
Foundations for Programming and
Implementing Effect Handlers

Daniel Hillerström
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

The University of Edinburgh

2021

Abstract
First-class control operators provide programmers with an expressive and efficient

means for manipulating control through reification of the current control state as a first-

class object, enabling programmers to implement their own computational effects and

control idioms as shareable libraries. Effect handlers provide a particularly structured

approach to programming with first-class control by naming control reifying operations

and separating from their handling.

This thesis is composed of three strands of work in which I develop operational

foundations for programming and implementing effect handlers as well as exploring

the expressive power of effect handlers.

The first strand develops a fine-grain call-by-value core calculus of a statically

typed programming language with a structural notion of effect types, as opposed to the

nominal notion of effect types that dominates the literature. With the structural approach,

effects need not be declared before use. The usual safety properties of statically typed

programming are retained by making crucial use of row polymorphism to build and

track effect signatures. The calculus features three forms of handlers: deep, shallow,

and parameterised. They each offer a different approach to manipulate the control state

of programs. Traditional deep handlers are defined by folds over computation trees,

and are the original con-struct proposed by Plotkin and Pretnar. Shallow handlers are

defined by case splits (rather than folds) over computation trees. Parameterised handlers

are deep handlers extended with a state value that is threaded through the folds over

computation trees. To demonstrate the usefulness of effects and handlers as a practical

programming abstraction I implement the essence of a small UNIX-style operating

system complete with multi-user environment, time-sharing, and file I/O.

The second strand studies continuation passing style (CPS) and abstract machine

semantics, which are foundational techniques that admit a unified basis for implement-

ing deep, shallow, and parameterised effect handlers in the same environment. The

CPS translation is obtained through a series of refinements of a basic first-order CPS

translation for a fine-grain call-by-value language into an untyped language. Each re-

finement moves toward a more intensional representation of continuations eventually

arriving at the notion of generalised continuation, which admit simultaneous support for

deep, shallow, and parameterised handlers. The initial refinement adds support for deep

handlers by representing stacks of continuations and handlers as a curried sequence of

arguments. The image of the resulting translation is not properly tail-recursive, mean-

iii

ing some function application terms do not appear in tail position. To rectify this the

CPS translation is refined once more to obtain an uncurried representation of stacks

of continuations and handlers. Finally, the translation is made higher-order in order to

contract administrative redexes at translation time. The generalised continuation repres-

entation is used to construct an abstract machine that provide simultaneous support for

deep, shallow, and parameterised effect handlers. kinds of effect handlers.

The third strand explores the expressiveness of effect handlers. First, I show that

deep, shallow, and parameterised notions of handlers are interdefinable by way of typed

macro-expressiveness, which provides a syntactic notion of expressiveness that affirms

the existence of encodings between handlers, but it provides no information about the

computational content of the encodings. Second, using the semantic notion of express-

iveness I show that for a class of programs a programming language with first-class

control (e.g. effect handlers) admits asymptotically faster implementations than pos-

sible in a language without first-class control.

iv

Lay summary
Computer programs interact with the real world, e.g. to send and retrieve e-mails, stream

videos, transferal of data from or onto some pluggable data storage medium, and so forth.

This interaction is governed by the operating system, which is responsible for running

programs and providing them with the vocabulary to interact with the world. Programs

use words from this vocabulary with a preconceived idea of their meaning, however,

importantly, words are just mere syntax. The semantics of each word is determined by

the operating system (typically such that it aligns with the intent of the program).

This separation of syntax and semantics makes it possible for programs and operat-

ing systems to evolve independently, because any program can be run by any operating

system whose vocabulary conforms to the expectations of the program. It has proven

to be a remarkably successful model for building and maintaining computer programs.

Conventionally, an operating system has been a complex and monolithic single

global entity in a computer system. However, effect handlers are a novel programming

abstraction, which enables programs to be decomposed into syntax and semantics in-

ternally, by localising the notion of operating systems. In essence, an effect handler is

a tiny programmable operating system, that a program may use internally to determine

the meaning of its subprograms. The key property of effect handlers is that they com-

pose seamlessly, and as a result the semantics of a program can be compartmentalised

into several fine-grained and comprehensible components. The ability to seamlessly

swap out one component for another component provides a promising basis for modular

construction and reconfiguration of computer programs.

In this dissertation I develop the foundations for programming with effect handlers.

Specifically, I present a practical design for programming with effect handlers as well as

applications, I develop two universal implementation strategies for effect handlers, and

I give a precise mathematical characterisation of the inherent computational efficiency

of effect handlers.

v

Acknowledgements
Firstly, I want to thank Sam Lindley for his guidance, advice, and encouragement

throughout my studies. He has been an enthusiastic supervisor, and he has always

been generous with his time. I am fortunate to have been supervised by him. Secondly,

I want to extend my gratitude to John Longley, who has been an excellent second su-

pervisor and has always shown enthusiasm about my work. Thirdly, I want to thank my

academic brother Simon Fowler, who has always been a good and inspirational friend.

Regardless of academic triumphs and failures, we have always had fun.

I am extremely grateful to KC Sivaramakrishnan, who took a genuine interest in my

research early on and invited me to come spend some time at OCaml Labs in Cambridge.

My initial visit to Cambridge sparked the beginning of a long-standing and productive

collaboration. Also, thanks to Gemma Gordon, who I have had the pleasure of sharing

an office with during one of my stints at OCaml Labs.

I have been fortunate to work with Robert Atkey, who has been a continuous

source of inspiration and interesting research ideas. Our work is clearly reflected in

this dissertation. I also want to thank to my other collaborators: Andreas Rossberg, Anil

Madhavapeddy, Leo White, Stephen Dolan, and Jeremy Yallop.

I have had the pleasure of working in LFCS at the same time as James McKinna.

James has always taken a genuine interest in my work and challenged me with in-

tellectually stimulating questions. I appreciate our many conversations even though I

spent days, weeks, sometimes months, and in some instances years to come up with

adequate answers. I also want to extend my thanks to other former and present members

of Informatics: Brian Campbell, Christophe Dubach, James Cheney, J. Garrett Morris,

Gordon Plotkin, Mary Cryan, Murray Cole, Michel Steuwer, and Philip Wadler.

My time as a student in Informatics Forum has been enjoyable in large part thanks

to my friends: Amna Shahab, Chris Vasiladiotis, Craig McLaughlin, Danel Ahman,

Daniel Mills, Frank Emrich, Emanuel Martinov, Floyd Chitalu, Jack Williams, Jakub

Zalewski, Larisa Stoltzfus, Maria Gorinova, Marcin Szymczak, Paul Piho, Philip Gins-

bach, Radu Ciobanu, Rajkarn Singh, Rosinda Fuentes Pineda, Rudi Horn, Shayan Najd,

Stan Manilov, and Vanya Yaneva-Cormack.

Thanks to Ohad Kammar and Stephen Gilmore for agreeing to serve as the internal

examiners for my dissertation. As for external examiners, I am truly humbled and

thankful for Andrew Kennedy and Edwin Brady agreeing to examine my dissertation.

Throughout my studies I have received funding from the School of Informatics

vi

https://www.ed.ac.uk/informatics

at The University of Edinburgh, as well as an EPSRC grant EP/L01503X/1 (EPSRC

Centre for Doctoral Training in Pervasive Parallelism), and by ERC Consolidator Grant

Skye (grant number 682315). I finished this dissertation whilst being employed on the

UKRI Future Leaders Fellowship “Effect Handler Oriented Programming” (reference

number MR/T043830/1).

vii

https://www.epsrc.ac.uk/
http://pervasiveparallelism.inf.ed.ac.uk

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

The following previously published work of mine features prominently within this

dissertation. Each chapter details the relevant relations to my previous work.

• Daniel Hillerström and Sam Lindley. Liberating effects with rows and handlers.

In TyDe@ICFP, pages 15–27. ACM, 2016

• Daniel Hillerström, Sam Lindley, Robert Atkey, and KC Sivaramakrishnan. Con-

tinuation passing style for effect handlers. In FSCD, volume 84 of LIPIcs, pages

18:1–18:19, 2017

• Daniel Hillerström and Sam Lindley. Shallow effect handlers. In APLAS, volume

11275 of LNCS, pages 415–435. Springer, 2018

• Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via general-

ised continuations. J. Funct. Program., 30:e5, 2020

• Daniel Hillerström, Sam Lindley, and John Longley. Effects for efficiency: Asymp-

totic speedup with first-class control. Proc. ACM Program. Lang., 4(ICFP):

100:1–100:29, 2020

(Daniel Hillerström, Edinburgh, Scotland, 2021)

viii

Bara du sätter gränserna

ix

Contents

1 Introduction 1
1.1 Why first-class control matters . 2

1.2 State of effectful programming . 3

1.3 Scope . 20

1.4 Contributions . 21

1.5 Structure of this dissertation . 22

I Programming 25

2 Composing UNIX with effect handlers 27
2.1 Basic i/o . 29

2.2 Exceptions: process termination . 31

2.3 Dynamic binding: user-specific environments 33

2.4 Nondeterminism: time sharing . 36

2.5 State: file i/o . 42

2.6 UNIX-style pipes . 56

2.7 Process synchronisation . 63

2.8 Related work . 68

3 Calculi for effect handler oriented programming 71
3.1 A language based on rows . 72

3.2 Deep handling of effects . 85

3.3 Shallow effect handling . 94

3.4 Parameterised effect handling . 95

3.5 Related work . 98

xi

II Implementation 101

4 Continuation-passing style 103
4.1 Initial target calculus . 106

4.2 Transforming fine-grain call-by-value 106

4.3 Transforming deep effect handlers 109

4.4 Transforming shallow effect handlers 124

4.5 Transforming parameterised handlers 132

4.6 Related work . 133

5 Abstract machine semantics 139
5.1 Configurations with generalised continuations 140

5.2 Generalised continuation-based machine semantics 144

5.3 Realisability and efficiency implications 151

5.4 Simulation of the context-based reduction semantics 153

5.5 Related work . 155

III Expressiveness 159

6 Interdefinability of effect handlers 161
6.1 Deep as shallow . 162

6.2 Shallow as deep . 164

6.3 Parameterised handlers as ordinary deep handlers 170

6.4 Related work . 172

7 Asymptotic speedup with effect handlers 175
7.1 Simply-typed base and handler calculi 178

7.2 A practical model of computation 183

7.3 Predicates, decision trees, and generic count 188

7.4 Pure generic count: a lower bound 198

7.5 Extensions and variations . 204

7.6 Experiments . 211

7.7 Related work . 213

xii

IV Conclusions 215

8 Conclusions and future work 217
8.1 Programming with effect handlers 217

8.2 Canonical implementation strategies for handlers 221

8.3 On the expressive power of effect handlers 224

V Appendices 227

A Continuations 229
A.1 Classifying continuations . 230

A.2 Controlling continuations . 234

A.3 Programming continuations . 265

A.4 Constraining continuations . 266

A.5 Implementing continuations . 266

B Get get is redundant 271

C Proof details for the complexity of effectful generic count 273

D Berger count 289

Bibliography 293

xiii

Chapter 1

Introduction

Plotkin and Pretnar’s effect handlers provide a promising modular basis for effectful

programming [143, 227, 228]. The basic tenet of programming with effect handlers is

that programs are written with respect to an interface of effectful operations they expect

to be offered by their environment. An effect handler is an environment that implements

an effect interface (also known as a computational effect). Programs can run under any

effect handler whose implementation conforms to the expected effect interface.

In this regard, the doing and being of effects are kept separate [137, 174], which is a

necessary condition for modular abstraction [212]. A key property of effect handlers is

that they provide modular instantiation of effect interfaces through seamless composi-

tion, meaning the programmer can compose any number of complementary handlers to

obtain a full implementation of some interface [119]. The ability to seamless compose

handlers gives rise to a new programming paradigm which we shall call effect handler

oriented programming in which the meaning of effectful programs may be decomposed

into a collection of fine-grained effect handlers.

The key enabler for seamlessly composition is first-class control, which provides

a mechanism for reifying the program control state as a first-class data object known

as a continuation [104]. Through structured manipulation of continuations control gets

transferred between programs and their handlers.

In this dissertation I present a practical design for programming languages with

support for effect handler oriented programming, I develop two foundational imple-

mentation techniques for effect handlers, and I study their inherent computational ex-

pressiveness and efficiency.

1

2 Chapter 1. Introduction

1.1 Why first-class control matters

First things first, let us settle on the meaning of the qualifier ‘first-class’. A programming

language entity (or citizen) is regarded as being first-class if it can be used on an equal

footing with other entities. A familiar example is functions as first-class values. A first-

class function may be treated like any other primitive value, i.e. passed as an argument

to other functions, returned from functions, stored in data structures, or let-bound.

First-class control makes the control state of the program available as a first-class

value known as a continuation object at any point during evaluation [104]. This object

comes equipped with at least one operation for restoring the control state. As such

the control flow of the program becomes a first-class entity that the programmer may

manipulate to implement interesting control phenomena.

From the perspective of programmers first-class control is a valuable program-

ming feature because it enables them to implement their own control idioms, such as

async/await [259], as if they were native to the programming language. More important,

with first-class control programmer-defined control idioms are local phenomena which

can be encapsulated in a library such that the rest of the program does not need to

be made aware of their existence. Conversely, without first-class control some control

idioms can only be implemented using global program restructuring techniques such

as continuation passing style.

From the perspective of compiler engineers first-class control is valuable because

it unifies several control-related constructs under one single construct. First-class con-

trol can even be beneficial for implementing programming languages which have no

notion of first-class control in source language. A runtime with support for first-class

control can considerably simplify and ease maintainability of an implementation of

a programming language with various distinct second-class control idioms such as

async/await [259], coroutines [69], etc, because compiler engineers need only imple-

ment and maintain a single control mechanism rather than having to implement and

maintain individual runtime support for each control idiom of the source language.

The idea of first-class control is old. It was conceived already during the design

of the programming language Algol [13] (one of the early high-level programming

languages along with Fortran [12] and Lisp [192]) when Landin [161] sought to model

unrestricted goto-style jumps using an extended λ-calculus. Since then a wide variety

of first-class control operators have appeared. We can coarsely categorise them into

two groups: undelimited and delimited (in Chapter A we will perform a finer analysis

1.2. State of effectful programming 3

of first-class control). Undelimited control operators are global phenomena that let pro-

grammers capture the entire control state of their programs, whereas delimited control

operators are local phenomena that provide programmers with fine-grain control over

which parts of the control state to capture. Thus there are good reasons for preferring

delimited control over undelimited control for practical programming.

1.1.1 Why effect handlers matter

The problem with traditional delimited control operators such as Danvy and Filinski’s

shift/reset [62] or Felleisen’s control/prompt [81] is that they hard-wire an implementa-

tion for the control effect interface, which provides only a single operation for reifying

the control state. In itself this interface does not limit what effects are expressible as

the control effect is in a particular sense ‘the universal effect’ because it can simulate

any other computational effect [88].

The problem, meanwhile, is that the universality of the control effect hinders modu-

lar programming as the control effect is inherently unstructured. In essence, program-

ming with traditional delimited control to simulate effects is analogous to programming

with the universal type [176] in statically typed programming languages, and having to

program with the universal type is usually a telltale that the programming abstraction

is inadequate for the intended purpose.

In contrast, effect handlers provide a structured form of delimited control, where

programmers can give distinct names to control reifying operations and separate them

from their handling. Throughout this dissertation we will see numerous examples of

how effect handlers makes programming with delimited structured (c.f. the following

section, Chapter 2, and Chapter A.).

1.2 State of effectful programming

Functional programmers tend to view programs as impenetrable black boxes, whose

outputs are determined entirely by their inputs [129, 132]. This is a compelling view

which admits a canonical mathematical model of computation [45, 46]. Alas, this view

does not capture the reality of practical programs, which interact with their environment.

Functional programming prominently features two distinct, but related, approaches to

effectful programming, which Filinski [88] succinctly characterises as effects as data

and effects as behaviour. The former uses data abstraction to encapsulate effects [203,

4 Chapter 1. Introduction

267] which is compelling because it recovers some of benefits of the black box view for

effectful programs, though, at the expense of a change of programming style [137]. The

latter retains the usual direct style of programming either by hard-wiring the semantics

of the effects into the language or by more flexible means via first-class control.

In this section I will provide a brief perspective on different approaches to program-

ming with effects along with an informal introduction to the related concepts. We will

look at each approach through the lens of global mutable state — the “hello world” of

effectful programming.

1.2.1 Direct-style state

We can realise stateful behaviour by either using language-supported state primitives,

globally structure our program to follow a certain style, or using first-class control in

the form of delimited control to simulate state. We do not consider undelimited control,

because it is insufficient to express mutable state [103].

Builtin mutable state

It is common to find mutable state builtin into the semantics of mainstream program-

ming languages. However, different languages vary in their approach to mutable state.

For instance, state mutation underpins the foundations of imperative programming

languages belonging to the C family of languages. They typically do not distinguish

between mutable and immutable values at the level of types. On the contrary, program-

ming languages belonging to the ML family of languages use types to differentiate

between mutable and immutable values. They reflect mutable values in types by using

a special unary type constructor RefType→Type. Furthermore, ML languages equip the

Ref constructor with three operations.

ref : S→ Ref S ! : Ref S→ S := : Ref→ S→ ⟨⟩

The first operation initialises a new mutable state cell of type S; the second operation

gets the value of a given state cell; and the third operation puts a new value into a given

state cell. It is important to note that getting the value of a state cell does not alter its

contents, whilst putting a value into a state cell overrides the previous contents.

The following function illustrates a use of the get and put primitives to manipulate

1.2. State of effectful programming 5

the contents of some global state cell st.

incrEven : 1→ Bool

incrEven⟨⟩ def
= let v←!st in st := 1+ v; even v

The type signature is oblivious to the fact that the function internally makes use of

the state effect to compute its return value. The body of the function first retrieves the

current value of the state cell and binds it to st. Subsequently, it destructively increments

the value of the state cell. Finally, it applies the predicate even : Int→Bool to the original

state value to test whether its parity is even (this example function is a slight variation

of an example by Gibbons [107]). We can run this computation as a subcomputation in

the context of global state cell st.

let st← ref 4 in ⟨incrEven⟨⟩; !st⟩⇝+ ⟨true;5⟩ : Bool× Int

Operationally, the whole computation initialises the state cell st to contain the integer

value 4. Subsequently it runs the incrEven computation, which returns the boolean value

true and as a side-effect increments the value of st to be 5. The whole computation

returns the boolean value paired with the final value of the state cell.

Transparent state-passing purely functionally

It is possible to implement stateful behaviour in a language without any computational

effects, e.g. simply typed λ-calculus, by following a particular design pattern known

as state-passing. The principal idea is to parameterise stateful functions by the current

state and make them return whatever result they compute along with the updated state

value. More precisely, in order to endow some n-ary function with argument types Ai

and return type R with state of type S, we transform the function signature as follows.

JA1→ ··· → An→ RKS
def
= A1→ ··· → An→ S→ R×S

By convention we always insert the state parameter at the tail end of the parameter

list. We may read the suffix S→ R× S as a sort of effect annotation indicating that

a particular function utilises state. The downside of state-passing is that it is a global

technique which requires us to rewrite the signatures (and their implementations) of all

functions that makes use of state.

We can reimplement the incrEven in state-passing style as follows.

incrEven : 1→ Int→ Bool× Int

incrEven⟨⟩ def
= λst.⟨even st;1+ st⟩

6 Chapter 1. Introduction

State initialisation is simply function application.

incrEven ⟨⟩ 4⇝+ ⟨true;5⟩ : Bool× Int

Programming in state-passing style is laborious and no fun as it is anti-modular, because

for effect-free higher-order functions to work with stateful functions they too must be

transformed or at the very least be duplicated to be compatible with stateful function

arguments. Nevertheless, state-passing is an important technique as it is the secret sauce

that enables us to simulate mutable state with other programming techniques.

Opaque state-passing with delimited control

Delimited control appears during the late 80s in different forms [61, 251]. There are

several different forms of delimited control. The particular form of delimited control

that I will use here is due to Danvy and Filinski [61]. Nevertheless, the secret sauce

of all forms of delimited control is that a delimited control operator makes it possible

to pry open function boundaries as control may transfer out of an arbitrary evaluation

context, leaving behind a hole that can later be filled by some value supplied externally.

Danvy and Filinski’s formulation of delimited control introduces two primitives.

⟨⟨⟨−⟩⟩⟩ : (1→ R)→ R shift : ((A→ R)→ R)→ A

The first primitive ⟨⟨⟨−⟩⟩⟩ (pronounced ‘reset’) is a control delimiter. Operationally, reset

evaluates a given thunk in an empty evaluation context and returns the final result of

that evaluation. The second primitive shift is a control reifier. An application shift
reifies and erases the control state up to (but not including) the nearest enclosing reset.

The reified control state represents the continuation of the invocation of shift (up to the

innermost reset); it gets passed as a function to the argument of shift.
We define both primitives over some fixed return type R (an actual practical im-

plementation would use polymorphism to make them more flexible). By instantiating

R = S→ A× S, where S is the type of state and A is the type of return values, then

we can use shift and reset to simulate mutable state using state-passing in way that

is opaque to the rest of the program. Let us first define operations for accessing and

modifying the state cell.

get : 1→ S

get ⟨⟩ def
= shift(λk.λst.k st st)

put : S→ 1

put st def
= shift(λk.λst′.k ⟨⟩ st)

The body of get applies shift to capture the current continuation, which gets supplied

to the anonymous function (λk.λst.k st st). The continuation parameter k has type

1.2. State of effectful programming 7

S→ S→ A×S. The continuation is applied to two instances of the current state value st.

The first instance is the value returned to the caller of get, whilst the second instance is

the state value available during the next invocation of either get or put. This aligns with

the intuition that accessing a state cell does not modify its contents. The implementation

of put is similar, except that the first argument to k is the unit value, because the caller

of put expects a unit in return. Also, it ignores the current state value st′ and instead

passes the state argument st onto the activation of the next state operation. Again, this

aligns with the intuition that modifying a state cell destroys its previous contents.

Using these two operations we can implement a version of incrEven that takes

advantage of delimited control to simulate global state.

incrEven : 1→ Bool

incrEven⟨⟩ def
= let st← get⟨⟩ in put(1+ st); even st

Modulo naming of operations, this version is similar to the version that uses builtin

state. The type signature of the function is even the same. Before we can apply this

function we must first implement a state initialiser.

runState : (1→ A)→ S→ A×S

runState m st0
def
= ⟨⟨⟨λ⟨⟩.let x← m⟨⟩ in λst.⟨x;st⟩⟩⟩⟩st0

The function runState acts as both the state cell initialiser and runner of the stateful

computation. The first parameter m is a thunk that may perform stateful operations

and the second parameter st0 is the initial value of the state cell. The implementation

wraps an instance of reset around the application of m in order to delimit the extent

of applications of shift within m. It is important to note that each invocation of get

and put gives rise to a state-accepting function, thus when m is applied a chain of

state-accepting functions gets constructed lazily. The chain ends in the state-accepting

function returned by the reset instance. The application of the reset instance to st0
effectively causes evaluation of each function in this chain to start.

After instantiating A = Bool and S = Int we can use the runState function to apply

the incrEven function.

runState incrEven 4 ⇝+ ⟨true;5⟩ : Bool× Int

1.2.2 Monadic state

During the late 80s and early 90s monads rose to prominence as a practical program-

ming idiom for structuring effectful programming [137, 138, 201, 203, 267–269]. The

8 Chapter 1. Introduction

concept of monad has its origins in category theory and its mathematical nature is

well-understood [31, 187]. The emergence of monads as a programming abstraction

began when Moggi [201, 203] proposed to use monads as the mathematical foundation

for modelling computational effects in denotational semantics. Moggi’s view was that

monads determine computational effects. The key property of this view is that pure

values of type A are distinguished from effectful computations of type T A, where T

is the monad representing the effect(s) of the computation. This view was put into

practice by Wadler [267, 269], who popularised monadic programming in functional

programming by demonstrating how monads increase the ease at which programs may

be retrofitted with computational effects. In practical programming terms, monads may

be thought of as constituting a family of design patterns, where each pattern gives rise

to a distinct effect with its own collection of operations. Part of the appeal of monads is

that they provide a structured interface for programming with effects such as state, ex-

ceptions, nondeterminism, interactive input and output, and so forth, whilst preserving

the equational style of reasoning about pure functional programs [107, 108].

The presentation of monads here is inspired by Wadler’s presentation of monads

for functional programming [267], and it ought to be familiar to users of Haskell [138].

Definition 1.1. A monad is a triple (TType→Type,return,≫=) where T is some unary

type constructor, return is an operation that lifts an arbitrary value into the monad

(sometimes this operation is called ‘the unit operation’), and ≫= is the application

operator of the monad (this operator is pronounced ‘bind’). Adequate implementations

of return and≫= must conform to the following interface.

return : A→ T A ≫= : T A→ (A→ T B)→ T B

Interactions between return and≫= are governed by the monad laws.

