled computations as the overhead incurred by the
interpreter is likely to be dominant. Instead, we will measure the relative cost
incurred by using handlers.

5.3.1 Benchmarks setup

The experiments were conducted on a standard Informatics DICE Machine1. The
following three different micro benchmarks were used:

• Stateful counting: Counting down from 107 to 0 using a closed state handler.

• Stateful counting with logging: Counting down from 107 to 0 using the
state logging handler from Example 3.14.

• Nim game tree generation: Generation of game tree with starting configur-
ation n= 20 using the handler from Example 3.10.

Each handler program has two pure counterparts. For the stateful counting
benchmarks the first pure version is a direct, tail-recursive implementation which
passes the current state as an explicit parameter between invocation. The second
pure implementation encapsulates state inside a function in similar fashion to the
state handler.

The first pure game tree generator program is a hard-coded, direct imple-
mentation for the specific restricted version of Nim we used in Section 3.2.5. The
second pure version is more general, and will generate the game tree under any
rules. Thus it resembles the handler version. The generality is achieved through
use of higher-order functions such as map, zip, etc.

1Machine name: Enna. Specifications: Intel Core i5-4570 3.20 Ghz, 8 GB Ram, Scientific
Linux 6.6 (Carbon) running Linux kernel 2.6.32-504.16.2.el6.x86_64
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The benchmark programs were not optimised. Each benchmark was sampled
ten times. The built-in performance-measuring mechanism in the Links inter-
preter has been used to measure the execution time. The execution time only
includes the run time of the program, that is it does not include loading up the
Links interpreter or program compilation.

5.3.2 Results

Table 5.1 displays the results obtained from the first stateful counting benchmark.
The direct, tail-recursive implementation is twice as fast as the alternative im-
plementations. The reason for this is that a state change does not incur an extra
cost, because it is passed as an explicit parameter between invocations. How-
ever, the handler implementation and the second pure implementation both use
functions to encapsulate state, therefore each state change causes a new function
allocation. The results would suggest that there is a high penalty for repetitive
allocation of functions.

Time (ms) Relative speed
Pure I, tail-recursive 9629.14 1.0
Pure II, function state 20364.6 0.47
Closed handler 14406.11 0.5

Table 5.1: Results obtained from the stateful counting benchmark.

The same seems to be evident for the second stateful counting benchmark.
The results are shown in Table 5.2. The tail-recursive pure implementation is sig-
nificantly faster than the two alternative implementations. It is roughly 3.5 times
faster than the pure implementation that encapsulates state inside functions, and
further it is about 8 times faster than the handler version. However, this time
there is a big difference between the the second pure implementation and the
handler implementation. The pure version is little less than twice as fast as the
handler version. The additional cost is incurred by the handler design. Each
change in state causes two additional operations to be discharged. In addition
the handler stack is unwound three times. In particular, three different delimited
continuations are invoked during one state change. When a continuation returns
control to a handler, it implicitly passes through the return-cases of that partic-
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ular handler’s predecessors (in order to lift the result of the computation). So,
the open handler stack incurs a large extra cost.

Time (ms) Relative speed
Pure I, tail-recursive 19097.1 1.0
Pure II, function state 68615.1 0.28
Open handler (stack size: 4) 161458.15 0.12

Table 5.2: Results obtained from the stateful counting with logging benchmark.

Finally, in the Nim game tree generator benchmark the hard-coded pure ver-
sion is superior in terms of execution speed. The handler implementation and gen-
eric pure implementation perform, respectively, at 6% and 7% of the hard-coded
version. The results are shown in table 5.3. The generic pure implementation is
about 14% faster than the handler implementation.

Time (ms) Relative speed
Pure I, hard-coded 814.98 1.0
Pure II, generic 12441.01 0.07
Closed handler 14406.11 0.06

Table 5.3: Results obtained from the Nim game tree generation benchmark.

These results suggest that there is plenty of room for optimisations. Kammar
et al. achieve better relative performance results than us with their embedding
of handlers in Haskell [7]. However their handlers desugar into monads which the
Haskell compiler extensively optimises. Thus, it is likely that with optimisations
with could achieve far better performance figures.





Chapter 6

Conclusion and future work

In Section 1.2 we asked whether we could achieve an effectful programming model
in which compositionality and modularity coexist. We proposed to use Plotkin
and Pretnar’s handlers for algebraic effects [18] with the addition of row poly-
morphism as a basis for effectful programming.

In order to be able to examine the programming model, we implemented it in
Links, taking advantage of Links’ row-based effect system. As a result Links now
has first-class handlers and user-defined effects. Through a series of examples
in Chapter 3 we demonstrated that the programming model indeed affords a
high-degree of modularity. Furthermore, due to our design of computations as
thunks and row polymorphism we were able to achieve compositionality for open
handlers under the strict evaluation strategy employed by Links. Composable
handlers give additional flexibility as individual, specialised program parts can
be developed independently of each other.

We find that row polymorphism eliminates the effect ordering issue altogether.
Consequently, it is easy to write reusable effectful code. Incidentally, one amusing
activity is to discover new, initially unintended, applications of existing code.

Performance-wise our handlers are terrible. This is mainly due to the code
being interpreted unoptimised. Better code generation and optimisations must
be employed to make programming with handlers practical for general purpose
programming.
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6.1 Future work

Closed and open handlers provide a fine basis, however there are several interest-
ing generalisation to consider such as parameterisable and shallow handlers.

In our implementation handlers only take one argument: the input compu-
tation. Parameterisable handlers would help reduce the amount of boilerplate
code, and even further increase modularity.

Our handlers handle computations uniformly, i.e. the continuation of an oper-
ation is handled by the current handler. However, one can also imagine handlers
that handle computations nonuniformly such handlers are called shallow handlers.
In a shallow handler the continuation of an operation is an abstract computation
that must be explicitly handled.

Notably, most of the infrastructure to support parameterisable and shallow
handlers are already in place in Links, however, the typing rule and interpreter
need to be updated. In addition, it would be worthwhile to investigate how to
make handlers efficient.

We only enabled handlers in the toplevel (server-side). It would be interesting
to enable handlers on the client side as well. Links compiles client side code to
JavaScript, so one could possibly translate the CPS encoding of handlers into an
equivalent CPS encoding in JavaScript.

Our closed handlers implicitly allow the wild to occur, however, we also have
pure closed handlers that disallow wild. Pure handlers only provide structural
recursion which is guaranteed to terminate, therefore handler evaluation could be
added to the Links query normalisation procedure1.

The Links interpreter has yet to be formalised. A formalisation could possibly
help improve the implementation and gives additional insight to the behaviour of
handlers in a strict language.

1Credit for this observation is due to Sam Lindley.
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