Left identity return x≫= k = k x

Right identity m≫= return = m

Associativity (m≫= k)≫= f = m≫= (λx.k x≫= f)

We may understand the type T A as inhabiting computations that compute a tainted

value of type A. In this regard, we may understand T as denoting the taint involved in

computing A, i.e. we can think of T as sort of effect annotation which informs us about

which effectful operations the computation may perform to produce A. The monad

interface may be instantiated in different ways to realise different computational effects.

1.2. State of effectful programming 9

In the following subsections we will see three different instantiations with which we

will implement global mutable state.

Monadic programming is a top-down approach to effectful programming, where the

concrete monad structure is taken as a primitive which controls interactions between

effectful operations. The monad laws ensure that monads have some algebraic structure,

which programmers can use when reasoning about their monadic programs. Similarly,

optimising compilers may take advantage of the structure to emit more efficient code.

The success of monads as a programming idiom is difficult to understate as monads

have given rise to several popular control-oriented programming abstractions including

the asynchronous programming idiom async/await [47, 172, 259].

State monad

The state monad is an instantiation of the monad interface that encapsulates mutable

state by using the state-passing technique internally. In addition it equips the monad

with two operations for manipulating the state cell.

Definition 1.2. The state monad is defined over some fixed state type S.

T A def
= S→ A×S

return : A→ T A

return x def
= λst.⟨x;st⟩

≫= : T A→ (A→ T B)→ T B

≫=
def
= λm.λk.λst.let ⟨x;st′⟩= m st in (k x) st′

The return of the monad is a state-accepting function of type S→ A×S that returns

its first argument paired with the current state. The bind operator also produces a state-

accepting function of type S→ A×S. The bind operator first supplies the current state

st to the monad argument m. This application yields a value result of type A and an

updated state st′. The result is supplied to the continuation k, which produces another

state accepting function that gets applied to the previously computed state value st′.

The state monad is equipped with two dual operations for accessing and modifying

the state encapsulated within the monad.

get : 1→ T S

get ⟨⟩ def
= λst.⟨st;st⟩

put : S→ T 1

put st def
= λst′.⟨⟨⟩;st⟩

Interactions between the two operations satisfy the following equations [107].

Get-get get⟨⟩ ≫= (λst.get⟨⟩ ≫= (λst′.k st st′)) = get≫= λst.k st st

Get-put get⟨⟩ ≫= (λst.put st) = return ⟨⟩
Put-get put st≫= (λ⟨⟩.get⟨⟩ ≫= (λst.k st′) = put st≫= (λ⟨⟩.k st)

Put-put put st≫= (λst.put st′) = put st′≫= (λ⟨⟩.k st)

10 Chapter 1. Introduction

The first equation states that performing one get after another get is redundant. The

second equation captures the intuition that getting a value and then putting has no

observable effect on the state cell. The third equation states that performing a get

immediately after putting a value is equivalent to returning that value. The fourth

equation states that only the latter of two consecutive puts is observable.

The literature often uses the presentation (or a similar one) with the four equations

above, even though, there exists a smaller presentation in which the first equation is

redundant as it is derivable from the second and third equations (c.f. Appendix B).

We can implement a monadic variation of the incrEven function that uses the state

monad to emulate manipulations of the state cell as follows.

T A def
= Int→ A× Int

incrEven : 1→ T Bool

incrEven ⟨⟩ def
= get⟨⟩ ≫= (λst.put(1+ st)≫= λ⟨⟩.return (even st)))

We fix the state type of our monad to be the integer type. The type signature of the

function incrEven may be read as describing a thunk that returns a boolean value, and

whilst computing this boolean value the function may perform any effectful operations

given by the monad T [203, 267], i.e. get and put. Operationally, the function retrieves

the current value of the state cell via the invocation of get. The bind operator passes

this value onto the continuation, which increments the value and invokes put. The

continuation applies a predicate the even predicate to the original state value. The

structure of the monad means that the result of running this computation gives us a pair

consisting of boolean value indicating whether the initial state was even and the final

state value.

The state initialiser and monad runner is simply thunk forcing and function applica-

tion combined.

runState : (1→ T A)→ S→ A→ S

runState m st0
def
= m ⟨⟩ st0

By instantiating S = Int and A = Bool we can obtain the same result as before.

runState incrEven 4⇝+ ⟨true;5⟩ : Bool× Int

We can instantiate the monad structure in a similar way to simulate other computational

effects such as exceptions, nondeterminism, concurrency, and so forth [203, 267].

1.2. State of effectful programming 11

Continuation monad

As in J.R.R. Tolkien’s fictitious Middle-earth [264] there exists one monad to rule

them all, one monad to realise them, one monad to subsume them all, and in the term

language bind them. This powerful monad is the continuation monad.

The continuation monad may be regarded as ‘the universal monad’ as it can embed

any other monad, and thereby simulate any computational effect [89]. It derives its

name from its connection to continuation passing style [267], which is a particular style

of programming where each function is parameterised by the current continuation (we

will discuss continuation passing style in detail in Chapter 4). The continuation monad

is powerful exactly because each of its operations has access to the current continuation.

Definition 1.3. The continuation monad is defined over some fixed return type R [267].

T A def
= (A→ R)→ R

return : A→ T A

return x def
= λk.k x

≫= : T A→ (A→ T B)→ T B

≫=
def
= λm.λk.λc.m(λx.k x c)

The return operation lifts a value into the monad by using it as an argument to the

continuation k. The bind operator binds the current continuation to c. In the body it

applies the monad m to an anonymous continuation function of type A→ T B. Internally,

the monad m will apply this continuation when it is on the form return. Thus the

parameter x gets bound to the return value of the monad. This parameter gets supplied

as an argument to the next monadic action k alongside the current continuation c.

If we instantiate R = S→ A×S for some type S then we can implement the state

monad inside the continuation monad.

get : 1→ T S

get ⟨⟩ def
= λk.λst.k st st

put : S→ T 1

put st def
= λk.λst′.k ⟨⟩ st

The get operation takes as input a (binary) continuation k of type S→ S→ A×S and

produces a state-accepting function that applies the continuation to the given state st.

The first occurrence of st is accessible to the caller of get, whilst the second occurrence

passes the value st onto the next operation invocation on the monad. The operation put

works in the same way. The primary difference is that put does not return the value

of the state cell; instead it returns simply the unit value ⟨⟩. One can show that this

implementation of get and put abides by the same equations as the implementation

given in Definition 1.2.

12 Chapter 1. Introduction

get

. . .

put

true

⟨⟩

−2

put

false

⟨⟩

−1

put

true

⟨⟩

0

put

false

⟨⟩

1

put

true

⟨⟩

2
. . .

Figure 1.1: Computation tree for incrEven.

The state initialiser and runner for the monad supplies the initial continuation.

runState : (1→ T A)→ S→ A×S

runState m st0
def
= m ⟨⟩ (λx.λst.⟨x;st⟩) st0

The initial continuation (λx.λst.⟨x;st⟩) corresponds to the return of the state monad.

By fixing S = Int and A= Bool, we can use the continuation monad to interpret incrEven.

runState incrEven 4⇝+ ⟨true;5⟩ : Bool× Int

The continuation monad gives us a succinct framework for implementing and program-

ming with computational effects, however, it comes at the expense of extensibility and

modularity. Adding a new operation to the monad may require modifying its internal

structure, which entails a complete reimplementation of any existing operations.

Free monad

The state monad and the continuation monad offer little flexibility with regards to the

concrete interpretation of state as in both cases the respective monad hard-wires a partic-

ular interpretation. An alternative is the free monad which decouples the structure of the

monad from its interpretation. Just like other monads the free monad satisfies the monad

laws, however, unlike other monads the free monad does not perform any computation

per se. Instead the free monad builds an abstract representation of the computation in

form of a computation tree, whose interior nodes correspond to an invocation of some

operation on the monad, where each outgoing edge correspond to a possible continu-

ation of the operation; the leaves correspond to return values. Figure 1.1 depicts the

computation tree for the incrEven function. This particular computation tree has infinite

width, because the operation get has infinitely many possible continuations (we take

1.2. State of effectful programming 13

the denotation of Int to be Z). Conversely, each put node has only one outgoing edge,

because put has only a single possible continuation, namely, the trivial continuation ⟨⟩.
The meaning of a free monadic computation is ascribed by a separate function,

or interpreter, that traverses the computation tree. The shape of computation trees is

captured by the following generic type definition.

Free F A def
= [Return : A|Op : F (Free F A)]

The type constructor Free takes two type arguments. The first parameter F is itself a

type constructor of kind Type→ Type. The second parameter is the usual type of values

computed by the monad. The return tag creates a leaf of the computation tree, whilst

the Op tag creates an interior node. In the type signature for Op the type variable F is

applied to the Free type. The idea is that F K computes an enumeration of the signatures

of the possible operations on the monad, where K is the type of continuation for each

operation. Thus the continuation of an operation is another computation tree node.

Definition 1.4. The free monad is a triple (FType→Type,return,≫=) which forms a

monad with respect to F. In addition an adequate instance of F must supply a map,

fmap : (A→ B)→ F A→ F B, over its structure (in more precise technical terms: F

must be a functor [31]).

T A def
= Free F A

return : A→ T A

return x def
= Return x

≫= : T A→ (A→ T B)→ T B

≫=
def
= λm.λk.case m {Return x 7→ k x;

Op y 7→ Op(fmap(λm′.m′≫= k)y)}

The return operation simplify reflects itself by injecting the value x into the compu-

tation tree as a leaf node. The bind operator threads the continuation k through the

computation tree. Upon encounter a leaf node the continuation gets applied to the value

of the node. Note how this is reminiscent of the return of the continuation monad. The

bind operator works in tandem with the fmap of F to advance past Op nodes. The fmap

function is responsible for applying its functional argument to the next computation

tree node which is embedded inside y. We define an auxiliary function to alleviate some

of the boilerplate involved with performing operations on the monad.

do : F A→ Free F A

do op def
= Op(fmap(λx.Return x)op)

This function injects some operation op into the computation tree as an operation node.

14 Chapter 1. Introduction

In order to implement state with the free monad we must first declare a signature of

its operations and implement the required fmap for the signature.

FreeState S R def
= [Get : S→ R|Put : S× (1→ R)]

fmap : (A→ B)→ FreeState S A→ FreeState S B

fmap f op def
= case op {Get k 7→ Get(λst.f (k st));

Put⟨st′;k⟩ 7→ Put⟨st′;λ⟨⟩.f (k ⟨⟩)⟩}

The signature FreeState declares the two stateful operations Get and Put over state

type S and continuation type R. The Get tag is parameterised a continuation function

of type S → R. The idea is that an application of this function provides access to

the current state, whilst computing the next node of the computation tree. The Put

operation is parameterised by the new state value and a thunk, which computes the next

computation tree node. The fmap instance applies the function f to the continuation k

of each operation. By instantiating F = FreeStateS and using the do function we can

give the get and put operations a familiar look and feel.

get : 1→ T S

get ⟨⟩ def
= do(Get(λst.st))

put : S→ T 1

put st def
= do(Put⟨st;λ⟨⟩.⟨⟩⟩)

Both operations are performed with the identity function as their respective continuation

function. We do not have much choice in this regard as for instance in the case of get

we must ultimately return a computation of type T S, and the only value of type S we

have access to in this context is the one supplied externally to the continuation function.

The state initialiser and runner for the monad is an interpreter. As the programmers,

we are free to choose whatever interpretation of state we desire. For example, the

following interprets the stateful operations using the state-passing technique.

runState : (1→ Free(FreeState S)R)→ S→ R×S

runState m st def
= case m⟨⟩ {Return x 7→ (x,st);

Op(Get k) 7→ runState(λ⟨⟩.k st) st;

Op(Put⟨st′;k⟩) 7→ runState k st′}

The interpreter implements a fold over the computation tree by pattern matching on

the shape of the tree (or equivalently monad) [194]. In the case of a return node the

interpreter returns the payload x along with the final state value st. If the current node

is a Get operation, then the interpreter recursively calls itself with the same state value

st and a thunked application of the continuation k to the current state st. The recursive

1.2. State of effectful programming 15

activation of runState will force the thunk in order to compute the next computation

tree node. In the case of a Put operation the interpreter calls itself recursively with

new state value st′ and the continuation k (which is a thunk). One may prove that this

interpretation of get and put satisfies the equations of Definition 1.2.

By instantiating S = Int and R = Bool we can use this interpreter to run incrEven.

runState incrEven 4⇝+ ⟨true;5⟩ : Bool× Int

The free monad brings us close to the essence of programming with effect handlers.

1.2.3 Back to direct-style

Monads do not freely compose, because monads must satisfy a distributive property

in order to combine [145]. Alas, not every monad has a distributive property. The

lack of composition is to an extent remedied by monad transformers, which provide a

programmatic abstraction for stacking one monad on top of another [77]. The problem

with monad transformers is that they enforce an ordering on effects that affects the

program semantics (c.f. my MSc dissertation for a concrete example of this [125]).

However, a more fundamental problem with monads is that they break the basic

doctrine of modular abstraction, which says we should program against an abstract

interface, not an implementation. Effectful programming using monads fixates on the

concrete structure first, and adds effect operations second. As a result monadic effect

operations are intimately tied to the concrete structure of their monad.

Before moving onto direct-style alternatives, it is worth mentioning McBride and

Paterson’s idioms (known as applicative functors in Haskell) as an alternative to mon-

adic programming [191]. Idioms provide an applicative style for programming with

effects. Even though idioms are computationally weaker than monads, they are still

capable of encapsulating a wide range of computational effects whose realisation do

not require the full monad structure (consult Yallop [278] for a technical analysis of

idioms and monads). Another thing worth pointing out is that it is possible to have

a direct-style interface for effectful programming in the source language, which the

compiler can translate into monadic binds and returns automatically. For a concrete

example of this see the work of Vazou and Leijen [265].

Let us wrap up this crash course in effectful programming by looking at two ap-

proaches for programming in direct-style with effects that make structured use of de-

limited control, before finishing with a brief discussion of effect tracking.

16 Chapter 1. Introduction

Monadic reflection on state

Monadic reflection is a technique due to Filinski [87, 88, 89, 90] which makes use of

delimited control to perform a local switch from monadic style into direct-style and

vice versa. The key insight is that a control reifier provides an escape hatch that makes

it possible for computation to locally jump out of the monad, as it were. The scope of

this escape hatch is restricted by the control delimiter, which forces computation back

into the monad. Monadic reflection introduces two operators, which are defined over

some monad T and some fixed result type R.

↓ : (1→ R)→ T R

↓ m def
= ⟨⟨⟨λ⟨⟩.return(m⟨⟩)⟩⟩⟩

↑ : T A→ A

↑ m def
= shift(λk.m≫= k)

The first operator ↓ (pronounced ‘reify’) performs monadic reification. Semantically it

makes the effect corresponding to T transparent. The implementation installs a reset

instance to delimit control effects of m. The result of forcing m gets lifted into the

monad T . The second operator ↑ (pronounced ‘reflect’) performs monadic reflection.

It makes the effect corresponding to T opaque. The implementation applies shift to

capture the current continuation (up to the nearest instance of reset). Subsequently, it

evaluates the monadic computation m and passes the result of this evaluation to the

continuation k, which effectively performs the jump out of the monad.

Suppose we instantiate T = State S for some type S, then we can realise direct-style

versions of the state operations get and put, whose internal implementations make use

of the monadic state operations.

get : 1→ S

get⟨⟩ def
= ↑(T.get⟨⟩)

put : S→ 1

put st def
= ↑(T.putst)

I am slightly abusing notation here as I use component selection notation on the con-

structor type T in order to disambiguate the reflected operation names and monadic

operation names. Nevertheless, the implementations of get and put simply reflect their

monadic counterparts. Note that the type signatures are the same as the signatures for

operations that we implemented using shift/reset in Section 1.2.1.

The initialiser and runner for some reflected stateful computation is defined in terms

of the state monad runner.

runState : (1→ R)→ S→ R×S

runState m st0
def
= T.runState (λ⟨⟩.↓m) st0

1.2. State of effectful programming 17

The runner reifies the computation m to obtain an instance of the state monad, which it

then runs using the state monad implementation of runState.

Since this state interface is the same as shift/reset-based interface, we can simply

take a carbon copy of the shift/reset-based implementation of incrEven and run it after

instantiating R = Bool and S = Int.

runState incrEven 4⇝+ ⟨true;5⟩ : Bool× Int

Handling state

At the start of the 00s decade Plotkin and Power [224, 225, 226] introduced algebraic

theories of computational effects, or simply algebraic effects, which inverts Moggi’s

view of effects such that computational effects determine monads. In their view a com-

putational effect is described by an algebraic effect, which consists of a signature of

abstract operations and a collection of equations that govern their behaviour, together

they generate a free monad rather than the other way around. Algebraic effects provide

a bottom-up approach to effectful programming in which abstract effect operations

are taken as primitive. Using these operations we may build up concrete structures.

In practical programming terms, we may understand an algebraic effect as an abstract

interface, whose operations build the underlying free monad.

Definition 1.5. An algebraic effect is given by a pair T = (Σ,E) consisting of an effect

signature Σ = {(ℓi : A↠ B)i}i of typed operation symbols ℓi, whose interactions are

govern by set of equations E. We will not concern ourselves with the mathematical

definition of equation, as in this dissertation we will always fix E = /0, meaning that the

interactive patterns of operations are unrestricted. As a consequence we will regard an

operation symbol as a syntactic entity subject only to a static semantics. The type A↠B

denotes the space of operations whose payload has type A and whose interpretation

yields a value of type B.

As with the free monad, the meaning of an algebraic effect operation is conferred

by some separate interpreter. In the algebraic theory of computational effects such in-

terpreters are known as handlers for algebraic effects, or simply effect handlers. They

were introduced by Plotkin and Pretnar [227, 228] by the end of the decade. A crucial

difference between effect handlers and interpreters of free monads is that effect handlers

use delimited control to realise the behaviour of computational effects. Practical pro-

gramming with effect handlers was popularised by Kammar et al. [143], who advocated

algebraic effects and their handlers as a modular basis for effectful programming.

18 Chapter 1. Introduction

Effect handlers introduce two dual control constructs.

do ℓA↠B VA : B handle MC with HC⇒D : D

H ::= {return xC 7→ ND} | {⟨⟨ℓA↠B pA↠ kB→D⟩⟩ 7→ ND}⊎HC⇒D

The do construct reifies the control state up to a suitable handler and packages it up with

the operation symbol ℓ and its payload V before transferring control to the suitable hand-

ler. As control is transferred a hole is left in the evaluation context that must be filled

before evaluation can continue. The handle construct delimits do invocations within

the computation M according to the handler definition H. Handler definitions consist

of the union of a single return-clause and the disjoint union of zero or more operation

clauses. The return-clause specifies what to do with the return value of a computation.

An operation clause ⟨⟨ℓ p↠ k⟩⟩ matches on an operation symbol and binds its payload

to p and its continuation k. Note that the domain type of the continuation agrees with

the codomain type of the operation symbol, and the codomain type of the continuation

agrees with the codomain type of the handler definition. Continuation application fills

the hole left by the do construct, thus providing a value interpretation of the invocation.

The continuation returns inside the handler once the return-clause computation has

finished. Operationally, effect handlers may be regarded as an extension of Benton and

Kennedy [18] style exception handlers.

We can implement mutable state with effect handlers as follows.

Σ
def
= {Get : 1↠ S;Put : S↠ 1}

get : 1→ S

get ⟨⟩ def
= do Get⟨⟩

put : S→ 1

put st def
= do Put st

As with the free monad, we are completely free to pick whatever interpretation of state

we desire. If we want an interpretation that is compatible with the usual equations for

state, then we can simply use the state-passing technique again.

runState : (1→ A)→ S→ A×S

runState m st0
def
= let f ← handle m⟨⟩ with
{return x 7→ λst.⟨x;st⟩;
⟨⟨Get ⟨⟩↠ k⟩⟩ 7→ λst.k st st;

⟨⟨Put st′↠ k⟩⟩ 7→ λst.k ⟨⟩ st′}
in f st0

Note the similarity with the implementation of the interpreter for the free state monad.

Save for the syntactic differences, the main difference between this implementation and

1.2. State of effectful programming 19

the free state monad interpreter is that here the continuation k implicitly reinstalls the

handler, whereas in the free state monad interpreter we explicitly reinstalled the handler

via a recursive application. By fixing S = Int and A = Bool we can use the above effect

handler to run the delimited control variant of incrEven.

runState incrEven 4⇝+ ⟨true;5⟩ : Bool× Int

Effect handlers come into their own when multiple effects are combined. Throughout

the dissertation we will see multiple examples of handlers in action (e.g. Chapter 2).

Effect tracking

A benefit of using monads for effectful programming is that we get effect tracking ‘for

free’ (some might object to this statement and claim we paid for it by having to program

in monadic style). Effect tracking is a useful tool for making programming with effects

less prone to error in much the same way a static type system is useful for detecting a

wide range of potential runtime errors at compile time.

Effect systems provide suitable typing discipline for statically tracking the observ-

able effects of programs [207]. The notion of effect system was developed around the

same time as monads rose to prominence, though, its development was independent

of monads. Nevertheless, Wadler and Thiemann [270] have shown that effect systems

and monads are formally related, providing effect systems with some formal validity.

Subsequently, Kammar [141] has contributed to the formal understanding of effect sys-

tems through development of a general algebraic theory of effect systems. Lucassen

and Gifford [183] developed the original effect system as a means for lightweight static

analyses of functional programs with imperative features. For instance, Lucassen [182]

made crucial use of an effect system to statically distinguish between safe and unsafe

terms for parallel execution.

The principal idea of a Lucassen and Gifford style effect system is to annotate

computation types with the collection of effects that their inhabitants are allowed to

perform, e.g. the type A→ B!E is inhabited by functions that accept a value of type A

as input and ultimately return a value of type B. As an inhabitant computes the B value

it is allowed to perform the effect operations mentioned by the effect signature E.

This typing discipline fits nicely with the effect handlers-style of programming. The

do construct provides a mechanism for injecting an operation into the effect signature,

whilst the handle construct provides a way to eliminate an effect operation from the

signature [14, 119]. If we instantiate A = 1, B = Bool, and E = Σ, then we obtain a

20 Chapter 1. Introduction

type-and-effect signature for the handler version of incrEven.

incrEven : 1→ Bool!{Get : 1↠ Int;Put : Int↠ 1}

Now, the signature of incrEven communicates precisely what it expects from the ambi-

ent context. It is clear that we must run this function under a handler that interprets at

least Get and Put.

Some form of polymorphism is necessary to make an effect system extensible and

useful in practice. Otherwise effect annotations end up pervading the entire program

in a similar fashion as monads do. In Chapter 3 we will develop an extensible effect

system based on row polymorphism.

1.3 Scope

Summarised in one sentence this dissertation is about practical programming language

designs for programming with effect handlers, their foundational implementation tech-

niques, and implications for the expressive power of their host language.

Numerous variations and extensions of effect handlers have been proposed since

their inceptions. In this dissertation I restrict my attention to Plotkin and Pretnar’s

deep handlers, their shallow variation, and parameterised handlers which are a slight

variation of deep handlers. In particular I work with free algebraic theories, which is

to say my designs do not incorporate equational theories for effects. Furthermore, I

frame my study in terms of simply-typed and polymorphic λ-calculi for which I give

computational interpretations in terms of contextual operational semantics and realise

using two foundational operational techniques: continuation passing style and abstract

machine semantics. When it comes to expressiveness there are multiple possible dimen-

sions to investigate and multiple different notions of expressivity available. I focus on

two questions: ‘are deep, shallow, and parameterised handlers interdefinable?’ which

I investigate via a syntactic notion of expressiveness due Felleisen [82]. And, ‘does

effect handlers admit any essential computational efficiency?’ which I investigate using

a semantic notion of expressiveness due to Longley and Normann [180].

1.3.1 Scope extrusion

The literature on effect handlers is rich, and my dissertation is but one of many on

topics related to effect handlers. In this section I provide a few pointers to related work

involving effect handlers that I will not otherwise discuss in this dissertation.

1.4. Contributions 21

Readers interested in the mathematical foundations and original development of

effect handlers should consult Pretnar’s PhD dissertation [230].

Most programming language treatments of algebraic effects and their handlers side-

line equational theories, despite equational theories being an important part of the

original treatment of effect handlers. Lukšič’s PhD dissertation brings equations back

onto the pitch as Lukšič [184] develops a core calculus with a novel local notion of

equational theories for algebraic effects.

To get a grasp of the reasoning principles for effect handlers, interested readers

should consult McLaughlin’s PhD dissertation, which contains a development of rela-

tional reasoning techniques for shallow multi-handlers [193]. McLaughlin’s techniques

draw inspiration from the logical relation reasoning techniques for deep handlers due

to Biernacki et al. [26].

Ahman’s PhD dissertation is relevant for readers interested in the integration of

computational effects into dependent type theories [5]. Ahman develops an intensional

Martin-Löf [189] style dependent type theory equipped with a novel computational

dependent type, which makes it possible to treat type-dependency in the sequential

composition of effectful computations uniformly.

Lexical effect handlers are a variation on Plotkin and Pretnar’s deep handlers, which

provide a form of lexical scoping for effect operations, thus statically binding them to

their handlers. Geron’s PhD dissertation develops the mathematical theory of scoped

effect operations, whilst Biernacki et al. [28] study them in conjunction with ordinary

handlers from a programming perspective.

Functional programmers were early adopters of effect handlers. They either added

language-level support for handlers [15, 26, 38, 44, 71, 125, 165, 174] or embedded

them in libraries [35, 40, 143, 147, 151, 154, 276]. Thus functional perspectives on

effect handlers are plentiful in the literature. Some notable examples of perspectives

on effect handlers outside functional programming are: Brachthäuser’s PhD disserta-

tion, which contains an object-oriented perspective on effect handlers in Java [34];

Saleh’s PhD dissertation offers a logic programming perspective via an effect handlers

extension to Prolog; and Leijen [167] has an imperative take on effect handlers in C.

1.4 Contributions

The key contributions of this dissertation are spread across the three main parts. The

following listing summarises the contributions of each part.

22 Chapter 1. Introduction

Programming

• A practical design for a programming language equipped with a structural effect

system and deep, shallow, and parameterised effect handlers.

• A case study in effect handler oriented programming demonstrating how to com-

pose the essence of an UNIX-style operating system with user session manage-

ment, task parallelism, and file I/O using standard effects and handlers.

Implementation

• A novel generalisation of the notion of continuation known as generalised con-

tinuation, which provides a succinct foundation for implementing deep, shallow,

and parameterised handlers.

• A higher-order continuation passing style translation based on generalised con-

tinuations, which yields a universal implementation strategy for effect handlers.

• An abstract machine semantics based on generalised continuations, which charac-

terises the low-level stack manipulations admitted by effect handlers at runtime.

Expressiveness

• A formal proof that deep, shallow, and parameterised handlers are equi-expressible

in the sense of typed macro-expressiveness.

• A robust mathematical characterisation of the computational efficiency of effect

handlers, which shows that effect handlers can improve the asymptotic runtime

of certain classes of programs.

Another contribution worth noting is the continuation literature review in Ap-

pendix A, which provides a comprehensive operational characterisation of various

notions of continuations and first-class control phenomena.

1.5 Structure of this dissertation

The following is a summary of the chapters belonging to each part of this dissertation.

1.5. Structure of this dissertation 23

Programming

• Chapter 2 showcases effect handler oriented programming in practice by im-

plementing a small operating system dubbed Tiny UNIX based on Ritchie and

Thompson’s original UNIX. The implementation starts from a basic notion of

file i/o, which evolves into a feature-rich operating system with full file i/o, mul-

tiple user environments, multi-tasking, and more, by composing ever more effect

handlers.

• Chapter 3 introduces a polymorphic fine-grain call-by-value core calculus, λb,

which makes key use of Rémy-style row polymorphism to implement poly-

morphic variants, structural records, and a structural effect system. The calculus

distils the essence of the core of the Links programming language. The chapter

also presents three extensions of λb, which are λh that adds deep handlers, λh†

that adds shallow handlers, and λh‡ that adds parameterised handlers.

Implementation

• Chapter 4 develops a higher-order continuation passing style translation for effect

handlers through a series of step-wise refinements of an initial standard continu-

ation passing style translation for λb. Each refinement slightly modifies the notion

of continuation employed by the translation. The development ultimately leads to

the key invention of generalised continuation, which is used to give a continuation

passing style semantics to deep, shallow, and parameterised handlers.

• Chapter 5 demonstrates an application of generalised continuations to abstract

machine as we plug generalised continuations into Felleisen and Friedman’s CEK

machine to obtain an adequate abstract runtime with simultaneous support for

deep, shallow, and parameterised handlers.

Expressiveness

• Chapter 6 shows that deep, shallow, and parameterised notions of handlers can

simulate one another up to specific notions of administrative reduction.

• Chapter 7 studies the fundamental efficiency of effect handlers. In this chapter,

we show that effect handlers enable an asymptotic improvement in runtime com-

plexity for a certain class of functions. Specifically, we consider the generic

24 Chapter 1. Introduction

count problem using a pure PCF-like base language λ→b (a simply typed vari-

ation of λb) and its extension with effect handlers λ→h . We show that λ→h admits

an asymptotically more efficient implementation of generic count than any λ→b

implementation.

Conclusions

• Chapter 8 concludes and discusses future work.

Appendices

• Appendix A presents a literature survey of continuations and first-class control.

I classify continuations according to their operational behaviour and provide an

overview of the various first-class sequential control operators that appear in

the literature. The application spectrum of continuations is discussed as well as

implementation strategies for first-class control.

• Appendix B presents a small proof for the claim made in Section 1.2.2, that the

state equation “Get after get” is redundant.

• Appendix C contains the proof details for the proof of Theorem 7.11.

• Appendix D discusses the Berger count program, which is briefly mentioned in

Section 7.4, in more detail.

Part I

Programming

25

Chapter 2

Composing UNIX with effect handlers

There are several analogies for understanding effect handlers as a programming abstrac-

tion, e.g. as interpreters for effects, folds over computation trees (as in Section 1.2),

resumable exceptions. A particularly compelling programmatic analogy is effect hand-

lers as composable operating systems. Effect handlers and operating systems share

operational characteristics: an operating system interprets a set of system commands

performed via system calls, in a similar way to how an effect handler interprets a set

of abstract operations performed via operation invocations (this analogy was suggested

to me by James McKinna; personal communication, 2017). The compelling aspect of

this analogy is that we can understand a monolithic and complex operating system

like UNIX [241] as a collection of effect handlers, or alternatively, a collection of tiny

operating systems, that when composed yield a semantics for UNIX.

In this section we will take this reading of effect handlers literally, and demonstrate

how we can harness the power of (deep) effect handlers to implement a UNIX-style

operating system with multiple user sessions, time-sharing, and file i/o. We dub the

system Tiny UNIX. It is a case study that demonstrates the versatility of effect handlers,

and shows how standard computational effects such as exceptions, dynamic binding,

nondeterminism, and state make up the essence of an operating system. These effects

are standard in the sense that they appear frequently in 101 tutorials on effects.

For the sake of clarity, we will occasionally make some blatant simplifications,

nevertheless the resulting implementation will capture the essence of a UNIX-like

operating system. The implementation will be composed of several small modular

effect handlers, that each handles a particular set of system commands. In this respect,

we will truly realise Tiny UNIX in the spirit of the UNIX philosophy [235, Section 1.6].

The source calculus underpinning the language used to implement Tiny UNIX will

27

28 Chapter 2. Composing UNIX with effect handlers

be introduced informally on-the-fly. The formal syntax and semantics will be introduced

in Chapter 3

Terminology In the remainder of this dissertation, I will make a slight change of

terminology to disambiguate programmatic continuations, i.e. continuations exposed to

the programmer, from continuations in continuation passing style (Chapter 4) and con-

tinuations in abstract machines (Chapter 5). I will refer to programmatic continuations

as ‘resumptions’, and reserve the term ‘continuation’ for continuations concerning im-

plementation details.

Chapter outline Sections 2.1–2.5 use deep handlers to model file i/o, user environ-

ments, process termination, process duplication, and process interruption.

Section 2.1 implements a basic mechanism which facilities writing to a global file.

This mechanism is used as a stepping stone for building a more feature rich

model.

Section 2.2 This section demonstrates a use of effect handlers as exception handlers,

as we use exceptions to implement process termination.

Section 2.3 exemplifies user-specific environments as an instance of dynamic binding,

as we use the environment, or reader, effect to implement user environments.

The section also contains an instance of a tail-resumptive handler as well as

demonstrates an application of dynamic overloading of interpretation of residual

effectful operations in resumptions.

Section 2.4 models UNIX’s process duplicating primitive ‘fork’ by making use of the

nondeterminism effect. Furthermore, in this section we also implement a simple

time-sharing facility that is capable of interleaving user processes.

Section 2.5 replaces the basic i/o model of Section 2.1 by a full-fledged i/o model

supporting file creation, opening, reading, writing, and linking. This model is

realised by making use of the state effect.

Section 2.6 demonstrates an application of shallow handlers to implement parts of the

UNIX programming environment by simulating composable UNIX-style pipes

for data stream processing.

2.1. Basic i/o 29

Section 2.7 implements a variation of the time-sharing system from Section 2.4 with

process synchronisation by taking advantage of the ability to internalise compu-

tation state with parameterised handlers.

Relation to prior work At the time of examination the work in this chapter was

novel in the sense that it had not been published elsewhere. Since the examination of

this dissertation, but prior to submission of its final version, I presented parts of this

work at the ML Family Workshop.

• Daniel Hillerström. Composing UNIX with Effect Handlers: A Case Study in

Effect Handler Oriented Programming (extended abstract). ML Workshop, 2021

Excerpts of Sections 2.1–2.4 have appeared in (mostly verbatim) in the report of Dag-

stuhl Seminar 21292. Those excerpts are to be considered a copy of the work described

in this chapter rather than the other way around.

• Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg. Scalable

Handling of Effects (Dagstuhl Seminar 21292). Dagstuhl Reports, 11(6):54–81,

2021

2.1 Basic i/o

The file system is a cornerstone of UNIX as the notion of file in UNIX provides a

unified abstraction for storing text, interprocess communication, and access to devices

such as terminals, printers, network, etc. Initially, we shall take a rather basic view of the

file system. In fact, our initial system will only contain a single file, and moreover, the

system will only support writing operations. This system hardly qualifies as a UNIX file

system. Nevertheless, it serves a crucial role for development of Tiny UNIX, because it

provides the only means for us to be able to observe the effects of processes. We defer

development of a more advanced file system to Section 2.5.

Much like UNIX we shall model a file as a list of characters, that is File
def
= List Char.

For convenience we will use the same model for strings, String
def
= List Char, such that

we can use string literal notation to denote the "contents of a file". The signature

of the basic file system will consist of a single operation Write for writing a list of

characters to the file.

BIO
def
= {Write : ⟨FileDescr;String⟩↠ 1}

30 Chapter 2. Composing UNIX with effect handlers

The operation is parameterised by a FileDescr and a character sequence. We will leave

the FileDescr type abstract until Section 2.5, however, we shall assume the existence of

a term stdout : FileDescr such that we can perform invocations of Write. Let us define a

suitable handler for this operation.

basicIO : (1→ α!BIO)→ ⟨α;File⟩
basicIO m def

= handle m⟨⟩ with
return res 7→ ⟨res; []⟩
⟨⟨Write ⟨_;cs⟩↠ resume⟩⟩ 7→ let ⟨res;file⟩= resume⟨⟩ in

⟨res;cs++file⟩

The type signature (1→α!BIO)→⟨α;File⟩ classifies a second-order function that takes

as input a computation that produces some value α, and in doing so may perform the BIO

effect. As we program in a call-by-value setting the input computation is represented

as a suspended computation, or thunk. Thus the type 1→ α!BIO classifies a thunk, that

when forced may perform the BIO effect, i.e. the Write operation, to produce a value

of type α. The second-order function ultimately returns a pair consisting of the return

value α and the final state of the file. The return type of the second-order function is

‘pure’ in the sense that the function does not perform any effectful operations itself to

produce its result.

In the implementation the input computation is bound by the name m, which is

applied to a ⟨⟩ (pronounced ‘unit’; as we will see in Chapter 3 it happens to be the

empty record) under a handle · · · with · · · construct which is the term syntax for effect

handler application. Occurrences of the Write operation inside m are handled with

respect to the given handler, whose definition consists of two cases: a return-case

and a Write-case. The return-case runs when m⟨⟩ reduces to a value. The resulting

value gets bound to the name res. The body of the return-case pairs the result res with

the empty file [] which models the scenario where the computation m performed no

Write-operations, e.g. basicIO(λ⟨⟩.⟨⟩)⇝+ ⟨⟨⟩;""⟩. The Write-case runs when Write is

invoked inside of m. The payload of the operation along with its resumption gets bound

on the left hand side of 7→. We use deep pattern matching to ignore the first element

of the payload and to bind the second element of the payload to cs. The resumption

gets bound to the name resume. It is worth noting that at this point, the type of resume

is (morally) 1→ ⟨α;File⟩, where the domain type matches the codomain type of the

operation Write and the codomain type matches the expected type of the current context.

(The actual type is 1→ ⟨α;File⟩!{Write : θ;ε}, where θ is a presence variable denoting

2.2. Exceptions: process termination 31

that Write is polymorphic in whether it is present, i.e. the ambient context which resume

gets invoked in is allowed to perform another invocation of Write, and ε is an effect

variable, which can be instantiated with additional operation labels to allow resume to

be used in a greater context. In many instances we can ignore presence polymorphim

and effect polymorphism as described in Section 3.2.5, hence we omit these annotation

whenever possible.) This latter fact is due to the deep semantics of handle-construct,

which means that an invocation of resume implicitly installs another handle-construct

with the same handler around the residual evaluation context embodied in resume. The

body of the Write-case extends the file by first invoking the resumption, which returns

a pair containing the result of m and the file state. This pair is deconstructed using the

let-pair deconstruction construct, which projects and binds the result component to res

and the file state component to file. The file gets extended with the character sequence

cs before it is returned along with the original result of m. Intuitively, we may think

of this implementation of Write as a peculiar instance of buffered writing, where we

temporarily store the contents of each Write operation on call stack and commit them

to the file as we unwind the stack after the computation m finishes.

Let us define an auxiliary function that writes a string to the stdout file.

echo : String→ 1!BIO

echo cs def
= do Write⟨stdout;cs⟩

The do-construct is the invocation construct, or introduction form, for effectful oper-

ations. The function echo is a simple wrapper around an invocation of Write. We can

now write some contents to the file and observe the effects.

basicIO(λ⟨⟩.echo "Hello";echo "World")

⇝+ ⟨⟨⟩;"HelloWorld"⟩ : ⟨1;File⟩

2.2 Exceptions: process termination

A process may terminate successfully by running to completion, or it may terminate

with success or failure in the middle of some computation by performing an exit system

call. The exit system call is typically parameterised by an integer value intended to

indicate whether the exit was due to success or failure. By convention, UNIX interprets

the integer zero as success and any nonzero integer as failure, where the specific value

is supposed to correspond to some known error code.

We can model the exit system call by way of a single operation Exit.

Status
def
= {Exit : Int↠ 0}

32 Chapter 2. Composing UNIX with effect handlers

The operation is parameterised by an integer value, however, an invocation of Exit can

never return, because the type 0 is uninhabited. Thus Exit acts like an exception. It is

convenient to abstract invocations of Exit to make it possible to invoke the operation in

any context.

exit : Int→ α!Status

exit n def
= absurd (do Exit n)

The absurd computation term is used to coerce the return type 0 of Fail into α. This

coercion is safe, because 0 is an uninhabited type. An interpretation of Exit amounts to

implementing an exception handler.

status : (1→ α!Status)→ Int

status m def
= handle m⟨⟩ with

return _ 7→ 0

⟨⟨Exit n⟩⟩ 7→ n

Following the UNIX convention, the return-case interprets a successful completion

of m as the integer 0. The operation case returns whatever payload the Exit operation

was carrying. As a consequence, outside of status, an invocation of Exit 0 in m is

indistinguishable from m returning normally, e.g. status(λ⟨⟩.exit 0) = status(λ⟨⟩.⟨⟩).
Technically, the Exit-case provides access to the resumption of Exit in m, however, we

do not write this resumption here, because it is useless as its type is 0→ Int. It expects

as argument an element of the empty type, which is of course impossible to provide,

hence we can never invoke it. In general, an operation clause may drop the provided

resumption even if the resumption is usable.

To illustrate status and exit in action consider the following example, where the

computation gets terminated mid-way.

basicIO(λ⟨⟩.status(λ⟨⟩.echo "dead";exit 1;echo "code"))

⇝+ ⟨1;"dead"⟩ : ⟨Int;File⟩

The (delimited) continuation of exit 1 is effectively dead code. Here, we have a choice as

to how we compose the handlers. Swapping the order of handlers would cause the whole

computation to return just 1 : Int, because the status handler discards the return value of

its computation. Thus with the alternative layering of handlers the system would throw

away the file state after the computation finishes. However, in this particular instance

the semantics the (local) behaviour of the operations Write and Exit would be unaffected

if the handlers were swapped. In general the behaviour of operations may be affected

2.3. Dynamic binding: user-specific environments 33

by the order of handlers. The canonical example of this phenomenon is the composition

of nondeterminism and state, which we will discuss in Section 2.5.

2.3 Dynamic binding: user-specific environments

When a process is run in UNIX, the operating system makes available to the process

a collection of name-value pairs called the environment. The name of a name-value

pair is known as an environment variable. During execution the process may perform a

system call to ask the operating system for the value of some environment variable. The

value of environment variables may change throughout process execution, moreover,

the value of some environment variables may vary according to which user asks the

environment. For example, an environment may contain the environment variable USER

that is bound to the name of the enquiring user.

An environment variable can be viewed as an instance of dynamic binding. The

idea of dynamic binding as a binding form in programming dates back as far as the

original implementation of Lisp [192], and still remains an integral feature in successors

such as Emacs Lisp [171]. It is well-known that dynamic binding can be encoded as a

computational effect by using delimited control [153]. Unsurprisingly, we will use this

insight to simulate user-specific environments using effect handlers.

For simplicity we fix the users of the operating system to be root, Alice, and Bob.

User
def
= [Alice;Bob;Root]

Our environment will only support a single environment variable intended to store

the name of the current user. The value of this variable can be accessed via an operation

Ask : 1↠ String. Using this operation we can readily implement the whoami utility

from the GNU coreutils [186, Section 20.3], which returns the name of the current user.

whoami : 1→ String!{Ask : 1↠ String}
whoami ⟨⟩ def

= do Ask ⟨⟩

The following handler implements the environment.

env : ⟨User;1→ α!{Ask : 1↠ String}⟩ → α

env ⟨user;m⟩ def
= handle m⟨⟩ with

return res 7→ res

⟨⟨Ask ⟨⟩↠ resume⟩⟩ 7→ case user{Alice 7→ resume "alice"

Bob 7→ resume "bob"

Root 7→ resume "root"}

34 Chapter 2. Composing UNIX with effect handlers

The handler takes as input the current user and a computation that may perform the

Ask operation. When an invocation of Ask occurs the handler pattern matches on the

user parameter and resumes with a string representation of the user. This handler is an

instance of a so-called tail-resumptive handler [167, 277] as each resumption invocation

appears in tail position within in the operation clause. With this implementation we can

interpret an application of whoami.

env ⟨Root;whoami⟩⇝+ "root" : String

It is not difficult to extend this basic environment model to support an arbitrary number

of variables. This can be done by parameterising the Ask operation by some name

representation (e.g. a string), which the environment handler can use to index into a

list of string values. In case the name is not bound in the environment, the handler can

embrace the laissez-faire attitude of UNIX and resume with the empty string.

User session management It is somewhat pointless to have multiple user-specific en-

vironments, if the system does not support some mechanism for user session handling,

such as signing in as a different user. In UNIX the command substitute user (su) enables

the invoker to impersonate another user account, provided the invoker has sufficient

privileges. We will implement su as an operation Su : User↠ 1 which is paramet-

erised by the user to be impersonated. To model the security aspects of su, we will use

the weakest possible security model: unconditional trust. Put differently, we will not

bother with security at all to keep things relatively simple. Consequently, anyone can

impersonate anyone else.

The session signature consists of two operations, Ask, which we used above, and

Su, for switching user.

Session
def
= {Ask : 1↠ String;Su : User↠ 1}

As usual, we define a small wrapper around invocations of Su.

su : User→ 1!{Su : User↠ 1}
su user def

= do Su user

The intended operational behaviour of an invocation of Su user is to load the en-

vironment belonging to user and continue the continuation under this environment.

We can achieve this behaviour by defining a handler for Su that invokes the provided

2.3. Dynamic binding: user-specific environments 35

resumption under a fresh instance of the env handler.

sessionmgr : ⟨User;1→ α!Session⟩ → α

sessionmgr⟨user;m⟩ def
= env⟨user;(λ⟨⟩.handle m⟨⟩ with

return res 7→ res

⟨⟨Su user′↠ resume⟩⟩ 7→ env⟨user′;resume⟩)⟩

The function sessionmgr manages a user session. It takes two arguments: the initial

user (user) and the computation (m) to run in the current session. An initial instance of

env is installed with user as argument. The computation argument is a handler for Su

enclosing the computation m. The Su-case installs a new instance of env, which is the

environment belonging to user′, and runs the resumption resume under this instance.

The new instance of env shadows the initial instance, and therefore it will intercept and

handle any subsequent invocations of Ask arising from running the resumption. The

next invocation of Su will install another environment instance, which will shadow both

the previously installed instance and the initial instance. This ability to dynamically

overload residual operations is a key difference between Plotkin and Pretnar’s effect

handlers (as this thesis is about) and lexical effect handlers, as the latter bind operations

to the first suitable handler instance [37, 277].

As an illustrative example of the dynamic overloading in action, let us plug together

the all components of our system we have defined thus far.

basicIO(λ⟨⟩.
sessionmgr⟨Root;λ⟨⟩.

status(λ⟨⟩.su Alice; echo(whoami⟨⟩); echo " ";

su Bob; echo(whoami⟨⟩); echo " ";

su Root; echo(whoami⟨⟩))⟩)

⇝+ ⟨0;"alice bob root"⟩ : ⟨Int;File⟩

The session manager (sessionmgr) is installed in between the basic IO handler (basicIO)

and the process status handler (status). The initial user is Root, and thus the initial envir-

onment is the environment that belongs to the root user. Main computation signs in as

Alice and writes the result of the system call whoami to the global file, and then repeats

these steps for Bob and Root. Ultimately, the computation terminates successfully (as

indicated by 0 in the first component of the result) with global file containing the three

user names.

The above example demonstrates that we now have the basic building blocks to

build a multi-user system.

36 Chapter 2. Composing UNIX with effect handlers

2.4 Nondeterminism: time sharing

Time sharing is a mechanism that enables multiple processes to run concurrently, and

hence, multiple users to work concurrently. Thus far in our system there is exactly one

process. In UNIX there exists only a single process whilst the system is bootstrapping

itself into operation. After bootstrapping is complete the system duplicates the initial

process to start running user managed processes, which may duplicate themselves to

create further processes. The process duplication primitive in UNIX is called fork [241].

The fork-invoking process is typically referred to as the parent process, whilst its clone

is referred to as the child process. Following an invocation of fork, the parent process is

provided with a nonzero identifier for the child process and the child process is provided

with the zero identifier. This enables processes to determine their respective role in the

parent-child relationship, e.g.

let i← fork ⟨⟩ in
if i = 0 then child’s code

else parent’s code

In our system, we can model fork as an effectful operation, that returns a boolean to

indicate the process role; by convention we will interpret the return value true to mean

that the process assumes the role of parent.

fork : 1→ Bool!{Fork : 1↠ Bool}
fork ⟨⟩ def

= do Fork ⟨⟩

In UNIX the parent process continues execution after the fork point, and the child

process begins its execution after the fork point. Thus, operationally, we may understand

fork as returning twice to its invocation site. We can implement this behaviour by

invoking the resumption arising from an invocation of Fork twice: first with true to

continue the parent process, and subsequently with false to start the child process (or the

other way around if we feel inclined). The following handler implements this behaviour.

nondet : (1→ α!{Fork : 1↠ Bool})→ List α

nondet m def
= handle m⟨⟩ with

return res 7→ [res]

⟨⟨Fork ⟨⟩↠ resume⟩⟩ 7→ resume true++ resume false

The return-case returns a singleton list containing a result of running m. The Fork-case

invokes the provided resumption resume twice. Each invocation of resume effectively

2.4. Nondeterminism: time sharing 37

copies m and runs each copy to completion. Each copy returns through the return-

case, hence each invocation of resume returns a list of the possible results obtained by

interpreting Fork first as true and subsequently as false. The results are joined by list

concatenation (++). Thus the handler returns a list of all the possible results of m. This

handler is an instance of a multi-shot handler, because it contains at least one operation

clause which invokes the provided resumption multiple times.

Let us consider nondet together with the previously defined handlers. But first, let

us define two computations.

ritchie, hamlet : 1→ 1!{Write : ⟨FileDescr;String⟩↠ 1}

ritchie⟨⟩ def
= echo "UNIX is basically ";

echo "a simple operating system, ";

echo "but ";

echo "you have to be a genius

to understand the simplicity.\n"

hamlet⟨⟩ def
= echo "To be, or not to be, ";

echo "that is the question:\n";

echo "Whether ’tis nobler in the mind to suffer\n"

The computation ritchie writes a quote by Dennis Ritchie to the file, whilst the computa-

tion hamlet writes a few lines of William Shakespeare’s The Tragedy of Hamlet, Prince

of Denmark, Act III, Scene I [246] to the file. Using nondet and fork together with the

previously defined infrastructure, we can fork the initial process such that both of the

above computations are run concurrently.

basicIO(λ⟨⟩.
nondet(λ⟨⟩.

sessionmgr⟨Root;λ⟨⟩.
status(λ⟨⟩.if fork⟨⟩ then su Alice; ritchie ⟨⟩

else su Bob; hamlet ⟨⟩)⟩))

⇝+ ⟨[0,0];"UNIX is basically a simple operating system, but

you have to be a genius to understand the simplicity.\n

To be, or not to be, that is the question:\n

Whether ’tis nobler in the mind to suffer\n"⟩ : ⟨List Int;File⟩

The computation running under the status handler immediately performs an invocation

of fork, causing nondet to explore both the then-branch and the else-branch. In the

38 Chapter 2. Composing UNIX with effect handlers

former, Alice signs in and quotes Ritchie, whilst in the latter Bob signs in and quotes

a Hamlet. Looking at the output there is supposedly no interleaving of computation,

since the individual writes have not been interleaved. From the stack of handlers, we

know that there has been no interleaving of computation, because no handler in the

stack handles interleaving. Thus, our system only supports time sharing in the extreme

sense: we know from the nondet handler that every effect of the parent process will be

performed and handled before the child process gets to run. In order to be able to share

time properly amongst processes, we must be able to interrupt them.

Interleaving computation We need an operation for interruptions and corresponding

handler to handle interrupts in order for the system to support interleaving of processes.

interrupt : 1→ 1!{Interrupt : 1↠ 1}
interrupt ⟨⟩ def

= do Interrupt ⟨⟩

The intended behaviour of an invocation of Interrupt is to suspend the invoking com-

putation in order to yield time for another computation to run. We can achieve this

behaviour by reifying the process state. For the purpose of interleaving processes via

interruptions it suffices to view a process as being in either of two states: 1) it is done,

that is it has run to completion, or 2) it is paused, meaning it has yielded to provide

room for another process to run. We can model the state using a recursive variant type

parameterised by some return value α, a set of effects ε that the process may perform,

and a present variable to denote the presence of Interrupt.

Pstate α ε θ
def
= [Done : α;

Paused : 1→ Pstate α ε θ!{Interrupt : θ;ε}]

This data type definition is an instance of the resumption monad [211]. The Done-

tag simply carries the return value of type α. The Paused-tag carries a suspended

computation, which returns another instance of Pstate, and may or may not perform

any further invocations of Interrupt. Payload type of Paused is precisely the type of a

resumption originating from a handler that handles only the operation Interrupt such as

the following handler.

reifyProcess : (1→ α!{Interrupt : 1↠ 1;ε})→ Pstate α ε θ

reifyProcess m def
= handle m⟨⟩ with

return res 7→ Done res

⟨⟨Interrupt ⟨⟩↠ resume⟩⟩ 7→ Paused resume

2.4. Nondeterminism: time sharing 39

This handler tags and returns values with Done. It also tags and returns the resump-

tion provided by the Interrupt-case with Paused. It is worth noting that the actual type

of resume is 1→ Pstate α ε θ!{Interrupt : θ;ε}, which shows us that the variables ε

and θ threaded through Pstate come from the ambient context. This particular imple-

mentation amounts to a handler-based variation of Harrison’s non-reactive resumption

monad [112]. If we compose this handler with the nondeterminism handler, then we

obtain a term with the following type.

nondet(λ⟨⟩.reifyProcess m) : List (Pstate α {Fork : 1↠ Bool;ε})

for some m : 1→ {Proc;ε} where Proc
def
= {Fork : 1↠ Bool; Interrupt : 1↠ 1}. The

composition yields a list of process states, some of which may be in suspended state.

In particular, the suspended computations may have unhandled instances of Fork as

signified by it being present in the effect row. The reason for this is that in the above

composition when reifyProcess produces a Paused-tagged resumption, it immediately

returns through the return-case of nondet, meaning that the resumption escapes the

nondet. Recall that a resumption is a delimited continuation that captures the extent

from the operation invocation up to and including the nearest enclosing suitable handler.

In this particular instance, it means that the nondet handler is part of the extent. We

ultimately want to return just a list of αs to ensure every process has run to completion.

To achieve this, we need a function that keeps track of the state of every process, and

in particular it must run each Paused-tagged computation under the nondet handler to

produce another list of process state, which must be handled recursively.

schedule : List (Pstate α {Fork : Bool;ε} θ)→ List α!ε

schedule ps def
= let run← rec sched ⟨ps;done⟩.

case ps { [] 7→ done

(Done res) :: ps′ 7→ sched ⟨ps′;res :: done⟩
(Paused m) :: ps′ 7→ sched ⟨ps′++(nondet m); done⟩}

in run⟨ps; []⟩

The function schedule implements a process scheduler. It takes as input a list of process

states, where Paused-tagged computations may perform the Fork operation. Locally

it defines a recursive function sched which carries a list of active processes ps and

the results of completed processes done. The function inspects the process list ps to

test whether it is empty or nonempty. If it is empty it returns the list of results done.

Otherwise, if the head is Done-tagged value, then the function is recursively invoked

40 Chapter 2. Composing UNIX with effect handlers

with tail of processes ps′ and the list done augmented with the value res. If the head is a

Paused-tagged computation m, then sched is recursively invoked with the process list

ps′ concatenated with the result of running m under the nondet handler.

Using the above machinery, we can define a function which adds time-sharing

capabilities to the system.

timeshare : (1→ α!Proc)→ List α

timeshare m def
= schedule [Paused(λ⟨⟩.reifyProcess m)]

The function timeshare handles the invocations of Fork and Interrupt in some compu-

tation m by starting it in suspended state under the reifyProcess handler. The schedule

actually starts the computation, when it runs the computation under the nondet handler.

The question remains how to inject invocations of Interrupt such that computation

gets interleaved.

Interruption via interception To implement process preemption operating systems

typically to rely on the underlying hardware to asynchronously generate some kind

of interruption signals. These signals can be caught by the operating system’s process

scheduler, which can then decide to which processes to suspend and continue. If our

core calculi had an integrated notion of asynchrony and effects along the lines of Ahman

and Pretnar’s core calculus λæ [6], then we could potentially treat interruption signals as

asynchronous effectful operations, which can occur spontaneously and, as suggested by

Dolan et al. [72] and realised by Poulson [229], be handled by a user-definable handler.

In the absence of asynchronous effects we have to inject synchronous interruptions

ourselves. One extreme approach is to trust the user to perform invocations of Interrupt

periodically. Another approach is based on the fact that every effect (except for diver-

gence) occurs via some operation invocation, and every-so-often the user is likely to

perform computational effect, thus the basic idea is to bundle Interrupt with invocations

of other operations. For example, we can insert an instance of Interrupt in some of the

wrapper functions for operation invocations that we have defined so conscientiously

thus far. The problem with this approach is that it requires a change of type signatures.

To exemplify this problem consider type of the echo function if we were to bundle an

invocation of Interrupt along side Write.

echo′ : String→ 1!{Interrupt : 1↠ 1;Write : ⟨FileDescr;String⟩↠ 1}
echo′ cs def

= do Interrupt⟨⟩; do Write⟨stdout;cs⟩

2.4. Nondeterminism: time sharing 41

In addition to Write the effect row must now necessarily mention the Interrupt operation.

As a consequence this approach is not backwards compatible, since the original defin-

ition of echo can be used in a context that prohibits occurrences of Interrupt. Clearly,

this alternative definition cannot be applied in such a context.

There is backwards-compatible way to bundle the two operations together. We

can implement a handler that intercepts invocations of Write and handles them by

performing an interrupt and, crucially, reperforming the intercepted write operation.

interruptWrite : (1→ α!{Interrupt : 1↠ 1;Write : ⟨FileDescr;String⟩↠ 1})
→ α!{Interrupt : 1↠ 1;Write : ⟨FileDescr;String⟩↠ 1}

interruptWrite m def
= handle m ⟨⟩ with

return res 7→ res

⟨⟨Write ⟨fd;cs⟩↠ resume⟩⟩ 7→ interrupt⟨⟩;
resume(do Write ⟨fd;cs⟩)

This handler is not ‘self-contained’ as the other handlers we have defined previously. It

gives in some sense a ‘partial’ interpretation of Write as it leaves open the semantics of

Interrupt and Write, i.e. this handler must be run in a suitable context of other handlers.

Let us plug this handler into the previous example to see what happens.

basicIO(λ⟨⟩.
timeshare(λ⟨⟩.

interruptWrite(λ⟨⟩.
sessionmgr⟨Root;λ⟨⟩.

status(λ⟨⟩.if fork⟨⟩ then su Alice; ritchie ⟨⟩
else su Bob; hamlet ⟨⟩)⟩)))

⇝+ ⟨[0,0];"UNIX is basically To be, or not to be,\n

a simple operating system, that is the question:\n

but Whether ’tis nobler in the mind to suffer\n

you have to be a genius to understand the simplicity.\n"⟩
: ⟨List Int;File⟩

Evidently, each write operation has been interleaved, resulting in a mishmash poetry

of Shakespeare and UNIX. I will leave it to the reader to be the judge of whether

this new poetry belongs under the category of either classic arts vandalism or novel

contemporary reinterpretations. As the saying goes: art is in the eye of the beholder.

42 Chapter 2. Composing UNIX with effect handlers

2.5 State: file i/o

Thus far the system supports limited I/O, abnormal process termination, multiple user

sessions, and multi-tasking via concurrent processes. At this stage we have most of

core features in place. We still have to complete the I/O model. The current I/O model

provides an incomplete file system consisting of a single write-only file. In this sec-

tion we will implement a UNIX-like file system that supports file creation, opening,

truncation, read and write operations, and file linking.

To implement a file system we will need to use state. State can readily be imple-

mented with an effect handler [143]. It is a deliberate choice to leave state for last,

because once you have state it is tempting to use it excessively — to the extent it be-

comes a cliche. As demonstrated in the previous sections, it is possible to achieve many

things that have a stateful flavour without explicit state by harnessing the implicit state

provided by the program stack.

In the following subsection, I will provide an interface for stateful operations and

their implementation in terms of a handler. The stateful operations will be put to use in

the subsequent subsection to implement a basic sequential file system.

Handling state

As we have already seen in Section 1.2, the interface for accessing and updating a state

cell consists of two operations.

State β
def
= {Get : 1↠ β;Put : β↠ 1}

The intended operational behaviour of Get operation is to read the value of type β of the

state cell, whilst the Put operation is intended to replace the current value held by the

state cell with another value of type β. As per usual business, the following functions

abstract the invocation of the operations.

get : 1→ β!{Get : 1↠ β} put : 1→ β!{Put : β↠ 1}
get ⟨⟩ def

= do Get ⟨⟩ put st def
= do Put st

2.5. State: file i/o 43

The following handler interprets the operations.

runState : ⟨β;1→ α!State β⟩ → ⟨α;β⟩
runState ⟨st0;m⟩ def

= let run← handle m⟨⟩ with
return res 7→ λst.⟨res;st⟩
⟨⟨Get ⟨⟩↠ resume⟩⟩ 7→ λst.resume st st

⟨⟨Put st′↠ resume⟩⟩ 7→ λst.resume ⟨⟩ st′

in run st0

The runState handler provides a generic way to interpret any stateful computation. It

takes as its first parameter the initial value of the state cell. The second parameter is a

potentially stateful computation. Ultimately, the handler returns the value of the input

computation along with the current value of the state cell.

Each case returns a state-accepting function. The return-case returns a function

that produces a pair consisting of return value of m and the final state st. The Get-case

returns a function that applies the resumption resume to the current state st. Recall that

return type of a resumption is the same as its handler’s return type, so since the handler

returns a function, it follows that resume : β→ β→⟨α,β⟩. In other words, the invocation

of resume produces another state-accepting function. This function arises from the next

activation of the handler either by way of a subsequent operation invocation in m or

the completion of m to invoke the return-case. Since Get does not modify the value of

the state cell it passes st unmodified to the next handler activation. In the Put-case the

resumption must also produce a state-accepting function of the same type, however, the

type of the resumption is slightly different resume : 1→ β→ ⟨α,β⟩. The unit type is

the expected return type of Put. The state-accepting function arising from resume ⟨⟩ is

supplied with the new state value st′. This application effectively discards the current

state value st.

The first operation invocation in m, or if it completes without invoking Get or Put,

the handler returns a function that accepts the initial state. The function gets bound

to run which is subsequently applied to the provided initial state st0 which causes

evaluation of the stateful fragment of m to continue.

Backtrackable state vs non-backtrackable state The meaning of stateful operations

may depend on whether the ambient environment is nondeterministic. Post-composing

nondeterminism with state gives rise to the backtrackable state phenomenon, where

state modifications are local to each strand of nondeterminism, that is each strand main-

tains its own copy of the state [108]. The state is backtrackable, because returning back

44 Chapter 2. Composing UNIX with effect handlers

Directory

"hamlet"

"ritchie.txt"
...

"stdout"
...

"act3"

I-List

1

2
...

1

Data region

""

"To be, or not to be..."
...

"UNIX is basically..."

Figure 2.1: UNIX directory, i-list, and data region mappings.

to a previous branch point restores the state as it were prior to the branch. In contrast,

post-composing state with nondeterminism results in the non-backtrackable state in-

terpretation, where the state is shared across every strand of nondeterminism, meaning

that backtracking to a previous branch point does not restore the original state at the

time of the branch, but rather keeps the current state as is.

For modelling the file system we opt for the non-backtrackable state interpretation

such that changes made to file system are visible to all processes. The backtrackable

state interpretation could prove useful if we were to model a virtual file system per

process such that each process would have its own unique standard out file.

The two state phenomena are inter-encodable. Pauwels et al. [213] give a systematic

behaviour-preserving transformation for nondeterminism with backtrackable state into

nondeterminism with non-backtrackable state and vice versa.

Basic serial file system

A file system provide an abstraction over storage media in a computer system by organ-

ising the storage space into a collection of files. This abstraction facilities typical file

operations: allocation, deletion, reading, and writing. UNIX dogmatises the notion of

file to the point where everything is a file. A typical UNIX-style file system differenti-

ates between ordinary files, directory files, and special files [241]. An ordinary file is

a sequence of characters. A directory file is a container for all kinds of files. A special

file is an interface for interacting with an i/o device.

We will implement a basic serial file system, which we dub BSFS. It will be basic

in the sense that it models the bare minimum to pass as a file system, that is we will

implement support for the four basic operations: file allocation, file deletion, file reading,

2.5. State: file i/o 45

and file writing. The read and write operations will be serial, meaning every file is

read in order from its first character to its last character, and every file is written to

by appending the new content. BSFS will only contain ordinary files, and as a result

the file hierarchy will be entirely flat. Although, the system can readily be extended

to be hierarchical, it comes at the expense of extra complexity, that blurs rather than

illuminates the model.

Directory, i-list, and data region A storage medium is an array of bytes. An UNIX

file system is implemented on top of this array by interpreting certain intervals of

the array differently. These intervals provide the space for the essential administrative

structures for file organisation.

1. The directory is a collection of human-readable names for files. In general, a file

may have multiple names. Each name is stored along with a pointer into the i-list.

2. The i-list is a collection of i-nodes. Each i-node contains the meta data for a file

along with a pointer into the data region.

3. The data region contains the actual file contents.

These structures make up the BSFS. Figure 2.1 depicts an example with the three

structures and a mapping between them. The only file meta data tracked by BSFS is

the number of names for a file. The three structures and their mappings can be imple-

mented using association lists. Although, a better practical choice may be a functional

map or functional array [210], association lists have the advantage of having a simple,

straightforward implementation.

Directory
def
= List⟨String; Int⟩ DataRegion

def
= List⟨Int;File⟩

INode
def
= ⟨lno : Int; loc : Int⟩ IList

def
= List⟨Int; INode⟩

Mathematically, we may think the type Directory as denoting a partial function C∗⇀Z,

where C is a suitable alphabet. The function produces an index into the i-list. Simil-

arly, the type IList denotes a partial function Z ⇀ Z×Z, where the codomain is the

denotation of INode. The first component of the pair is the number of names linked to

the i-node, and as such Z is really an overapproximation as an i-node cannot have a

negative number of names. The second component is an index into the data region. The

denotation of the type DataRegion is another partial function Z⇀ C∗.

46 Chapter 2. Composing UNIX with effect handlers

We define the type of the file system to be a record of the three association lists

along with two counters for the next available index into the data region and i-list,

respectively.

FileSystem
def
= ⟨dir : Directory; ilist : IList;dreg : DataRegion;

dnext : Int; inext : Int⟩

We can then give an implementation of the initial state of the file system.

fs0
def
= ⟨dir = [⟨"stdout";0⟩]; ilist = [⟨0;⟨lno = 1; loc = 0⟩⟩];dreg = [⟨0;""⟩];

dnext = 1; inext = 1⟩

Initially the file system contains a single, empty file with the name stdout. Next we

will implement the basic operations on the file system separately.

We have made a gross simplification here, as a typical file system would provide

some file descriptor abstraction for managing access open files. In BSFS we will operate

directly on i-nodes, meaning we define FileDescr
def
= Int, meaning the file open operation

will return an i-node identifier. As consequence it does not matter whether a file is

closed after use as file closing would be a no-op (closing a file does not change the

state of its i-node). Therefore BSFS will not provide a close operation. As a further

consequence the file system will have no resource leakage.

File reading and writing Let us begin by giving a semantics to file reading and

writing. We need an abstract operation for each file operation.

FileRW
def
= {Read : Int↠ Option String;Write : ⟨Int;String⟩↠ 1}

The operation Read is parameterised by an i-node number (i.e. index into the i-list)

and possibly returns the contents of the file pointed to by the i-node. The operation

may fail if it is provided with a stale i-node number. Thus the option type is used to

signal failure or success to the caller. The Write operation is parameterised by an i-node

number and some strings to be appended onto the file pointed to by the i-node. The

operation returns unit, and thus the operation does not signal to its caller whether it

failed or succeed. Before we implement a handler for the operations, we will implement

primitive read and write operations that operate directly on the file system. We will use

the primitive operations to implement the semantics for Read and Write. To implement

the primitive the operations we will need two basic functions on association lists. I will

2.5. State: file i/o 47

only their signatures here.

lookup : ⟨α;List⟨α;β⟩⟩ → β!{Fail : 1↠ 0}

modify : ⟨α;β;List⟨α;β⟩⟩ → ⟨α;β⟩

Given a key of type α the lookup function returns the corresponding value of type β in

the given association list. If the key does not exists, then the function invokes the Fail

operation to signal failure. The modify function takes a key and a value. If the key exists

in the provided association list, then it replaces the value bound by the key with the

provided value. Using these functions we can implement the primitive read and write

operations.

fread : ⟨Int;FileSystem⟩ → String!{Fail : 1↠ 0}
fread⟨ino; fs⟩ def

= let inode← lookup⟨ino; fs.ilist⟩ in
lookup⟨inode.loc; fs.dreg⟩

The function fread takes as input the i-node number for the file to be read and a file

system. First it looks up the i-node structure in the i-list, and then it uses the location

in the i-node to look up the file contents in the data region. Since fread performs no

exception handling it will fail if either look up fails. The implementation of the primitive

write operation is similar.

fwrite : ⟨Int;String;FileSystem⟩ → FileSystem!{Fail : 1↠ 0}
fwrite⟨ino;cs; fs⟩ def

= let inode← lookup⟨ino; fs.ilist⟩ in
let file← lookup⟨inode.loc; fs.dreg⟩ in
⟨ fs with dreg = modify⟨inode.loc;file++ cs; fs⟩⟩

The first two lines grab hold of the file, whilst the last line updates the data region in file

system by appending the string cs onto the file. Before we can implement the handler,

we need an exception handling mechanism. The following exception handler interprets

Fail as some default value.

withDefault : ⟨α;1→ α!{Fail : 1↠ 0}⟩ → α

withDefault⟨default;m⟩ def
= handle m ⟨⟩ with

return x 7→ x

⟨⟨Fail ⟨⟩↠ _⟩⟩ 7→ default

48 Chapter 2. Composing UNIX with effect handlers

The Fail-case is simply the default value, whilst the return-case is the identity. Now we

can use all the above pieces to implement a handler for the Read and Write operations.

fileRW : (1→ α!FileRW)→ α!State FileSystem

fileRW m def
= handle m⟨⟩ with

return res 7→ res

⟨⟨Read ino↠ resume⟩⟩ 7→ let cs← withDefault⟨None;λ⟨⟩.
Some(fread⟨ino;get⟨⟩⟩)⟩

in resume cs

⟨⟨Write ⟨ino;cs⟩↠ resume⟩⟩ 7→ withDefault ⟨⟨⟩;λ⟨⟩.
let fs← fwrite⟨ino;cs;get⟨⟩⟩
in put fs⟩; resume⟨⟩

The Read-case uses the fread function to implement reading a file. The file system

state is retrieved using the state operation get. The possible failure of fread is dealt

with by the withDefault handler by interpreting failure as None. The Write-case makes

use of the fwrite function to implement writing to a file. Again the file system state

is retrieved using get. The put operation is used to update the file system state with

the state produced by the successful invocation of fwrite. Failure is interpreted as unit,

meaning that from the caller’s perspective the operation fails silently.

File creation and opening The signature of file creation and opening is unsurpris-

ingly comprised of two operations.

FileCO
def
= {Create : String↠ Option Int;Open : String↠ Option Int}

The implementation of file creation and opening follows the same pattern as the imple-

mentation of reading and writing. As before, we implement a primitive routine for each

operation that interacts directly with the file system structure. We first implement the

primitive file opening function as the file creation function depends on this function.

fopen : ⟨String;FileSystem⟩ → Int!{Fail : 1↠ 0}
fopen⟨fname; fs⟩ def

= lookup⟨fname; fs.dir⟩

Opening a file in the file system simply corresponds to returning the i-node index

associated with the filename in the directory table.

The UNIX file create command does one of two things depending on the state

of the file system. If the create command is provided with the name of a file that is

2.5. State: file i/o 49

already present in the directory, then the system truncates the file, and returns the file

descriptor for the file. Otherwise the system allocates a new empty file and returns its

file descriptor [241]. To check whether a file already exists in the directory we need a

function has that given a filename and the file system state returns whether there exists

a file with the given name. This function can be built completely generically from the

functions we already have at our disposal.

has : ⟨α;List⟨α;β⟩⟩ → Bool

has⟨k;xs⟩ def
= withDefault⟨false;(λ⟨⟩.lookup⟨k;xs⟩; true)⟩

The function has applies lookup under the failure handler with default value false. If

lookup returns successfully then its result is ignored, and the computation returns true,

otherwise the computation returns the default value false. With this function we can

implement the semantics of create.

fcreate : ⟨String;FileSystem⟩ → ⟨Int;FileSystem⟩!{Fail : 1↠ 0}
fcreate⟨fname; fs⟩ def

= if has⟨fname; fs.dir⟩ then
let ino← fopen⟨fname; fs⟩ in
let inode← lookup⟨ino; fs⟩ in
let dreg′←modify⟨inode.loc;""; fs.dreg⟩ in
⟨ino;⟨fs with dreg = dreg′⟩⟩

else
let loc← fs.lnext in
let dreg← ⟨loc;""⟩ :: fs.dreg in
let ino← fs.inext in
let inode← ⟨loc = loc; lno = 1⟩ in
let ilist← ⟨ino; inode⟩ :: fs.ilist in
let dir← ⟨fname; ino⟩ :: fs.dir in
⟨ino;⟨dir = dir; ilist = ilist;dreg = dreg;

lnext = loc+1; inext = ino+1⟩⟩

The then-branch accounts for the case where the filename fname already exists in the

directory. First we retrieve the i-node for the file to obtain its location in the data region

such that we can truncate the file contents. The branch returns the i-node index along

with the modified file system. The else-branch allocates a new empty file. First we

allocate a location in the data region by copying the value of fs.lnext and consing the

location and empty string onto fs.dreg. The next three lines allocates the i-node for

the file in a similar fashion. The second to last line associates the filename with the

50 Chapter 2. Composing UNIX with effect handlers

new i-node. The last line returns the identifier for the i-node along with the modified

file system, where the next location (lnext) and next i-node identifier (inext) have been

incremented. It is worth noting that the effect signature of fcreate mentions Fail even

though it will never fail. It is present in the effect row due to the use of fopen and

lookup in the then-branch. Either application can only fail if the file system is in an

inconsistent state, where the index ino has become stale. The f-family of functions have

been carefully engineered to always leave the file system in a consistent state.

Now we can implement the semantics for the Create and Open effectful operations.

The implementation is similar to the implementation of fileRW.

fileCO : (1→ α!FileCO)→ α!State FileSystem

fileCO m def
= handle m⟨⟩ with

return res 7→ res

⟨⟨Create fname↠ resume⟩⟩ 7→ let ino← withDefault⟨None;λ⟨⟩.
let ⟨ino; fs⟩= fcreate⟨ fname;get⟨⟩⟩
in put fs; Some ino⟩

in resume ino

⟨⟨Open fname↠ resume⟩⟩ 7→ let ino← withDefault ⟨None;λ⟨⟩.
Some(fopen⟨fname;get⟨⟩⟩)⟩

in resume ino

Stream redirection The processes we have defined so far use the echo utility to

write to the stdout file. The target file stdout is hardwired into the definition of echo

(Section 2.1). To take advantage of the capabilities of the new file system we could

choose to modify the definition of echo such that it is parameterised by the target file.

However, such a modification is a breaking change. Instead we can define a stream

redirection operator that allow us to redefine the target of Write operations locally.

> : ⟨1→ α!{Write : ⟨Int;String⟩↠ 1};String⟩
→ α!{Create : String↠ Option Int;Exit : Int↠ 0;Write : ⟨Int;String⟩↠ 1}

m > fname def
= let ino← case do Create fname { None 7→ exit 1

Some ino 7→ ino}
in handle m⟨⟩ with

return res 7→ res

⟨⟨Write ⟨_;cs⟩↠ resume⟩⟩ 7→ resume(do Write⟨ino;cs⟩)

The operator > first attempts to create a new target file with name fname. If it fails it

simply exits with code 1. Otherwise it continues with the i-node reference ino. The

2.5. State: file i/o 51

handler overloads the definition of Write inside the provided computation m. The new

definition drops the i-node reference of the initial target file and replaces it by the

reference to new target file.

This stream redirection operator is slightly more general than the original redirection

operator in the original UNIX environment. As the UNIX redirection operator only

redirects writes targeted at the stdout file [241], whereas the above operator redirects

writes regardless of their initial target. It is straightforward to implement this original

UNIX behaviour by inspecting the first argument of Write in the operation clause before

committing to performing the redirecting Write operation. Modern UNIX environments

typically provide more fine-grained control over redirects, for example by allowing the

user to specify on a per file basis which writes should be redirected. Again, we can

implement this behaviour by comparing the provided file descriptor with the descriptor

in the payload of Write.

We can plug everything together to observe the new file system in action.

runState⟨fs0;fileRW(λ⟨⟩.
fileCO(λ⟨⟩.

timeshare(λ⟨⟩.
interruptWrite(λ⟨⟩.

sessionmgr⟨Root;λ⟨⟩.
status(λ⟨⟩.if fork⟨⟩ then su Alice; ritchie > "ritchie.txt"

else su Bob; hamlet > "hamlet")⟩))))⟩

⇝+ ⟨[0,0];
⟨dir = [⟨"hamlet";2⟩,⟨"ritchie.txt";1⟩,⟨"stdout";0⟩];
ilist = [⟨2;⟨lno = 1; loc = 2⟩⟩,⟨1;⟨lno = 1; loc = 1⟩⟩,⟨0;⟨lno = 1; loc = 0⟩⟩];
dreg = [⟨2;"To be, or not to be,\nthat is the question:\n

Whether ’tis nobler in the mind to suffer\n"⟩,
⟨1;"UNIX is basically a simple operating system,

but you have to be a genius to understand the simplicity.\n"⟩,
⟨0;""⟩]; lnext = 3; inext = 3⟩⟩

: ⟨List Int;FileSystem⟩

The writes of the processes ritchie and hamlet are now being redirected to designated

files ritchie.txt and hamlet, respectively. The operating system returns the comple-

tion status of all the processes along with the current state of the file system such that it

can be used as the initial file system state on the next start of the operating system.

52 Chapter 2. Composing UNIX with effect handlers

File linking and unlinking

At this point the implementation of BSFS is almost feature complete. However, we have

yet to implement two dual file operations: linking and unlinking. The former enables

us to associate a new filename with an existing i-node, thus providing a mechanism for

making soft copies of files (i.e. the file contents are shared). The latter lets us dissociate

a filename from an i-node, thus providing a means for removing files. The interface of

linking and unlinking is given below.

FileLU
def
= {Link : ⟨String;String⟩↠ 1;Unlink : String↠ 1}

The Link operation is parameterised by two strings. The first string is the name of the

source file and the second string is the destination name (i.e. the new name). The Unlink

operation takes a single string argument, which is the name of the file to be removed.

As before, we bundle the low level operations on the file system state into their own

functions. We start with file linking.

flink : ⟨String;String;FileSystem⟩ → FileSystem!{Fail : 1↠ 0}
flink⟨src;dest; fs⟩ def

= if has⟨dest; fs.dir⟩ then absurd do Fail⟨⟩
else let ino← lookup ⟨src; fs.dir⟩ in

let dir′← ⟨dest; ino⟩ :: fs.dir in
let inode← lookup ⟨ino; fs.ilist⟩ in
let inode′← ⟨inode with lno = inode.lno+1⟩ in
let ilist′←modify⟨ino; inode′; fs.ilist⟩ in
⟨fs with dir = dir′; ilist = ilist′⟩

The function flink checks whether the destination filename, dest, already exists in the

directory. If it exists then the function raises the Fail exception. Otherwise it looks up

the index of the i-node, ino, associated with the source file, src. Next, the directory is

extended with the destination filename, which gets associated with this index, meaning

src and dest both share the same i-node. Finally, the link count of the i-node at index

ino gets incremented, and the function returns the updated file system state.

The semantics of file unlinking is slightly more complicated as an i-node may

become unlinked, meaning that it needs to garbage collected along with its file contents

in the data region. To implement file removal we make use of another standard operation

on association lists.

remove : ⟨α;⟨α;β⟩⟩ → ⟨α;β⟩

2.5. State: file i/o 53

The first parameter to remove is the key associated with the entry to be removed from

the association list, which is given as the second parameter. If the association list does

not have an entry for the given key, then the function behaves as the identity. The

behaviour of the function in case of multiple entries for a single key does not matter as

our system is carefully set up to ensure that each key has an unique entry.

funlink : ⟨String;FileSystem⟩ → FileSystem!{Fail : 1↠ 0}
funlink⟨fname; fs⟩ def

= if has⟨fname; fs.dir⟩ then
let ino← lookup⟨fname; fs.dir⟩ in
let dir′← remove⟨fname; fs.dir⟩ in
let inode← lookup⟨ino; fs.ilist⟩ in
let ⟨ilist′;dreg′⟩ ← if inode.lno > 1 then

let inode′← ⟨inode with
lno = inode.lno−1⟩

in ⟨modify⟨ino; inode′; fs.ilist⟩; fs.dreg⟩
else ⟨remove⟨ino; fs.ilist⟩;

remove⟨inode.loc; fs.dreg⟩⟩
in ⟨fs with dir = dir′; ilist = ilist′;dreg = dreg′⟩

else absurd do Fail⟨⟩

The funlink function checks whether the given filename fname exists in the directory. If

it does not, then it raises the Fail exceptions. However, if it does exist then the function

proceeds to lookup the index of the i-node for the file, which gets bound to ino, and

subsequently remove the filename from the directory. Afterwards it looks up the i-node

with index ino. Now one of two things happen depending on the current link count of

the i-node. If the count is greater than one, then we need only decrement the link count

by one, thus we modify the i-node structure. If the link count is 1, then i-node is about

to become stale, thus we must garbage collect it by removing both the i-node from the

i-list and the contents from the data region. Either branch returns the new state of i-list

and data region. Finally, the function returns the new file system state.

With the flink and funlink functions, we can implement the semantics for Link and

54 Chapter 2. Composing UNIX with effect handlers

Unlink operations following the same patterns as for the other file system operations.

fileLU : (1→ α!FileLU)→ α!State FileSystem

fileLU m def
= handle m⟨⟩ with

return res 7→ res

⟨⟨Link ⟨src;dest⟩↠ resume⟩⟩ 7→ withDefault⟨⟨⟩;λ⟨⟩.
let fs = flink⟨src;dest;get⟨⟩⟩
in put fs⟩;resume⟨⟩

⟨⟨Unlink fname↠ resume⟩⟩ 7→ withDefault⟨⟨⟩;λ⟨⟩.
let fs = funlink⟨fname;get⟨⟩⟩
in put fs⟩;resume⟨⟩

The composition of fileRW, fileCO, and fileLU complete the implementation of BSFS.

FileIO
def
= {FileRW;FileCO;FileLU}

fileIO : (1→ α!FileIO)→ α!State FileSystem

fileIO m def
= fileRW(λ⟨⟩.fileCO(λ⟨⟩.fileLU m))

The three handlers may as well be implemented as a single monolithic handler, since

they implement different operations, return the same value, and make use of the same

state cell. In practice a monolithic handler may have better performance. However,

a sufficiently clever compiler would be able to take advantage of the fusion laws of

deep handlers to fuse the three handlers into one (e.g. using the technique of Wu and

Schrijvers [275]), and thus allow modular composition without composition.

We now have the building blocks to implement a file copying utility. We will im-

plement the utility such that it takes an argument to decide whether it should make a

soft copy such that the source file and destination file are linked, or it should make a

hard copy such that a new i-node is allocated and the bytes in the data regions gets

duplicated.

cp : ⟨Bool;String;String⟩ → 1!{FileIO;Exit : Int↠ 0}
cp ⟨link;src;dest⟩ def

= if link then do Link⟨src;dest⟩
else case do Open src

{ None 7→ exit 1

Some ino 7→
case do Read ino { None 7→ exit 1

Some cs 7→ echo cs > dest}}

2.5. State: file i/o 55

If the link parameter is true, then the utility makes a soft copy by performing the

operation Link to link the source file and destination file. Otherwise the utility makes a

hard copy by first opening the source file. If Open returns the None (i.e. the open failed)

then the utility exits with code 1. If the open succeeds then the entire file contents are

read. If the read operation fails then we again just exit, however, in the event that it

succeeds we apply the echo to the file contents and redirects the output to the file dest.

The logic for file removal is part of the semantics for Unlink. Therefore the imple-

mentation of a file removal utility is simply an application of the operation Unlink.

rm : String→ 1!{Unlink : String↠ 1}
rm fname def

= do Unlink fname

We can now plug it all together.

runState⟨fs0;fileIO(λ⟨⟩.
timeshare(λ⟨⟩.

interruptWrite(λ⟨⟩.
sessionmgr⟨Root;λ⟨⟩.

status(λ⟨⟩.if fork⟨⟩
then su Alice; ritchie > "ritchie.txt";

cp⟨false;"ritchie.txt";"ritchie"⟩;
rm"ritchie.txt"

else su Bob; hamlet > "hamlet";

cp⟨true;"hamlet";"act3"⟩)⟩))))⟩

⇝+ ⟨[0,0];
⟨dir = [⟨"ritchie";3⟩,⟨"act3";2⟩,⟨"hamlet";2⟩,⟨"stdout";0⟩];
ilist = [⟨3;⟨lno = 1; loc = 3⟩⟩,⟨2;⟨lno = 2; loc = 2⟩⟩,⟨0;⟨lno = 1; loc = 0⟩⟩];
dreg = [⟨3;"UNIX is basically a simple operating system,

but you have to be a genius

to understand the simplicity.\n"⟩,
⟨2;"To be, or not to be,\nthat is the question:\n

Whether ’tis nobler in the mind to suffer\n"⟩,
⟨0;""⟩]; lnext = 4; inext = 4⟩⟩

: ⟨List Int;FileSystem⟩

Alice copies the file ritchie.txt as ritchie, and subsequently removes the original

file, which effectively amounts to a roundabout way of renaming a file. It is evident

56 Chapter 2. Composing UNIX with effect handlers

from the file system state that the file is a hard copy as the contents of ritchie.txt

now reside in location 3 rather than location 1 in the data region. Bob makes a soft copy

of the file hamlet as act3, which is evident by looking at the directory where the two

filenames point to the same i-node (with index 2), whose link counter has value 2.

Summary Throughout the preceding sections we have used effect handlers to give

a semantics to a UNIX-style operating system by treating system calls as effectful op-

erations, whose semantics are given by handlers, acting as composable micro-kernels.

Starting from a simple bare minimum file I/O model we seen how the modularity of

effect handlers enable us to develop a feature-rich operating system in an incremental

way by composing several handlers to implement a basic file system, multi-user envir-

onments, and multi-tasking support. Each incremental change to the system has been

backwards compatible with previous changes in the sense that we have not modified any

previously defined interfaces in order to support a new feature. It serves as a testament

to demonstrate the versatility of effect handlers, and it suggests that handlers can be

a viable option to use with legacy code bases to retrofit functionality. The operating

system makes use of fourteen operations, which are being handled by twelve handlers,

some of which are used multiple times, e.g. the env and > handlers.

2.6 UNIX-style pipes

In this section we will implement UNIX pipes to replicate the UNIX programming

experience. A UNIX pipe is an abstraction for streaming communication between two

processes. Technically, a pipe works by connecting the standard out file descriptor of

the first process to the standard in file descriptor of the second process. The second

process can then handle the output of the first process by reading its own standard in

file [241].

We could implement pipes using the file system, however, it would require us to

implement a substantial amount of bookkeeping as we would have to generate and

garbage collect a standard out file and a standard in file per process. Instead we can

represent the files as effectful operations and connect them via handlers. The principal

idea is to implement an abstraction similar to Ganz et al.’s seesaw trampoline, where

two processes take turn to run [105]. We will have a consumer process that awaits

input, and a producer process that yields output. However, implementing this sort of

abstraction with deep handlers is irksome, because deep handlers hard-wire the inter-

2.6. UNIX-style pipes 57

pretation of operations in the computation and therefore do not let us readily change

the interpretation of operations. By contrast, shallow handlers offer more flexibility as

they let us change the handler after each operation invocation. The technical reason

being that resumptions provided a shallow handler do not implicitly include the handler

as well, thus an invocation of a resumption originating from a shallow handler must be

explicitly run under another handler by the programmer. To illustrate shallow handlers

in action, let us consider how one might implement a demand-driven UNIX pipeline

operator as two mutually recursive handlers.

pipe : ⟨1→ α!{Yield : β↠ 1};1→ α!{Await : 1↠ β}⟩ → α

pipe⟨p;c⟩ def
= handle† c⟨⟩ with

return x 7→ x

⟨⟨Await ⟨⟩↠ resume⟩⟩ 7→ copipe⟨resume;p⟩

copipe : ⟨β→ α!{Await : 1↠ β};1→ α!{Yield : β↠ 1}⟩ → α

copipe⟨c;p⟩ def
= handle† p⟨⟩ with

return x 7→ x

⟨⟨Yield y↠ resume⟩⟩ 7→ pipe⟨resume;λ⟨⟩.cy⟩

A pipe takes two suspended computations, a producer p and a consumer c. Each of the

computations returns a value of type α. The producer can perform the Yield operation,

which yields a value of type β and the consumer can perform the Await operation,

which correspondingly awaits a value of type β. The Yield operation corresponds to

writing to standard out, whilst Await corresponds to reading from standard in. The pipe

runs the consumer under a handle†-construct, which is the term syntax for shallow

handler application. If the consumer terminates with a value, then the return clause

is executed and returns that value as is. If the consumer performs the Await operation,

then the copipe handler is invoked with the resumption of the consumer (resume) and

the producer (p) as arguments. This models the effect of blocking the consumer process

until the producer process provides some data. The type of resume in this context

is β→ α!{Await : 1↠ β}, that is the Await operation is present in the effect row of

the resume, which is the type system telling us that a bare application of resume is

unguarded as in order to safely apply the resumption, we must apply it in a context

which handles Await. This is the key difference between a shallow resumption and a

deep resumption.

The copipe function runs the producer to get a value to feed to the waiting con-

sumer. If the producer performs the Yield operation, then pipe is invoked with the

58 Chapter 2. Composing UNIX with effect handlers

resumption of the producer along with a thunk that applies the consumer’s resumption

to the yielded value. For aesthetics, we define a right-associative infix alias for pipe:

p | c def
= λ⟨⟩.pipe⟨p;c⟩.

Let us put the pipe operator to use by performing a simple string frequency analysis

on a file. We will implement the analysis as a collection of small single-purpose utilities

which we connect by way of pipes. We will build a collection of small utilities. We will

make use of two standard list iteration functions.

map : ⟨α→ β;List α⟩ → List β

iter : ⟨α→ β;List α⟩ → 1

The function map applies its function argument to each element of the provided list in

left-to-right order and returns the resulting list. The function iter is simply map where

the resulting list is ignored. Our first utility is a simplified version of the GNU coreutil

utility cat, which copies the contents of files to standard out [186, Section 3.1]. Our

version will open a single file and stream its contents one character at a time.

cat : String→ 1!{FileIO;Yield : Char↠ 1;Exit : Int↠ 0}
cat fname def

= case do Open fname {
None 7→ exit1

Some ino 7→ case do Read ino {
None 7→ exit1

Some cs 7→ iter⟨λc.do Yield c;cs⟩;do Yield ’\0’}}

The last line is the interesting line of code. The contents of the file gets bound to

cs, which is supplied as an argument to the list iteration function iter. The function

argument yields each character. Each invocation of Yield suspends the iteration until

the next character is awaited. This is an example of inversion of control as iteration

function iter has effectively been turned into a generator, whose elements are computed

on demand. We use the character \0 to identify the end of a stream. It is essentially a

character interpretation of the empty list (file) [].

The cat utility processes the entire contents of a given file. However, we may only

be interested in some parts. The GNU coreutil head provides a way to process only a

fixed amount of lines and ignore subsequent lines [186, Section 5.1]. We will implement

a simplified version of this utility which lets us keep the first n lines of a stream and

discard the remainder. This process will act as a filter, which is an intermediary process

2.6. UNIX-style pipes 59

in a pipeline that both awaits and yields data.

head : Int→ 1!{Await : 1↠ Char;Yield : Char↠ 1}
head n def

= if n = 0 then do Yield ’\0’

else let c← do Await ⟨⟩ in
do Yield c;

if c = ’\0’ then ⟨⟩
else if c = ’\n’ then head (n−1)

else head n

The function first checks whether more lines need to be processed. If n is zero, then it

yields the nil character to signify the end of stream. This has the effect of ignoring any

future instances of Yield in the input stream. Otherwise it awaits a character. Once a

character has been received the function yields the character in order to include it in the

output stream. After the yield, it checks whether the character was nil in which case the

process terminates. Alternatively, if the character was a newline the function applies

itself recursively with n decremented by one. Otherwise it applies itself recursively with

the original n.

The head filter does not transform the shape of its data stream. It both awaits and

yields a character. However, the awaits and yields need not operate on the same type

within the same filter, meaning we can implement a filter that transforms the shape of

the data. Let us implement a variation of the GNU coreutil paste which merges lines of

files [186, Section 8.2]. Our implementation will join characters in its input stream into

strings separated by spaces and newlines such that the string frequency analysis utility

need not operate on the low level of characters.

paste : 1→ 1!{Await : 1↠ Char;Yield : String↠ 1}
paste⟨⟩ def

= pst ⟨do Await ⟨⟩;""⟩
where pst ⟨’\0’;str⟩ def

= do Yield str;do Yield "\0"

pst ⟨’\n’;str⟩ def
= do Yield str;do Yield "\n";pst ⟨do Await ⟨⟩;""⟩

pst ⟨’ ’;str⟩ def
= do Yield str;pst ⟨do Await ⟨⟩;""⟩

pst ⟨c;str⟩ def
= pst ⟨do Await ⟨⟩;str++[c]⟩

The heavy-lifting is delegated to the recursive function pst which accepts two paramet-

ers: 1) the next character in the input stream, and 2) a string buffer for building the

output string. The function is initially applied to the first character from the stream

(returned by the invocation of Await) and the empty string buffer. The function pst

60 Chapter 2. Composing UNIX with effect handlers

is defined by pattern matching on the character parameter. The first three definitions

handle the special cases when the received character is nil, newline, and space, respect-

ively. If the character is nil, then the function yields the contents of the string buffer

followed by a string with containing only the nil character. If the character is a newline,

then the function yields the string buffer followed by a string containing the newline

character. Afterwards the function applies itself recursively with the next character from

the input stream and an empty string buffer. The case when the character is a space

is similar to the previous case except that it does not yield a newline string. The final

definition simply concatenates the character onto the string buffer and recurses.

Another useful filter is the GNU stream editor abbreviated sed [218]. It is an ad-

vanced text processing editor, whose complete functionality we will not attempt to

replicate here. We will just implement the ability to replace a string by another. This

will be useful for normalising the input stream to the frequency analysis utility, e.g.

decapitalise words, remove unwanted characters, etc.

sed : ⟨String;String⟩ → 1!{Await : 1↠ String;Yield : String↠ 1}
sed⟨target;str′⟩ def

= let str← do Await ⟨⟩ in
if str = target then do Yield str′;sed⟨target;str′⟩
else do Yield str;sed⟨target;str′⟩

The function sed takes two string arguments. The first argument is the string to be

replaced in the input stream, and the second argument is the replacement. The function

first awaits the next string from the input stream, then it checks whether the received

string is the same as target in which case it yields the replacement str′ and recurses.

Otherwise it yields the received string and recurses.

Now let us implement the string frequency analysis utility. It work on strings and

count the occurrences of each string in the input stream.

freq : 1→ 1!{Await : 1↠ String;Yield : List⟨String; Int⟩↠ 1}
freq⟨⟩ def

= freq′ ⟨do Await ⟨⟩; []⟩
where freq′ ⟨"\0"; tbl⟩ def

= do Yield tbl

freq′ ⟨str; tbl⟩ def
= let tbl′← withDefault⟨⟨str;1⟩ :: tbl;λ⟨⟩.

let sum← lookup⟨str; tbl⟩ in
modify⟨str;sum+1; tbl⟩⟩

in freq′ ⟨do Await ⟨⟩; tbl′⟩

The auxiliary recursive function freq′ implements the analysis. It takes two arguments:

1) the next string from the input stream, and 2) a table to keep track of how many times

2.6. UNIX-style pipes 61

each string has occurred. The table is implemented as an association list indexed by

strings. The function is initially applied to the first string from the input stream and the

empty list. The function is defined by pattern matching on the string argument. The

first definition handles the case when the input stream has been exhausted in which

case the function yields the table. The other case is responsible for updating the entry

associated with the string str in the table tbl. There are two subcases to consider: 1) the

string has not been seen before, thus a new entry will have to created; or 2) the string

already has an entry in the table, thus the entry will have to be updated. We handle

both cases simultaneously by making use of the handler withDefault, where the default

value accounts for the first subcase, and the computation accounts for the second. The

computation attempts to lookup the entry associated with str in tbl, if the lookup fails

then withDefault returns the default value, which is the original table augmented with an

entry for str. If an entry already exists it gets incremented by one. The resulting table

tbl′ is supplied to a recursive application of freq′.

We need one more building block to complete the pipeline. The utility freq returns

a value of type List ⟨String; Int⟩, we need a utility to render the value as a string in order

to write it to a file.

renderTable : 1→ 1!{Await : 1↠ List⟨String; Int⟩}
renderTable⟨⟩ def

= map⟨λ⟨s; i⟩.s++":"++ intToString i++";";do Await ⟨⟩⟩

The function performs one invocation of Await to receive the table, and then performs

a map over the table. The function argument to map builds a string from the provided

string-integer pair. Here we make use of an auxiliary function, intToString : Int→ String,

that turns an integer into a string. The definition of this function is omitted here for

brevity.

We now have all the building blocks to construct a pipeline for performing string

frequency analysis on a file. The following performs the analysis on the two first lines

62 Chapter 2. Composing UNIX with effect handlers

of Hamlet quote.

runState⟨fs0;fileIO(λ⟨⟩.
timeshare(λ⟨⟩.

interruptWrite(λ⟨⟩.
sessionmgr⟨Root;λ⟨⟩.

status(λ⟨⟩.hamlet > "hamlet";

let p← (λ⟨⟩.cat "hamlet") | (λ⟨⟩.head 2) | paste

| (λ⟨⟩.sed⟨"be,";"be"⟩) | (λ⟨⟩.sed⟨"To";"to"⟩)
| (λ⟨⟩.sed⟨"question:";"question"⟩)
| freq | renderTable

in (λ⟨⟩.echo (p⟨⟩)) > "analysis")⟩)))⟩

⇝+ ⟨[0];
⟨dir = [⟨"analysis";2⟩,⟨"hamlet";1⟩,⟨"stdout";0⟩];
ilist = [⟨2;⟨lno = 1; loc = 2⟩⟩,⟨1;⟨lno = 1; loc = 1⟩⟩,⟨0;⟨lno = 1; loc = 0⟩⟩];
dreg = [⟨2;"to:2;be:2;or:1;not:1;\n:2;that:1;is:1

the:1;question:1;"⟩,
⟨1;"To be, or not to be,\nthat is the question:\n

Whether ’tis nobler in the mind to suffer\n"⟩,
⟨0;""⟩]; lnext = 3; inext = 3⟩⟩

: ⟨List Int;FileSystem⟩

The pipeline gets bound to the variable p. The pipeline starts with call to cat which

streams the contents of the file "hamlet" to the process head applied to 2, meaning

it will only forward the first two lines of the file to its successor. The third process

paste receives the first two lines one character at a time and joins the characters into

strings delimited by whitespace. The next three instances of sed perform some string

normalisation. The first instance removes the trailing comma from the string "be,";

the second normalises the capitalisation of the word “to”; and the third removes the

trailing colon from the string "question:". The seventh process performs the frequency

analysis and outputs a table, which is being rendered as a string by the eighth process.

The output of the pipeline is supplied to the echo utility whose output is being redirected

to a file named "analysis". Contents of the file reside in location 2 in the data region.

Here we can see that the analysis has found that the words “to”, “be”, and the newline

character “\n” appear two times each, whilst the other words appear once each.

2.7. Process synchronisation 63

2.7 Process synchronisation

In Section 2.4 we implemented a time-sharing system on top of a simple process model.

However, the model lacks a process synchronisation facility. It is somewhat difficult to

cleanly add support for synchronisation to the implementation as it is in Section 2.4.

Firstly, because the interface of Fork : 1→ Bool only gives us two possible process

identifiers: true and false, meaning at any point we can only identify two processes.

Secondly, and more importantly, some state is necessary to implement synchronisation,

but the current implementation of process scheduling is split amongst two handlers and

one auxiliary function, all of which need to coordinate their access and manipulation of

the state cell. One option is to use some global state via the interface from Section 2.5,

which has the advantage of making the state manipulation within the scheduler modular,

but it also has the disadvantage of exposing the state as an implementation detail — and

it comes with all the caveats of programming with global state. Parameterised handlers

provide an elegant solution, which lets us internalise the state within the scheduler.

Essentially, a parameterised handler is an ordinary deep handler equipped with some

state. This state is accessible only internally in the handler and can be updated upon each

application of a parameterised resumption. A parameterised resumption is represented

as a binary function which in addition to the interpretation of its operation also take

updated handler state as input.

We will see how a parameterised handler enables us to implement a richer process

model supporting synchronisation with ease. The effect signature of process concur-

rency is as follows.

Co
def
= {UFork : 1↠ Int;Wait : Int↠ 1; Interrupt : 1↠ 1}

The operation UFork models UNIX fork [241]. It is generalisation of the Fork opera-

tion from Section 2.4. The operation is intended to return twice: once to the parent

process with a unique process identifier for the child process, and a second time to the

child process with the zero identifier. The Wait operation takes a process identifier as

argument and then blocks the invoking process until the process associated with the

provided identifier has completed. The Interrupt operation is the same as in Section 2.4;

it temporarily suspends the invoking process in order to let another process run.

The main idea is to use the state cell of a parameterised handler to manage the

process queue and to keep track of the return values of completed processes. The

scheduler will return an association list of process identifiers mapped to the return value

of their respective process when there are no more processes to be run. The process

64 Chapter 2. Composing UNIX with effect handlers

queue will consist of reified processes, which we will represent using parameterised

resumptions. To make the type signatures understandable we will make use of three

mutually recursive type aliases.

Proc α ε
def
= Sstate α ε→ List⟨Int;α⟩!ε

Pstate α ε
def
= [Ready : Proc α ε;Blocked : ⟨Int;Proc α ε⟩]

Sstate α ε
def
= ⟨q : List⟨Int;Pstate α ε⟩;done : List α;pid : Int;pnext : Int⟩

The Proc alias is the type of reified processes. It is defined as a function that takes the

current scheduler state and returns an association list of αs indexed by integers. This

is almost the type of a parameterised resumption as the only thing missing is the a

component for the interpretation of an operation. The second alias Pstate enumerates

the possible process states. Either a process is ready to be run or it is blocked on some

other process. The payload of the Ready tag is the process to run. The Blocked tag is

parameterised by a pair, where the first component is the identifier of the process that

is being waited on and the second component is the process to be continued when the

other process has completed. The third alias Sstate is the type of scheduler state. It

is a quadruple, where the first label q is the process queue. It is implemented as an

association list indexed by process identifiers. The second label done is used to store

the return values of completed processes. The third label pid is used to remember the

identifier of currently executing process, and the fourth label pnext is used to compute

a unique identifier for new processes.

We will abstract some of the scheduling logic into an auxiliary function runNext,

which is responsible for dequeuing and running the next process from the queue.

runNext : Sstate α ε→ List α!ε

runNext st def
= case st.q {

[] 7→ st.done

⟨pid;Blocked⟨pid′;resume⟩⟩ :: q′ 7→
let st′← ⟨st with q = q′++[⟨pid;Blocked⟨pid′;resume⟩⟩]⟩ in
runNext st′

⟨pid;Ready resume⟩ :: q′ 7→
let st′← ⟨st with q = q′;pid = pid⟩ in
resume st′ }

The function operates on the scheduler state. It first performs a case split on the process

queue. There are three cases to consider.

2.7. Process synchronisation 65

1. The queue is empty. Then the function returns the list done, which is the list of

process return values.

2. The next process is blocked. Then the process is appended on to the end of

the queue, and runNext is applied recursively to the scheduler state st′ with the

updated queue.

3. The next process is ready. Then the q and pid fields within the scheduler state

are updated accordingly. The reified process resume is applied to the updated

scheduler state st′.

Evidently, this function may enter an infinite loop if every process is in blocked state.

This may happen if we deadlock any two processes by having them wait on one another.

Using this function we can define a handler that implements a process scheduler.

scheduler : ⟨α!{Co;ε};Sstate α ε⟩ ⇒‡ List⟨Int;α⟩!ε
scheduler

def
= st.

return x 7→
let done′← ⟨st.pid;x⟩ :: st.done in
runNext⟨st with done = done′⟩
⟨⟨UFork ⟨⟩↠ resume⟩⟩ 7→

let resume′← λst.resume⟨0;st⟩ in
let pid← st.pnext in
let q′← st.q++[⟨pid;Ready resume′⟩] in
let st′← ⟨st with q = q′;pnext = pid+1⟩ in
resume⟨pid;st′⟩
⟨⟨Wait pid↠ resume⟩⟩ 7→

let resume′← λst.resume ⟨⟨⟩;st⟩ in
let q′← if has⟨pid;st.q⟩

then st.q++[⟨st.pid;Blocked⟨pid;resume′⟩⟩]
else st.q++[⟨st.pid;Ready resume′⟩]

in runNext⟨st with q = q′⟩
⟨⟨Interrupt ⟨⟩↠ resume⟩⟩ 7→

let resume′← λst.resume⟨⟨⟩;st⟩ in
let q′← st.q++[⟨st.pid;Ready resume′⟩] in
runNext ⟨st with q = q′⟩

The handler definition scheduler takes as input a computation that computes a value

of type α whilst making use of the concurrency operations from the Co signature. In

66 Chapter 2. Composing UNIX with effect handlers

addition it takes the initial scheduler state as input. Ultimately, the handler returns a

computation that computes a list of αs, where all the Co-operations have been handled.

In the definition the scheduler state is bound by the name st.

The return case is invoked when a process completes. The return value x is paired

with the identifier of the currently executing process and consed onto the list done.

Subsequently, the function runNext is invoked in order to the next ready process.

The UFork case implements the semantics for process forking. First the child pro-

cess is constructed by abstracting the parameterised resumption resume such that it

becomes an unary state-accepting function, which can be ascribed type Proc α ε. The

parameterised resumption applied to the process identifier 0, which lets the receiver

know that it assumes the role of child in the parent-child relationship amongst the pro-

cesses. The next line retrieves the unique process identifier for the child. Afterwards,

the child process is pushed on to the queue in ready state. The next line updates the

scheduler state with the new queue and a new unique identifier for the next process.

Finally, the parameterised resumption is applied to the child process identifier and the

updated scheduler state.

The Wait case implements the synchronisation operation. The parameter pid is the

identifier of the process that the invoking process wants to wait on. First we construct an

unary state-accepting function. Then we check whether there exists a process with iden-

tifier pid in the queue. If there is one, then we enqueue the current process in blocked

state. If no such process exists (e.g. it may already have finished), then we enqueue

the current process in ready state. Finally, we invoke runNext with the scheduler state

updated with the new process queue in order to run the next ready process.

The Interrupt case suspends the current process by enqueuing it in ready state, and

dequeuing the next ready process.

Using this handler we can implement version 2 of the time-sharing system.

timeshare2 : (1→ α!Co)→ List⟨Int;α⟩
timeshare2 m def

= let st0← ⟨q = [];done = [];pid = 1;pnext = 2⟩ in
handle‡ m⟨⟩ with scheduler st0

The computation m, which may perform any of the concurrency operations, is handled

by the parameterised handler scheduler. The parameterised handler definition is applied

to the initial scheduler state, which has an empty process queue, an empty done list, and

it assigns the first process the identifier 1, and sets up the identifier for the next process

to be 2.

2.7. Process synchronisation 67

With UFork and Wait we can implement the init process, which is the initial star-

tup process in UNIX [241]. This process remains alive until the operating system is

shutdown. It is the ancestor of every process created by the operating system.

init : (1→ 1!ε)→ 1!{Co;ε}
init main def

= let pid← do UFork ⟨⟩ in
if pid = 0

then main⟨⟩
else do Wait pid

We implement init as a higher-order function. It takes a main routine that will be applied

when the system has been started. The function first performs UFork to duplicate itself.

The child branch executes the main routine, whilst the parent branch waits on the child.

Now we can plug everything together.

runState⟨fs0;fileIO(λ⟨⟩.
timeshare2(λ⟨⟩.

interruptWrite(λ⟨⟩.
sessionmgr⟨Root;λ⟨⟩.

status(λ⟨⟩.init(λ⟨⟩.let pid← do UFork⟨⟩ in
if pid = 0

then su Alice; ritchie⟨⟩
else su Bob;do Wait pid;hamlet⟨⟩))⟩)))⟩

⇝+ ⟨[⟨1;0⟩;⟨2;0⟩;⟨3;0⟩];
⟨dir = [⟨"stdout";0⟩];
ilist = [⟨0;⟨lno = 1; loc = 0⟩⟩];
dreg = [⟨0;"UNIX is basically a simple operating system, but

you have to be a genius to understand the simplicity.\n

To be, or not to be,\nthat is the question:\n

Whether ’tis nobler in the mind to suffer\n"⟩]
lnext = 1; inext = 1⟩⟩

: ⟨List⟨Int; Int⟩;FileSystem⟩

Process number 1 is init, which forks itself to run its argument. The argument runs as

process 2, which also forks itself, thus creating a process 3. Process 3 executes the

child branch, which switches user to Alice and invokes the ritchie process which writes

to standard out. Process 2 executes the parent branch, which switches user to Bob and

68 Chapter 2. Composing UNIX with effect handlers

waits for the child process to complete before it invokes the routine hamlet which also

writes to standard out. It is evident from looking at the file system state that the writes

to standard out has not been interleaved as the contents of "stdout" appear in order.

We can also see from the process completion list that Alice’s process (pid 3) is the first

to complete with status 0, and the second to complete is Bob’s process (pid 2) with

status 0, whilst the last process to complete is the init process (pid 1) with status 0.

Retrofitting fork In the previous program we replaced the original implementation of

timeshare (Section 2.4), which handles invocations of Fork : 1↠ Bool, by timeshare2,

which handles the more general operation UFork : 1↠ Int. In practice, we may be

unable to dispense of the old interface so easily, meaning we have to retain support for,

say, legacy reasons. As we have seen previously we can interpret an operation in terms

of another operation. Thus to retain support for Fork we simply have to insert a handler

under timeshare2 which interprets Fork in terms of UFork. The operation case of this

handler would be akin to the following.

⟨⟨Fork ⟨⟩↠ resume⟩⟩ 7→ let pid← do UFork ⟨⟩ in
resume(pid ̸= 0)

The interpretation of Fork inspects the process identifier returned by the UFork to de-

termine the role of the current process in the parent-child relationship. If the identifier

is nonzero, then the process is a parent, hence Fork should return true to its caller, and

otherwise it should return false, thus preserving the functionality of the legacy code.

2.8 Related work

Effect-driven concurrency In their tutorial of the Eff programming language Bauer

and Pretnar [15] implement a simple lightweight thread scheduler. It is different from

the schedulers presented in this section as their scheduler only uses resumptions linearly.

This is achieved by making the fork operation higher-order such that the operation is

parameterised by a computation. The computation is run under a fresh instance of

the handler. On one hand this approach has the benefit of making threads cheap as it

is no stack copying is necessary at runtime. On the other hand it does not guarantee

that every operation is handled uniformly (when in the setting of deep handlers) as

every handler in between the fork operation invocation site and the scheduler handler

needs to be manually reinstalled when the computation argument is run. Nevertheless,

2.8. Related work 69

this is the approach to concurrency that Dolan et al. [71] have adopted for Multicore

OCaml [71]. In my MSc(R) dissertation I used a similar approach to implement a

cooperative version of the actor concurrency model of Links as a user-definable Links

library [126]. This library was used by a prototype compiler for Links to make the

runtime as lean as possible (this compiler hooked directly into the backend of the

Multicore OCaml compiler in order to produce native code for effect handlers [119]).

This line of work was further explored by Convent [51], who implemented various

cooperative actor-based concurrency abstractions using effect handlers in the Frank

programming language. Poulson [229] expanded upon this work by investigating ways

to handle preemptive concurrency.

Fowler et al. [101] uses effect handlers in the setting of linearly typed fault-tolerant

distributed programming. They use effect handlers to codify an exception handling

mechanism, which automatically consumes linear resources. Exceptions are implemen-

ted as operations, that are handled by cancelling their resumptions. Cancellation is a

runtime primitive that gathers and closes active resources in the computation represen-

ted by some resumption.

Dolan et al. [72] and Leijen [166] gave two widely different implementations of

the async/await idiom using effect handlers. Dolan et al.’s implementation is based on

higher-order operations with linearly used resumptions, whereas Leijen’s implementa-

tion is based on first-order operations with multi-shot resumptions, and thus, it is close

in the spirit to the schedulers we have considered in this chapter.

Continuations and operating systems The idea of using continuations to implement

various facets of operating systems is not new. However, most work has focused on

implementing some form of multi-tasking mechanism. Wand [271] implements a small

multi-tasking kernel with support for mutual exclusion and data protection using un-

delimited continuations in the style of the catch operator of Scheme. Dybvig and Hieb

[74] implements engines using call/cc in Scheme — an engine is a kind of process

abstraction which support preemption. An engine runs a computation on some time

budget. If computation exceeds the allotted time budget, then it is interrupted. They

represent engines as reified continuations and use the macro system of Scheme to in-

sert clock ticks at appropriate places in the code. Kiselyov and Shan [149] develop a

small fault-tolerant operating system with multi-tasking support and a file system using

delimited continuations. Their file system is considerably more sophisticated than the

one we implemented in this chapter as it supports transactional storage, meaning user

70 Chapter 2. Composing UNIX with effect handlers

processes can roll back actions such as file deletion and file update.

Resumption monad The resumption monad is both a semantic and programmatic

abstraction for interleaving computation. Papspyrou [211] applies a resumption monad

transformer to construct semantic models of concurrent computation. A resumption

monad transformer, i.e. a monad T that transforms an arbitrary monad M to a new

monad T M with commands for interrupting computation. Harrison [112] demonstrates

the resumption monad as a practical programming abstraction by implementing a small

multi-tasking kernel. Harrison implements two variations of the resumption monad: ba-

sic and reactive. The basic resumption monad is a closed environment for interleaving

different strands of computations. It is closed in the sense that strands of computation

cannot interact with the ambient context of their environment. The reactive resump-

tion monad makes the environment open by essentially registering a callback with an

interruption action. This provides a way to model system calls.

The origins of the (semantic) resumption monad can be traced back to at least Moggi

[202], who described a monad for modelling the interleaving semantics of Milner’s

calculus of communicating systems [197].

The usage of resumption in the name has a slightly different meaning than the term

‘resumption’ we have been using throughout this chapter. We have used ‘resumption’

to mean delimited continuation. In the setting of the resumption monad it has a precise

domain-theoretic meaning. It is derived from Plotkin’s domain of resumptions, which

in turn is derived from Milner’s domain of processes [197, 221].

Chapter 3

Calculi for effect handler oriented
programming

In this chapter we formalise the language that was introduced informally in the previ-

ous chapter. In fact, we will formally introduce the language as several core calculi: a

base calculus λb, which does not have effect handlers; an extension of λb with deep

handlers λh; another extension with shallow handlers λh†; and a final extension with

parameterised handlers λh‡ . The calculi are based on CoreLinks by Lindley and Cheney

[173], which distils the essence of the functional multi-tier web-programming language

Links [53]. Links belongs to the ML-family [200] of programming languages as it

features typical characteristics of ML languages such as a static type system supporting

parametric polymorphism with type inference (in fact Links supports first-class poly-

morphism), and its evaluation semantics is strict. However, Links differentiates itself

from the rest of the ML-family by making crucial use of row polymorphism to support

extensible records, variants, and tracking of computational effects. Thus Links has a

rather strong emphasis on structural types rather than nominal types.

CoreLinks captures all of these properties of Links. Our calculus λb differs in sev-

eral aspects from CoreLinks. For example, the underlying formalism of CoreLinks

is call-by-value, whilst the formalism of λb is fine-grain call-by-value [170], which

shares similarities with A-normal form (ANF) [91] as it syntactically distinguishes

between value and computation terms by mandating every intermediate computation

being named. However unlike ANF, fine-grain call-by-value remains closed under β-

reduction. The reason for choosing fine-grain call-by-value as our formalism is entirely

due to convenience. Fine-grain call-by-value is a convenient formalism for working

with continuations. Another point of difference between CoreLinks and λb is that the

71

72 Chapter 3. Calculi for effect handler oriented programming

former models the integrated database query sublanguage of Links. We do not consider

the query sublanguage at all, and instead our three extensions λh, λh† , and λh‡ focus

entirely on modelling the interaction and programming with computational effects.

Chapter outline

Section 3.1 introduces the base calculus λb, which makes crucial use of rows to support

variant, record, and effect polymorphism.

Section 3.2 extends λb with deep effect handlers, resulting in the calculus λh.

Section 3.3 adds shallow effect handlers to base calculus, resulting in the calculus λh† .

Section 3.4 presents the final variation of the base calculus, as in this section we extend

the base calculus with parameterised effect handlers, yielding the calculus λh‡ .

Section 3.5 discusses related work.

Relation to prior work The deep and shallow handler calculi that are introduced in

Section 3.2, Section 3.3, and Section 3.4 are adapted with minor syntactic changes from

the following work.

i Daniel Hillerström and Sam Lindley. Liberating effects with rows and handlers. In

TyDe@ICFP, pages 15–27. ACM, 2016

ii Daniel Hillerström and Sam Lindley. Shallow effect handlers. In APLAS, volume

11275 of LNCS, pages 415–435. Springer, 2018

iii Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via generalised

continuations. J. Funct. Program., 30:e5, 2020

3.1 A language based on rows

At glance λb is an intrinsically typed language supporting type and effect polymorphism.

The key characteristic of λb is that it uses Rémy-style rows to support variant, record,

and effect polymorphism at the same time [237].

We begin by presenting the syntax of kinds, types, and terms in Section 3.1.1. After-

wards we present the static semantics in Section 3.1.2, before we present the dynamic

semantics in Section 3.1.3. As a convention, we always work up to α-conversion [45]

3.1. A language based on rows 73

Value types A,B ∈ VType ::= A→ C | ∀αK.C | ⟨R⟩ | [R] | α
Computation types C,D ∈ CType ::= A!E

Effect types E ∈ Effect ::= {R}
Row types R ∈ Row ::= ℓ : P;R | ρ | ·
Presence types P ∈ Presence ::= Pre(A) | Abs | θ

Types T ∈ Type ::= A | C | E | R | P
Kinds K ∈ Kind ::= Type | Comp | Effect | RowL | Presence

Label sets L ∈ Label ::= /0 | {ℓ}⊎L

Type environments Γ ∈ TyEnv ::= · | Γ,x : A

Kind environments ∆ ∈ KindEnv ::= · | ∆,α : K

Figure 3.1: Syntax of types, kinds, and their environments.

of types and terms. Following Pierce [215] we omit cases in definitions that deal only

with the bureaucracy of renaming. For any transformation J−K on a term M, or type,

we write JMK
α-def≃ M′ to mean that M′ is the result of transforming M where implicit

renaming may have occurred.

3.1.1 Syntax of kinds, types, and terms

The syntax and semantics of types in λb are based on those of System F [109], whilst

the term syntax is a variation of ML term syntax in a-normal form. We use the notation

A[B/α] to mean the capture-avoiding substitution of the type B for the type variable α

in the type A. Similarly, we write M[V/x] to mean the capture-avoiding substitution of

the value V for the term variable x in the computation term M.

Types and their kinds

The types are divided into several distinct syntactic categories which are given in Fig-

ure 3.1 along with the syntax of kinds and environments.

Value types We distinguish between values and computations at the level of types.

Value types comprise the function type A→ C, which maps values of type A to compu-

74 Chapter 3. Calculi for effect handler oriented programming

tations of type C; the polymorphic type ∀αK.C is parameterised by a type variable α

of kind K; and the record type ⟨R⟩ represents records with fields constrained by row R.

Dually, the variant type [R] represents tagged sums constrained by row R.

Computation types and effect types The computation type A!E is given by a value

type A and an effect type E, which specifies the effectful operations a computation

inhabiting this type may perform. An effect type E = {R} is constrained by row R.

Row types Row types play a pivotal role in our type system as effect, record, and

variant types are uniformly given by row types. A row type describes a collection of

distinct labels, each annotated by a presence type. A presence type indicates whether a

label is present with type A (Pre(A)), absent (Abs) or polymorphic in its presence (θ).

For example, the effect row {Read : Pre(Int),Write : Abs, ·} denotes a read-only context

in which the operation label Read may occur to access some integer value, whilst the

operation label Write cannot appear.

Row types are either closed or open. A closed row type ends in ·, whilst an open

row type ends with a row variable ρ (in an effect row we usually use ε rather than ρ

and refer to it as an effect variable). The example effect row above is closed, an open

variation of it ends in an effect variable ε, i.e. {Read : Pre(Int),Write : Abs,ε}. The row

variable in an open row type can be instantiated with additional labels subject to the

restriction that each label may only occur at most once (we enforce this restriction at

the level of kinds). We identify rows up to the reordering of labels as follows.

R-Closed

· ≡row ·

R-Open

ρ≡row ρ
′

R-Head

R≡row R′

ℓ : P;R≡row ℓ : P;R′

R-Swap

R≡row R′

ℓ : P;ℓ′ : P′;R≡row ℓ′ : P′;ℓ : P;R′

The R-Closed rule states that the closed marker · is equivalent to itself, similarly the

R-Open rule states that any two row variables are equivalent if and only if they have

the same syntactic name. The R-Head rule compares the head of two given rows and

inductively compares their tails. The R-Swap rule permits reordering of labels. We

assume structural equality on labels. The R-Head rule

3.1. A language based on rows 75

K-TyVar

∆,α : K ⊢ α : K

K-Comp

∆ ⊢ A : Type ∆ ⊢ E : Effect

∆ ⊢ A!E : Comp

K-Fun

∆ ⊢ A : Type ∆ ⊢ C : Comp

∆ ⊢ A→ C : Type

K-Forall

∆,α : K ⊢ C : Comp

∆ ⊢ ∀αK.C : Type

K-Record

∆ ⊢ R : Row /0

∆ ⊢ ⟨R⟩ : Type

K-Variant

∆ ⊢ R : Row /0

∆ ⊢ [R] : Type

K-Effect

∆ ⊢ R : Row /0

∆ ⊢ {R} : Effect

K-Present

∆ ⊢ A : Type

∆ ⊢ Pre(A) : Presence

K-Absent

∆ ⊢ Abs : Presence

K-EmptyRow

∆ ⊢ · : RowL

K-ExtendRow

∆ ⊢ P : Presence ∆ ⊢ R : RowL⊎{ℓ}

∆ ⊢ ℓ : P;R : RowL

Figure 3.2: Kinding rules

The standard zero and unit types are definable using rows. We define the zero type

as the empty, closed variant 0 def
= [·]. Dually, the unit type is defined as the empty, closed

record type, i.e. 1 def
= ⟨·⟩.

For brevity, we shall often write ℓ : A to mean ℓ : Pre(A).

Kinds The kinds classify the different categories of types. The Type kind classifies

value types, Presence classifies presence annotations, Comp classifies computation

types, Effect classifies effect types, and lastly RowL classifies rows. The formation

rules for kinds are given in Figure 3.2. The kinding judgement ∆ ⊢ T : K states that type

T has kind K in kind environment ∆. The row kind is annotated by a set of labels L . We

use this set to track the labels of a given row type to ensure uniqueness amongst labels

in each row type. For example, the kinding rule K-ExtendRow uses this set to constrain

which labels may be mentioned in the tail of R.

Environments Kind and type environments are right-extended sequences of bindings.

A kind environment binds type variables to their kinds, whilst a type environment binds

term variables to their types.

76 Chapter 3. Calculi for effect handler oriented programming

Types and their inhabitants We now have the basic vocabulary to construct types

in λb. For instance, the signature of the standard polymorphic identity function is

∀αType.α→ α! /0.

Modulo the empty effect signature, this type is akin to the type one would give for

the identity function in System F [109, 238], and thus we can use standard techniques

from parametricity [266] to reason about inhabitants of this signature. However, in our

system we can give an even more general type to the identity function:

∀αType,εRow /0.α→ α!{ε}.

This type is polymorphic in its effect signature as signified by the singleton open effect

row {ε}, meaning it may be used in an effectful context. By contrast, the former type

may only be used in a strictly pure context, i.e. the effect-free context.

We can use the effect system to give precise types to effectful computations. For

example, we can give the signature of some polymorphic computation that may only

be run in a read-only context

∀αType,εRow{Read,Write} .α!{Read : Int;Write : Abs;ε}.

The effect row comprise a nullary Read operation returning some integer and an absent

operation Write. The absence of Write means that the computation cannot run in a

context that admits a present Write. It can, however, run in a context that admits a

presence polymorphic Write : θ as the presence variable θ may instantiated to Abs. An

inhabitant of this type may be run in larger effect contexts, i.e. contexts that admit more

operations, because the row ends in an effect variable.

The type and effect system is also precise about how a higher-order function may

use its function arguments. For example consider the signature of a map-operation over

some datatype such as Option αType def
= [None;Some : α; ·]

∀αType,βType,εRow /0.⟨α→ β!{ε};Option α; ·⟩ → Option β!{ε}.

The first argument is the function that will be applied to the data carried by second

argument. Note that the two effect rows are identical and share the same effect variable

ε, it is thus evident that an inhabitant of this type can only perform whatever effects its

first argument is allowed to perform.

Higher-order functions may also transform their function arguments, e.g. modify

their effect rows. The following is the signature of a higher-order function which re-

stricts its argument’s effect context

∀αType,εRow{Read},ε′Row /0 .(1→ α!{Read : Int;ε})→ (1→ α!{Read : Abs;ε})!{ε′}.

3.1. A language based on rows 77

Variables x ∈ Var

Values V,W ∈ Val ::= x | λxA.M | rec f A→C x.M | ΛαK.M

| ⟨⟩ | ⟨ℓ= V;W⟩ | (ℓ V)R

Computations M,N ∈ Comp ::= V W | V T

| let ⟨ℓ= x;y⟩= V in N

| case V{ℓ x 7→M;y 7→ N} | absurdC V

| return V | let x←M in N

Terms t ∈ Term ::= x | V |M

Figure 3.3: Term syntax of λb.

The function argument is allowed to perform a Read operation, whilst the returned

function cannot. Moreover, the two functions share the same effect variable ε. Like the

option-map signature above, an inhabitant of this type performs no effects of its own

as the (right-most) effect row is a singleton row containing a distinct effect variable ε′.

Syntactic sugar Explicitly writing down all of the kinding and type annotations is a

bit on the heavy side. In order to simplify the notation of our future examples we are

going to adopt a few conventions. First, we shall not write kind annotations, when the

kinds can unambiguously be inferred from context. Second, we do not write quantifiers

in prenex position. Type variables that appear unbound in a signature are implicitly

understood be bound at the outermost level of the type (this convention is commonly

used by practical programming language, e.g. SML [200] and Haskell [138]). Third,

we shall adopt the convention that the row types for closed records and variants are

implicitly understood to end in a ·, whereas for effect rows we shall adopt the opposite

convention that an effect row is implicitly understood to be open and ending in a

fresh ε unless it ends in an explicit ·. In Section 3.2.5 we will elaborate more on the

syntactic sugar for effects. The rationale for these conventions is that they align with

a ML programmer’s intuition for monomorphic record and variant types, and in this

dissertation records and variants will often be monomorphic. Conversely, effect rows

will most often be open.

78 Chapter 3. Calculi for effect handler oriented programming

Terms

The syntax for terms is given in Figure 3.3. We assume a countably infinite set of names

Var from which we draw fresh variable names. We shall typically denote term variables

by x, y, or z. The syntax partitions terms into values and computations. Value terms com-

prise variables (x), lambda abstraction (λxA.M), recursive abstraction (rec f A→C x.M),

type abstraction (ΛαK.M), and the introduction forms for records and variants. Records

are introduced using the empty record (⟨⟩) and record extension (⟨ℓ= V;W⟩), whilst

variants are introduced using injection ((ℓ V)R), which injects a field with label ℓ and

value V into a row whose type is R. We include the row type annotation in to support

bottom-up type reconstruction.

All elimination forms are computation terms. Abstraction and type abstraction

are eliminated using application (V W) and type application (V A) respectively. The

record eliminator (let ⟨ℓ= x;y⟩= V in N) splits a record V into x, the value associated

with ℓ, and y, the rest of the record. Non-empty variants are eliminated using the case

construct (case V {ℓ x 7→M;y 7→ N}), which evaluates the computation M if the tag of

V matches ℓ. Otherwise it falls through to y and evaluates N. The elimination form for

empty variants is (absurdC V). There is one computation introduction form, namely,

the trivial computation (return V) which returns value V . Its elimination form is the

expression (let x←M in N) which evaluates M and binds the result value to x in N.

As our calculus is intrinsically typed, we annotate terms with type or kind informa-

tion (term abstraction, type abstraction, injection, operations, and empty cases). How-

ever, we shall omit these annotations whenever they are clear from context.

Tail recursion In practice implementations of functional programming languages

tend to be tail-recursive in order to enable unbounded iteration. Otherwise nested (re-

peated) function calls would quickly run out of stack space on a conventional computer.

Intuitively, tail-recursion permits an already allocated stack frame for some on-going

function call to be reused by a nested function call, provided that this nested call is

the last thing to occur before returning from the on-going function call. A special case

is when the nested function call is a fresh invocation of the on-going function call,

i.e. a self-reference. In this case the nested function call is known as a tail recursive

call, otherwise it is simply known as a tail call. Thus the qualifier “tail-recursive” may

be somewhat confusing as for an implementation to be tail-recursive it must support

recycling of stack frames for tail calls; it is not sufficient to support tail recursive calls.

Any decent implementation of Standard ML [200], OCaml [169], or Scheme [253]

3.1. A language based on rows 79

will be tail-recursive. I deliberately say implementation rather than specification, be-

cause it is often the case that the specification or the user manual do not explicitly

require a suitable implementation to be tail-recursive; in fact of the three languages just

mentioned only Scheme explicitly mandates an implementation to be tail-recursive [253].

Tail calls will become important in Chapter 4 when we will discuss continuation

passing style as an implementation technique for effect handlers, as tail calls happen to

be ubiquitous in continuation passing style. Therefore let us formally characterise tail

calls. For our purposes, the most robust characterisation is a syntactic characterisation,

as opposed to a semantic characterisation, because in the presence of control effects

(which we will add in Section 3.2) it surprisingly tricky to describe tail calls in terms

of control flow such as “the last thing to occur before returning from the enclosing

function” as a function may return multiple times. In particular, the effects of a function

may be replayed several times.

For this reason we will adapt a syntactic characterisation of tail calls due to Clinger

[48]. First, we define what it means for a computation to syntactically appear in tail

position.

Definition 3.1 (Tail position). Tail position is defined for computation terms as follows.

• The body M of a λ-abstraction (λx.M) appears in tail position.

• The body M of a Λ-abstraction (Λα.M) appears in tail position.

• If case V {ℓ x 7→M;y 7→ N} appears in tail position, then both M and N appear

in tail positions.

• If let ⟨ℓ= x;y⟩= V in N appears in tail position, then N is in tail position.

• If let x←M in N appears in tail position, then N appear in tail position.

• Nothing else appears in tail position.

Definition 3.2 (Tail call). An application term V W is said to be a tail call if it appears

in tail position.

3.1.2 Typing rules

The typing rules are divided into value and computation term typing rules.

80 Chapter 3. Calculi for effect handler oriented programming

Values

T-Var

x : A ∈ Γ

∆;Γ ⊢ x : A

T-Lam

∆;Γ,x : A ⊢M : C

∆;Γ ⊢ λxA.M : A→ C

T-Rec

∆;Γ, f : A→ C,x : A ⊢M : C

∆;Γ ⊢ (rec f A→C x.M) : A→ C

T-PolyLam

∆,α : K;Γ ⊢M : C α /∈ FTV(Γ)

∆;Γ ⊢ Λα
K.M : ∀αK.C

T-Unit

∆;Γ ⊢ ⟨⟩ : 1

T-Extend

∆;Γ ⊢ V : A ∆;Γ ⊢W : ⟨ℓ : Abs;R⟩

∆;Γ ⊢ ⟨ℓ= V;W⟩ : ⟨ℓ : Pre(A);R⟩

T-Inject

∆;Γ ⊢ V : A

∆;Γ ⊢ (ℓ V)R : [ℓ : Pre(A);R]

Computations

T-App

∆;Γ ⊢ V : A→ C ∆;Γ ⊢W : A

∆;Γ ⊢ V W : C

T-PolyApp

∆;Γ ⊢ V : ∀αK.C ∆ ⊢ A : K

∆;Γ ⊢ V A : C[A/α]

T-Split

∆;Γ ⊢ V : ⟨ℓ : Pre(A);R⟩
∆;Γ,x : A,y : ⟨ℓ : Abs;R⟩ ⊢ N : C

∆;Γ ⊢ let ⟨ℓ= x;y⟩= V in N : C

T-Case

∆;Γ ⊢ V : [ℓ : Pre(A);R]

∆;Γ,x : A ⊢M : C

∆;Γ,y : [ℓ : Abs;R] ⊢ N : C

∆;Γ ⊢ case V{ℓ x 7→M;y 7→ N} : C

T-Absurd

∆;Γ ⊢ V : []

∆;Γ ⊢ absurdC V : C

T-Return

∆;Γ ⊢ V : A

∆;Γ ⊢ return V : A!E

T-Let

∆;Γ ⊢M : A!E ∆;Γ,x : A ⊢ N : B!E

∆;Γ ⊢ let x←M in N : B!E

Figure 3.4: Typing rules

3.1. A language based on rows 81

Typing values The rule T-Var states that a term variable x has type A if x is mapped to

the type A in the environment Γ. The rules T-Lam and T-Rec both concern term abstrac-

tion, where the latter subsumes the former as it states that a recursive term abstraction

has type A→ C if the body has type C assuming the environment Γ is extended with

the binder f : A→ C and the parameter x : A. The T-Lam rule works similarly except

for the self binder f . The next rule T-PolyLam states that a type abstraction (Λα.M) has

type ∀α.C if the computation M has type C assuming α : K and α does not appear in

the free type variables (FTV) of current type environment Γ. The T-Unit rule provides

the basis for all records as it simply states that the empty record has type unit. The

T-Extend rule handles record extension. Supposing we wish to extend some record ⟨W⟩
with ℓ= V , that is ⟨ℓ= V;W⟩. This extension has type ⟨ℓ : Pre(A);R⟩ if and only if V is

well-typed and we can ascribe W : ⟨ℓ : Abs;R⟩. Since ⟨ℓ : Abs;R⟩ must be well-kinded

with respect to ∆, the label ℓ cannot be mentioned in W, thus ℓ cannot occur more than

once in the record. Similarly, the dual rule T-Inject states that the injection (ℓ V)R has

type [ℓ : Pre(A);R] if the payload V is well-typed. The implicit well-kindedness condi-

tion on R ensures that ℓ cannot be injected twice. To illustrate how the kinding system

prevents duplicated labels consider the following ill-typed example

(S ⟨⟩)S:1 : [S : 1;S : 1].

Typing fails because the resulting row type is ill-kinded by the K-ExtendRow-rule:

⊢ Pre(1) : Presence

⊢ Pre(1) : Presence ⊢ · : Row{S}⊎{S}

⊢ S : Pre(1); · : Row /0⊎{S}
K-ExtendRow

⊢ S : Pre(1);S : Pre(1); · : Row /0

K-ExtendRow

⊢ [S : Pre(1);S : Pre(1); ·] : Type
K-Variant

The two sets {S} and {S} are clearly not disjoint, thus the second premise of the last

application of K-ExtendRow cannot be satisfied.

Typing computations The T-App rule states that an application V W has computation

type C if the function-term V has type A→ C and the argument term W has type A,

that is both the argument type and the domain type of the abstractor agree. The type

application rule T-PolyApp tells us that a type application V A is well-typed whenever

the abstractor term V has the polymorphic type ∀αK.C and the type A has kind K.

This rule makes use of type substitution. The T-Split rule handles typing of record

deconstructing. When splitting a record term V on some label ℓ binding it to x and

82 Chapter 3. Calculi for effect handler oriented programming

S-App (λxA.M)V ⇝ M[V/x]

S-Rec (rec f A→C x.M)V ⇝ M[(rec f A→C x.M)/f ,V/x]

S-TyApp (ΛαK.M)A ⇝ M[A/α]

S-Split let ⟨ℓ= x;y⟩= ⟨ℓ= V;W⟩ in N ⇝ N[V/x,W/y]

S-Case1 case (ℓ V)R{ℓ x 7→M;y 7→ N} ⇝ M[V/x]

S-Case2 case (ℓ V)R{ℓ′ x 7→M;y 7→ N} ⇝ N[(ℓ V)R/y], if ℓ ̸= ℓ′

S-Let let x← return V in N ⇝ N[V/x]

S-Lift E [M] ⇝ E [N], if M⇝ N

Evaluation contexts E ∈ Cont ::= [] | let x← E in N

Figure 3.5: Contextual small-step semantics

the remainder to y. The label we wish to split on must be present with some type A,

hence we require that V : ⟨ℓ : Pre(A);R⟩. This restriction prohibits us for splitting on

an absent or presence polymorphic label. The continuation of the splitting, N, must

then have some computation type C subject to the following restriction: N : C must

be well-typed under the additional assumptions x : A and y : ⟨ℓ : Abs;R⟩, statically

ensuring that it is not possible to split on ℓ again in the continuation N. The T-Case

rule is similar, but has two possible continuations: the success continuation, M, and

the fall-through continuation, N. The label being matched must be present with some

type A in the type of the scrutinee, thus we require V : [ℓ : Pre(A);R]. The success

continuation has some computation C under the assumption that the binder x : A, whilst

the fall-through continuation also has type C it is subject to the restriction that the

binder y : [ℓ : Abs;R] which statically enforces that no subsequent case split in N can

match on ℓ. The T-Absurd states that we can ascribe any computation type to the term

absurd V if V has the empty type []. The trivial computation term is typed by the

T-Return rule, which says that return V has computation type A!E if the value V has

type A. The T-Let rule types let bindings. The computation being bound, M, must have

computation type A!E, whilst the continuation, N, must have computation C subject to

the additional assumption that the binder x : A.

3.1. A language based on rows 83

3.1.3 Dynamic semantics

The dynamic semantics of λb (and its extensions) use a Felleisen [79]-style contex-

tual small-step semantics, since in conjunction with fine-grain call-by-value (FGCBV),

it yields a considerably simpler semantics than the traditional structural operational

semantics (SOS) [223]. The reason being that only the rule for let bindings admits

a continuation wheres in ordinary call-by-value SOS each congruence rule admits a

continuation. The simpler semantics comes at the expense of a more verbose syntax,

which is not a concern as one can readily convert between fine-grain call-by-value and

ordinary call-by-value.

Reduction semantics The reduction relation⇝⊆ Comp×Comp relates a computa-

tion term to another if the former can reduce to the latter in a single step. Figure 3.5

depicts the reduction rules. The application rules S-App and S-TyApp eliminates a

lambda and type abstraction, respectively, by substituting the argument for the para-

meter in their body computation M. Record splitting is handled by the S-Split rule:

splitting on some label ℓ binds the payload V to x and the remainder W to y in the

continuation N. Disjunctive case splitting is handled by the two rules S-Case1 and

S-Case2. The former rule handles the success case, when the scrutinee’s tag ℓ matches

the tag of the success clause, thus binds the payload V to x and proceeds to evaluate

the continuation M. The latter rule handles the fall-through case, here the scrutinee gets

bounds to y and evaluation proceeds with the continuation N. The S-Let rule eliminates

a trivial computation term return V by substituting V for x in the continuation N.

Evaluation contexts Recall from Section 3.1.1, Figure 3.3 that the syntax of let

bindings allows a general computation term M to occur on the right hand side of the

binding, i.e. let x←M in N. Thus we are seemingly stuck in the general case, as the

S-Let rule only applies if the right hand side is a trivial computation. However, it is at

this stage we make use of the notion of evaluation contexts due to Felleisen [79]. An

evaluation context is syntactic construction which decompose the dynamic semantics

into a set of base rules (i.e. the rules presented thus far) and an inductive rule, which

enables us to focus on a particular computation term, M, in some larger context, E ,

and reduce it in the said context to another computation N if M reduces outside out

the context to that particular N. In our formalism, we call this rule S-Lift. Evaluation

contexts are generated from the empty context ([]) and let expressions (let x←E in N).

The choices of using fine-grain call-by-value and evaluation contexts may seem

84 Chapter 3. Calculi for effect handler oriented programming

odd, if not arbitrary at this point; the reader may wonder with good reason why we

elect to use fine-grain call-by-value over ordinary call-by-value. In Sections 3.2–3.4

we will reap the benefits from our design choices, as we shall see that the combination

of fine-grain call-by-value and evaluation contexts provide the basis for a convenient,

simple semantic framework for working with continuations.

Syntactic sugar We will adopt a few conventions to make the notation more con-

venient for writing out examples. First, we elide type annotations when they are clear

from the context. We will often write code in direct-style assuming the standard left-to-

right call-by-value elaboration into fine-grain call-by-value [91, 203]. For example, the

expression f (hw)+g⟨⟩ is syntactic sugar for:

let x← hw in let y← f x in let z← g⟨⟩ in y+ z

We define sequencing of computations in the standard way.

M;N def
= let x←M in N, where x /∈ FV(N)

We make use of standard syntactic sugar for pattern matching. For instance, we write

λ⟨⟩.M def
= λx1.M, where x /∈ FV(M)

for suspended computations. We encode booleans using variants:

Bool
def
= [True : 1;False : 1] true

def
= True⟨⟩ false

def
= False⟨⟩

if V then M else N def
= case V {True ⟨⟩ 7→M;False ⟨⟩ 7→ N}

3.1.4 Metatheoretic properties of λb

Thus far we have defined the syntax, static semantics, and dynamic semantics of λb. In

this section, we state and prove some customary metatheoretic properties about λb.

The reduction semantics satisfy a unique decomposition property, which guarantees

the existence and uniqueness of complete decomposition for arbitrary computation

terms into evaluation contexts.

Lemma 3.3 (Unique decomposition). For any computation M ∈ Comp it holds that

M is either stuck or there exists a unique evaluation context E ∈ Cont and a redex

N ∈ Comp such that M = E [N].

Proof. By structural induction on M.

3.2. Deep handling of effects 85

The calculus satisfies the standard progress property, which states that every closed

computation term either reduces to a trivial computation term return V for some value

V , or there exists some N such that M⇝ N.

Definition 3.4 (Computation normal form). A computation M ∈ Comp is said to be

normal if it is of the form return V for some value V ∈ Val.

We write⇝∗ for the reflexive and transitive closure of the reduction relation⇝.

Theorem 3.5 (Progress). Suppose ⊢M : C, then M is normal or there exists ⊢ N : C

such that M⇝∗ N.

Proof. By induction on the typing derivations.

The calculus also satisfies the subject reduction property, which states that if some

computation M is well typed and reduces to some other computation M′, then M′ is

also well typed.

Theorem 3.6 (Subject reduction). Suppose ∆;Γ ⊢M : C and M⇝ N, then ∆;Γ ⊢ N : C.

Proof. By induction on the typing derivations.

3.2 Deep handling of effects

Deep effect handlers are the ‘classic’ effect handlers in the sense they were the kind of

handlers originally introduced by Plotkin and Pretnar [227]. A point that is worthwhile

to make is that deep handlers do not depend on the existence of an explicit recursion

operator, rather, they come with their own structured recursion scheme. In fact, deep

handlers [227, 230] are defined by folds (specifically catamorphisms [194]) over com-

putation trees, meaning they provide a uniform semantics to the handled operations

of a given computation. In contrast, shallow handlers are defined as case-splits over

computation trees, and thus, allow a nonuniform semantics to be given to operations.

We will discuss this point in more detail in Section 3.3.

In this section we augment λb with deep handlers to yield the core calculus λh.

3.2.1 Performing effectful operations

An effectful operation is a purely syntactic construction, which has no predefined dy-

namic semantics. In our calculus effectful operations are a computational phenomenon,

86 Chapter 3. Calculi for effect handler oriented programming

and thus, their introduction form is a computation term. To type operation we augment

the syntactic category of value types with a new arrow.

Value types A,B ∈ VType ::= · · · | A↠ B

Computations M,N ∈ Comp ::= · · · | (do ℓ V)E

The operation arrow,↠, denotes the operation space. The operation space arrow is

similar to the function space arrow in that the type A denotes the domain type of the

operation, i.e. the type of the operation payload, and the codomain type B denotes

the return type of the operation. Contrary to the function space constructor,→, the

operation space constructor does not have an associated effect row. As we will see later,

the reason that the operation space constructor does not have an effect row is that the

effects of an operation is conferred by its handler.

The intended behaviour of the new computation term (do ℓ V)E is that it performs

some operation ℓ with value argument V . Thus the do-construct is similar to the typical

exception-signalling throw or raise constructs found in programming languages with

support for exceptions. In fact operationally, an effectful operation may be thought of

as an exception which is resumable [165]. The term is annotated with an effect row E,

providing a way to make the current effect context accessible during typing.

T-Do

∆ ⊢ E E = {ℓ : A↠ B;R} ∆;Γ ⊢ V : A

∆;Γ ⊢ (do ℓ V)E : B!E

An operation invocation is only well-typed if the effect row E is well-kinded and men-

tions the operation with a present type, or put differently: the current effect context

must permit an instance of the operation to occur. The argument type A must be the

same as the domain type of the operation. The type of the whole term is the (value)

return type of the operation paired with the current effect context.

We have the basic machinery for writing effectful programs, albeit we cannot eval-

uate those programs without handlers to ascribe a semantics to the operations.

3.2.2 Handling of effectful operations

The elimination form for an effectful operation is an effect handler. Effect handlers

interpret the effectful segments of a program. The addition of handlers requires us to

extend the type algebra of λb with a kind for handlers and a new syntactic category for

3.2. Deep handling of effects 87

handler types.
Kinds K ∈ Kind ::= · · · | Handler

Handler types F ∈ HType ::= C⇒ D

Types T ∈ Type ::= · · · | F
The syntactic category of kinds is augmented with the kind Handler which we will

ascribe to handler types F. The arrow,⇒, denotes the handler space. The type structure

suggests that a handler is a transformer of computations, since by looking solely at

the types a handler takes a computation of type C and returns another computation of

type D. As such, we may think of a handler as a sort of generalised function, that work

over computations rather than bare values (this observation is exploited in the Frank

programming language, where a function is but a special case of a handler [52, 174]).

The following kinding rule checks whether a handler type is well-kinded.

K-Handler

∆ ⊢ C : Comp ∆ ⊢ D : Comp

∆ ⊢ C⇒ D : Handler

With the type structure in place, we can move on to the term syntax for handlers.

Handlers extend the syntactic category of computations with a new computation form

as well as introducing a new syntactic category of handler definitions.

Computations M,N ∈ Comp ::= · · · | handle M with H

Handlers H ∈ HDef ::= {return x 7→M} | {⟨⟨ℓ p↠ r⟩⟩ 7→ N}⊎H

Terms t ∈ Term ::= · · · | H

The handle construct (handle M with H) is the counterpart to do. It runs computation

M using handler H. A handler H consists of a return clause {return x 7→ M} and

a possibly empty set of operation clauses {⟨⟨ℓ pℓ↠ rℓ⟩⟩ 7→ Nℓ}ℓ∈L . The return clause

{return x 7→M} defines how to interpret the final return value of a handled computation,

i.e. a computation that has been fully reduced to return V for some value V . The

variable x is bound to the final return value in the body M. Each operation clause

{⟨⟨ℓ pℓ ↠ rℓ⟩⟩ 7→ Nℓ}ℓ∈L defines how to interpret an invocation of some operation ℓ.

The variables pℓ and rℓ are bound in the body Nℓ. The binding occurrence pℓ binds

the payload of the operation and rℓ binds the resumption of the operation invocation,

which is the delimited continuation from the invocation site up of ℓ to and including

the enclosing handler.

Given a handler H, we often wish to refer to the clause for a particular operation or

the return clause; for these purposes we define two convenient projections on handlers

88 Chapter 3. Calculi for effect handler oriented programming

in the metalanguage.

Hℓ def
= {⟨⟨ℓ p↠ r⟩⟩ 7→ N}, where {⟨⟨ℓ p↠ r⟩⟩ 7→ N} ∈ H

Hret def
= {return x 7→ N}, where {return x 7→ N} ∈ H

The Hℓ projection yields the singleton set consisting of the operation clause in H that

handles the operation ℓ, whilst Hret yields the singleton set containing the return clause

of H. We define the domain of an handler as the set of operation labels it handles, i.e.

dom : HDef→ Label

dom({return x 7→M}) def
= /0

dom({⟨⟨ℓ p↠ r⟩⟩ 7→M}⊎H)
def
= {ℓ}∪dom(H)

3.2.3 Static semantics

There are two typing rules for handlers. The first rule type checks the handle-construct

and the second rule type checks handler definitions.

T-Handle

Γ ⊢M : C Γ ⊢ H : C⇒ D

Γ ⊢ handle M with H : D

T-Handler

C = A!{(ℓi : Ai↠ Bi)i;R}
D = B!{(ℓi : Pi)i;R}
H = {return x 7→M}⊎{⟨⟨ℓi pi↠ ri⟩⟩ 7→ Ni}i

∆;Γ,x : A ⊢M : D

[∆;Γ,pi : Ai,ri : Bi→ D ⊢ Ni : D]i

∆;Γ ⊢ H : C⇒ D

The T-Handle rule is simply the application rule for handlers. The T-Handler rule is

where most of the work happens. The effect rows on the input computation type C

and the output computation type D must mention every operation in the domain of the

handler. In the output row those operations may be either present (Pre(A)), absent (Abs),

or polymorphic in their presence (θ), whilst in the input row they must be mentioned

with a present type as those types are used to type operation clauses. In each operation

clause the resumption ri must have the same return type, D, as its handler. In the return

clause the binder x has the same type, C, as the result of the input computation.

3.2. Deep handling of effects 89

3.2.4 Dynamic semantics

We augment the operational semantics with two new reduction rules: one for handling

return values and another for handling operations.

S-Ret handle (return V) with H ⇝ N[V/x], where Hret = {return x 7→ N}
S-Op handle E [do ℓV] with H ⇝ N[V/p,λy.handle E [return y] with H/r],

where Hℓ = {⟨⟨ℓ p↠ r⟩⟩ 7→ N}
and ℓ /∈ BL(E)

The rule S-Ret invokes the return clause of the current handler H and substitutes V for

x in the body N. The rule S-Op handles an operation ℓ subject to two conditions. The

first condition ensures that the operation is only captured by a handler if its handler

definition H contains a corresponding operation clause for the operation. Otherwise

the operation passes seamlessly through the handler such that another suitable handler

can handle the operation. This phenomenon is known as effect forwarding. It is key to

enable modular composition of effectful computations. The second condition ensures

the operation ℓ and that the operation does not appear in the bound labels (BL) of

the inner context E . The bound label condition enforces that an operation is always

handled by the nearest enclosing suitable handler. Formally, we define the notion of

bound labels, BL : Cont→ Label, inductively over the structure of evaluation contexts.

BL([]) = /0

BL(let x← E in N) = BL(E)

BL(handle E with H) = BL(E)∪dom(H)

To illustrate the necessity of this condition consider the following example with two

nested handlers which both handle the same operation ℓ.

Hinner
def
= {⟨⟨ℓ p↠ r⟩⟩ 7→ r 42;return x 7→ return x}

Houter
def
= {⟨⟨ℓ p↠ r⟩⟩ 7→ r 0;return x 7→ return x}

handle (handle do ℓ ⟨⟩ with Hinner) with Houter⇝+

return 42 Innermost

return 0 Outermost

Without the bound label condition there are two possible results as the choice of which

handler to pick for ℓ is ambiguous, meaning reduction would be nondeterministic.

Conversely, with the bound label condition we obtain that the above term reduces

to return 42, because ℓ is bound in the computation term of the outermost handle.

90 Chapter 3. Calculi for effect handler oriented programming

The decision to always select the nearest enclosing suitable handler for an operation

invocation is a conscious choice. In fact, it is the only natural and sensible choice as

picking any other handler than the nearest enclosing renders programming with effect

handlers anti-modular. Consider the other extreme of always selecting the outermost

suitable handler, then the meaning of any effectful program fragment depends on the

entire ambient context. For example, consider using integer addition as the composition

operator to compose the inner handle expression from above with a copy of itself.

fortytwo
def
= handle do ℓ ⟨⟩ with Hinner

E [fortytwo+ fortytwo]⇝+

return 84 when E is empty

? otherwise

Clearly, if the ambient context E is empty, then we can derive the result by reasoning

locally about each constituent separately and subsequently add their results together to

obtain the computation term return 84. Conversely, if the ambient context is nonempty,

then we need to account for the possibility that some handler for ℓ is could be present in

the context. For instance if E = handle [] with Houter then the result would be return 0,

which we cannot derive locally from looking at the immediate constituents. Thus we

can argue that if we want programming to remain modular and compositional, then we

must necessarily always select the nearest enclosing suitable handler for an operation.

The resumption r includes both the captured evaluation context and the handler.

Invoking the resumption causes the both the evaluation context and handler to be rein-

stalled, meaning subsequent invocations of ℓ get handled by the same handler. This is a

defining characteristic of deep handlers.

The metatheoretic properties of λb transfer to λh with little extra effort, although

we must amend the definition of computation normal forms as there are now two ways

in which a computation term can terminate: successfully returning a value or getting

stuck on an unhandled operation.

Definition 3.7 (Computation normal forms). We say that a computation term N is

normal with respect to an effect signature E, if N is either of the form return V , or

E [do ℓW] where ℓ ∈ E and ℓ /∈ BL(E).

Theorem 3.8 (Progress). Suppose ⊢M : C, then either there exists ⊢ N : C such that

M⇝+ N and N is normal, or M diverges.

Proof. By induction on the typing derivations.

3.2. Deep handling of effects 91

Theorem 3.9 (Subject reduction). Suppose Γ ⊢M : C and M⇝M′, then Γ ⊢M′ : C.

Proof. By induction on the typing derivations.

3.2.5 Effect sugar

The row polymorphism formalism underlying the effect system is rigid with regard

to presence information. Every effect row which share the same effect variable must

mention the exact same operations to be complete, that is they must mention whether

an operation is present, absent, or polymorphic in their its presence. Consequently, in

higher-order effectful programming this can cause duplication of information, which in

turn can cause effect signatures to become overly verbose. In most cases verbosity is

undesirable if the extra information is redundant, and in practice it can be real nuisance

in larger codebases. We can retrospectively fix this issue with some syntactic sugar

rather than redesigning the entire effect system to rectify this problem.

To this end, I will take inspiration from the effect system of Frank, which allows

eliding redundant information in many cases [174]. In the following I will describe an

ad-hoc elaboration scheme for effect rows, which is designed to guess the programmer’s

intent for first-order and second-order functions, but it might not work so well for third-

order and above. The reason for focusing on first-order and second-order functions is

that many familiar and useful functions are either first-order or second-order, and in

the following sections we will mostly be working with first-order and second-order

functions (although, it should be noted that there exist useful functions at higher order,

e.g. in Chapter 7 we shall use third-order functions; for an example of a sixth order

function see Okasaki [209]).

First, let us consider the familiar second-order function map for lists which is com-

pletely parametric in its effects.

map : ⟨α→ β ;List α⟩ → List β

≡ map : ⟨α→ β!{ε};List α⟩ → List β!{ε}

For this type to be correct in λh (and λb for that matter) we must annotate the computa-

tion type with their effect row. These effect annotations do not convey any additional

information, because the function is entirely parametric in all effects, thus the ink spent

on the annotations is really wasted in this instance. To fix this we simply need to

instantiate each computation type with the same effect variable ε.

92 Chapter 3. Calculi for effect handler oriented programming

A slightly more interesting example is a second-order function which itself performs

some operation, but is otherwise parametric in the effects of its argument.

(A→ B1!{ ε})→ B2!{ℓ : A′↠ B′;ε}
≡ (A→ B1!{ℓ : A′↠ B′;ε})→ B2!{ℓ : A′↠ B′;ε}

To be type-correct both rows must mention the ℓ operation. However, this information

is redundant on the functional parameter. The idea here is to push the information of the

ambient effect row B2 inwards to B1 such that the functional argument can be granted

the ability to perform ℓ. The following infix function ◁ implements the inward push of

information by copying operations from its right parameter to its left parameter.

◁ : Effect×Effect→ Effect

E ◁ {·} def
= E

E ◁ {ε} def
= E

E ◁ {ℓ : P;R} def
=

{ℓ : P}⊎ (E ◁ {R}) if ℓ /∈ E

{R}◁ E otherwise

This function essentially computes the union of the two effect rows.

The most frequent case to occur is a second-order function which handles the effects

of its argument.

(A→ B1!{ℓ : A′↠ B′;ε})→ B2!{ ε}
≡ (A→ B1!{ℓ : A′↠ B′;ε})→ B2!{ℓ : θ;ε}

To capture the intuition that operations have been handled, we would like to not mention

the handled operations in the effect row attached to B2. The idea is to propagate the

information of the effect row attached to B1 outwards such that this information can

be used to complete the effect row on B2. To complete the row we need to copy the

operations unique to the effect row of B1 into the effect row of B2 and instantiate them

with a fresh presence variable. The following function ▷ propagates information from

its left parameter to its right parameter.

▷ : Effect×Effect→ Effect

{·}▷ E def
= E

{ε}▷ E def
= E

{ℓ : A↠ B;R}▷ E def
=

{ℓ : θ}⊎ ({R}▷ E) if ℓ /∈ E

{R}▷ E otherwise

{ℓ : P;R}▷ E def
=

{ℓ : P}⊎ ({R}▷ E) if ℓ /∈ E

{R}▷ E otherwise

3.2. Deep handling of effects 93

The only subtlety occur in the interesting case which is when an operation is present

in the left row, but not in the right row. In this case we instantiate the operation with a

fresh presence variable in the output row.

Propagation of information in either direction should only happen if the effect

rows share the same effect variable. To avoid erroneous propagation of information we

implement and use the following guarded variations of ◁ and ▷.

{R;ε}◀ {R′;ε} def
= {R;ε}◁ {R′;ε}

{R;ε}◀ {R′;ε′} def
= {R;ε}

{R;ε}▶ {R′;ε} def
= {R;ε}▷ {R′;ε}

{R;ε}▶ {R′;ε′} def
= {R′;ε′}

The following function I J−K pushes the ambient effect row Eamb inward a given type.

I will omit the homomorphic cases as there is only one interesting case.

I J−K : CType×Effect→ CType

I JA!EKEamb

def
= I JAKEamb!E ◀ Eamb

The following function OJ−K combines and propagates the effect rows of a type out-

ward. Again, I omit the homomorphic cases.

OJ−K : VType→ Effect

OJαK def
= {·}

OJA→ CK def
= OJAK▶ OJCK

OJ−K : CType→ Effect

OJA!EK def
= OJAK▶ E

OJ−K : Presence→ Effect

OJAbsK def
= OJθK def

= {·}
OJ−K : Row→ Effect

OJ·K def
= OJρK def

= {·}
OJℓ : P;RK def

= OJPK▶ OJRK

We combine all of the above functions to implement the effect row elaboration for

top-level function types.

T J−K : VType→ VType

T JA→ B!EK def
= I JAKE′ → I JBKE′!E′

where E′ = (OJAK▶ E)▷ (OJBK▶ E)

The function T J−K traverses the abstract syntax of its argument twice. The first tra-

versal propagates effect information outwards to the ambient effect row E. The second

traversal pushes the full ambient information E′ inwards. The construction of E′ makes

use of the fact that E ▷ E = E. As a remark, note that the function T J−K do not have

to consider handler types, because they cannot appear at the top-level in λh. With this

syntactic sugar in place we can program with second-order effectful functions without

having to write down redundant information.

94 Chapter 3. Calculi for effect handler oriented programming

3.3 Shallow effect handling

Shallow handlers are an alternative to deep handlers. Shallow handlers are defined as

case-splits over computation trees, whereas deep handlers are defined as folds. Con-

sequently, a shallow handler application unfolds only a single layer of the computation

tree. Semantically, the difference between deep and shallow handlers is analogous to

the difference between Church [46] and Scott [244] encoding techniques for data types

in the sense that the recursion is intrinsic to the former, whilst recursion is extrinsic

to the latter. Thus a fixpoint operator is necessary to make programming with shallow

handlers practical.

Shallow handlers offer more flexibility than deep handlers as they do not hard wire

a particular recursion scheme. Shallow handlers are favourable when catamorphisms

are not the natural solution to the problem at hand. A canonical example of when shal-

low handlers are desirable over deep handlers is UNIX-style pipes, where the natural

implementation is in terms of two mutually recursive functions (specifically mutumorph-

isms [97]), which is convoluted to implement with deep handlers [120, 122, 143].

In this section we take the full λb as our starting point and extend it with shallow

handlers, resulting in the calculus λh† . The calculus borrows some syntax and semantics

from λh, whose presentation will not be duplicated in this section.

3.3.1 Syntax and static semantics

The syntax and semantics for effectful operation invocations are the same as in λh.

Handler definitions and applications also have the same syntax as in λh, although we

shall annotate the application form for shallow handlers with a superscript † to distin-

guish it from deep handler application.

Computations M,N ∈ Comp ::= · · · | handle† M with H

The static semantics for handle† are the same as the static semantics for handle.

T-Handle†

Γ ⊢M : C Γ ⊢ H : C⇒ D

Γ ⊢ handle† M with H : D

T-Handler†

C = A!{(ℓi : Ai↠ Bi)i;R}
D = B!{(ℓi : Pi)i;R}
H = {return x 7→M}⊎{⟨⟨ℓi pi↠ ri⟩⟩ 7→ Ni}i

∆;Γ,x : A ⊢M : D

[∆;Γ,pi : Ai,ri : Bi→ C ⊢ Ni : D]i

∆;Γ ⊢ H : C⇒ D

3.4. Parameterised effect handling 95

The T-Handler† rule is remarkably similar to the T-Handler rule. In fact, the only dif-

ference is the typing of resumptions ri. The codomain of ri is C rather than D, meaning

that a resumption returns a value of the same type as the input computation. In general

the type C may be different from the output type D, thus it is evident from this typing

rule that the handler does not guard invocations of resumptions ri.

3.3.2 Dynamic semantics

There are two reduction rules.

S-Ret† handle† (return V) with H ⇝ N[V/x],where Hret = {return x 7→ N}
S-Op† handle† E [do ℓV] with H ⇝ N[V/p,λy.E [return y]/r],

where Hℓ = {⟨⟨ℓ p↠ r⟩⟩ 7→ N}
and ℓ /∈ BL(E)

The rule S-Ret† is the same as the S-Ret rule for deep handlers — there is no difference

in how the return value is handled. The S-Op† rule is almost the same as the S-Op

rule the crucial difference being the construction of the resumption r. The resumption

consists entirely of the captured context E . Thus an invocation of r does not reinstall its

handler as in the setting of deep handlers, meaning is up to the programmer to supply

the handler the next invocation of ℓ inside E . This handler may be different from H.

The basic metatheoretic properties of λh† are a carbon copy of the basic properties

of λh.

Theorem 3.10 (Progress). Suppose ⊢M : C, then either there exists ⊢ N : C such that

M⇝+ N and N is normal, or M diverges.

Proof. By induction on the typing derivations.

Theorem 3.11 (Subject reduction). Suppose Γ ⊢M : C and M⇝M′, then Γ ⊢M′ : C.

Proof. By induction on the typing derivations.

3.4 Parameterised effect handling

Parameterised handlers are a variation of ordinary deep handlers with an embedded

functional state cell. This state cell is only accessible locally within the handler. The

use of state within the handler is opaque to both the ambient context and the context

96 Chapter 3. Calculi for effect handler oriented programming

of the computation being handled. Semantically, parameterised handlers are defined as

folds with state threading over computation trees.

We take the deep handler calculus λh as our starting point and extend it with paramet-

erised handlers to yield the calculus λh‡ . The parameterised handler extension interacts

nicely with shallow handlers, and as such it can be added to λh† with low effort.

3.4.1 Syntax and static semantics

In addition to a computation, a parameterised handler also take a value as argument.

This argument is the initial value of the state cell embedded inside the handler.

Handler types F ::= · · · | ⟨C;A⟩ ⇒‡ D

Computations M,N ::= · · · | handle‡ M with H‡(W)

Parameterised definitions H‡ ::= qA. H

The syntactic category of handler types F is extended with a new kind of handler

arrow for parameterised handlers. The left hand side of the arrow is a pair, whose

first component denotes the type of the input computation and the second component

denotes the type of the handler parameter. The right hand side denotes the return type

of the handler. The computations category is extended with a new application form

for handlers, which runs a computation M under a parameterised handler H applied to

the value W. Finally, a new category is added for parameterised handler definitions. A

parameterised handler definition is a new binding form (qA. H), where q is the name

of the parameter, whose type is A, and H is an ordinary handler definition H. The

parameter q is accessible in the return and operation clauses of H.

As with ordinary deep handlers and shallow handlers, there are two typing rules:

one for handler application and another for handler definitions.

T-Handle‡

Γ ⊢M : C Γ ⊢W : A Γ ⊢ H‡ : ⟨C;A⟩ ⇒‡ D

Γ ⊢ handle‡ M with H‡(W) : D

The T-Handle‡ rule is similar to the T-Handle and T-Handle† rules, except that it has to

account for the parameter W, whose type has to be compatible with the second compon-

ent of the domain type of the handler definition H‡. The typing rule for parameterised

handler definitions adapts the corresponding typing rule T-Handler for ordinary deep

3.4. Parameterised effect handling 97

handlers with the addition of a parameter.

T-Handler‡

C = A!{(ℓi : Ai→ Bi)i;R}
D = B!{(ℓi : P)i;R}
H = {return x 7→M}⊎{⟨⟨ℓi pi↠ ri⟩⟩ 7→ Ni}i

∆;Γ,q : A′,x : A ⊢M : D

[∆;Γ,q : A′,pi : Ai,ri : ⟨Bi;A′⟩ → D ⊢ Ni : D]i

∆;Γ ⊢ (qA′.H) : ⟨C;A′⟩ ⇒‡ D

The key differences between the T-Handler and T-Handler‡ rules are that in the latter

the return and operation cases are typed with respect to the parameter q, and that re-

sumptions ri have type ⟨Bℓ;A′⟩ → D, that is a parameterised resumption is a binary

function, where the first argument is the interpretation of an operation and the second

argument is the (updated) handler state. The return type of ri is the same as the return

type of the handler, meaning that an invocation of ri is guarded in the same way as an

invocation of an ordinary deep resumption.

3.4.2 Dynamic semantics

The two reduction rules for parameterised handlers adapt the reduction rules for ordin-

ary deep handlers with a parameter.

S-Ret‡ handle‡ (return V) with (q.H)(W) ⇝ N[V/x,W/q],

where Hret = {return x 7→ N}
S-Op‡ handle‡ E [do ℓV] with (q.H)(W) ⇝ N[V/p,W/q,R/r],

where R = λ⟨y;q′⟩.handle‡ E [return y] with (q.H)(q′)

and Hℓ = {⟨⟨ℓ p↠ r⟩⟩ 7→ N}
and ℓ /∈ BL(E)

The rule S-Ret‡ handles the return value of a computation. Just like the rule S-Ret the

return value V is substituted for the binder x in the return case body N. Furthermore the

value W is substituted for the handler parameter q in N, meaning the handler parameter

is accessible in the return case.

The S-Op‡ handles an operation invocation. Both the operation payload V and hand-

ler argument W are accessible inside the case body N. As with ordinary deep handlers,

the resumption rewraps its handler, but with the slight twist that the parameterised hand-

ler definition is applied to the updated parameter value q′ rather than the original value

98 Chapter 3. Calculi for effect handler oriented programming

W. This achieves the effect of state passing as the value of q′ becomes available upon

the next activation of the handler.

The metatheoretic properties of λh carries over to λh‡ .

Theorem 3.12 (Progress). Suppose ⊢M : C, then either there exists ⊢ N : C such that

M⇝+ N and N is normal, or M diverges.

Proof. By induction on the typing derivations.

Theorem 3.13 (Subject reduction). Suppose Γ ⊢M : C and M⇝M′, then Γ ⊢M′ : C.

Proof. By induction on the typing derivations.

3.5 Related work

Row polymorphism Row polymorphism was originally introduced by Wand [272]

as a typing discipline for extensible records. The style of row polymorphism used in

this chapter is due to Rémy [237]. It was designed to work well with type inference as

typically featured in the ML-family of programming languages. Rémy also describes

a slight variation of this system, where the presence polymorphism annotations may

depend on a concrete type, e.g. ℓ : θ.Int;R means that the label is polymorphic in its

presence, however, if it is present then it has presence type Int.

Either of Rémy’s row systems have set semantics, i.e. a row cannot contain duplic-

ated labels. An alternative semantics based on dictionaries is used by Leijen [163]. In

Leijen’s system labels may be duplicated, which introduces a form of scoping for labels,

which for example makes it possible to shadow fields in a record. There is no notion of

presence information in [163]’s system, and thus, as a result Leijen-style rows simplify

the overall type structure. Leijen [164] has used this system as the basis for the effect

system of Koka.

Morris and McKinna [206] have developed a unifying theory of rows, which collects

the aforementioned row systems under one umbrella. Their system provides a general

account of record extension and projection, and dually, variant injection and branching.

Effect tracking As mentioned in Section 1.2.3 the original effect system was de-

veloped by Lucassen and Gifford [183] to provide a lightweight facility for static con-

currency analysis. Since then effect systems have been employed to perform a variety of

static analyses, e.g. Tofte and Talpin [262, 263] describe a region-based memory man-

agement system that makes use of a type and effect system to infer and track lifetimes

3.5. Related work 99

of regions; Benton and Kennedy [17] use a monadic effect system to identify opportun-

ities for optimisations in the intermediate language of their ML to Java compiler; and

Lindley and Cheney [173] use a variation of the row system presented in this chapter to

support abstraction and predicable code generation for database programming in Links.

Row types are used to give structural types to SQL rows in queries, whilst their effect

system is used to differentiate between tame and wild functions, where a tame function

is one whose body can be translated and run directly on the database, whereas a wild

function cannot.

Programming languages with handlers The union of the calculi presented in this

chapter make up the essence of the intermediate representation of the Links program-

ming language [119, 120]. A closely related programming language with handlers is

Leijen’s Koka, which has been retrofitted with ordinary deep and parameterised effect

handlers [165]. In Koka effects are nominal, meaning an effect and its constructors must

be declared before use, which is unlike the structural approach taken in this chapter.

Koka also tracks effects via an effect system based on Leijen-style row polymorph-

ism [163, 164], where rows are interpreted as multisets which means an effect can

occur multiple times in an effect row. The ability to repeat effects provide a form for ef-

fect scoping in the sense that an effect instance can shadow another. A handler handles

only the first instance of a repeated effect, leaving the remaining instances for another

handler. Consequently, the order of repeated effect instances matter and it can therefore

be situational useful to manipulate the order of repeated instances by way of so-called

effect masking. The notion of effect masking was formalised by Biernacki et al. [26]

and generalised by Convent et al. [52].

Biernacki et al. [26] designed Helium, which is a programming language that fea-

tures a rich module system, deep handlers, and lexical handlers [28]. Lexical handlers

bind effectful operations to specific handler instances. Operations remain bound for

the duration of computation. This makes the nature of lexical handlers more static

than ordinary deep handlers, as for example it is not possible to dynamically overload

the interpretation of residual effects of a resumption invocation as in Section 2.3. The

mathematical foundations for lexical handlers has been developed by Geron [106].

The design of the Effekt language by Brachthäuser et al. [39] resolves around the

idea of lexical handlers for efficiency. Effekt takes advantage of the static nature of

lexical handlers to eliminate the dynamic handler lookup at runtime by tying the cor-

rect handler instance directly to an operation invocation [35, 243]. The effect system

100 Chapter 3. Calculi for effect handler oriented programming

of Effekt is based on intersection types, which provides a limited form of effect poly-

morphism [39]. A design choice that means it does not feature first-class functions.

The Frank language by Lindley et al. [174] is born and bred on shallow effect hand-

lers. One of the key novelties of Frank is n-ary shallow handlers, which generalise ordin-

ary unary shallow handlers to be able to handle multiple computations simultaneously.

Another novelty is the effect system, which is based on a variation of Leijen-style row

polymorphism, where the programmer rarely needs to mention effect variables. This

is achieved by insisting that the programmer annotates each input argument with the

particular effects handled at the particular argument position as well as declaring what

effects needs to be handled by the ambient context. Each annotation is essentially an

incomplete row. They are made complete by concatenating them and inserting a fresh

effect variable.

Bauer and Pretnar’s Eff language was the first programming language designed

from the ground up with effect handlers in mind. It features only deep handlers [15].

A previous iteration of the language featured an explicit effect instance system. An

effect instance is a sort of generative interface, where the operations are unique to each

instance. As a result it is possible to handle two distinct instances of the same effect

differently in a single computation. Their system featured a type-and-effect system

with support for effect inference [14, 231], however, the effect instance system was

later dropped to in favour of a vanilla nominal approach to effects and handlers.

Multicore OCaml is, at the time of writing, an experimental branch of the OCaml

programming language, which aims to extend OCaml with effect handlers for multicore

and concurrent programming [70, 71]. The current incarnation features untracked nom-

inal effects and deep handlers with single-use resumptions.

Part II

Implementation

101

Chapter 4

Continuation-passing style

Continuation-passing style (CPS) is a canonical program notation that makes every

facet of control flow and data flow explicit. In CPS every function takes an additional

function-argument called the continuation, which represents the next computation in

evaluation position. CPS is canonical in the sense that it is definable in pure λ-calculus

without any further primitives. As an informal illustration of CPS let us consider the

ever-green factorial function, which may be implemented in λb as follows.

fac : Int→ Int

fac
def
= λn.let isz← n = 0 in

if isz then return 1

else let n′← n−1 in
let m← fac n′ in
let res← n∗m in
return res

The above implementation of the function fac is given in direct-style fine-grain call-by-

value. In CPS notation the implementation of this function changes as follows.

faccps : Int→ (Int→ α)→ α

faccps
def
= λn.λk.(=cps) n 0 (λisz. if isz then k 1

else (−cps) n 1

(λn′.faccps n′

(λm.(∗cps) n m

(λres.k res))))

There are several worthwhile observations to make about the differences between the

two implementations fac and faccps. Firstly note that their type signatures differ. The

103

104 Chapter 4. Continuation-passing style

CPS version has an additional formal parameter of type Int→ α which is the continu-

ation. By convention the continuation parameter is named k in the implementation.

As usual, the continuation represents the remainder of computation. In this specific

instance k represents the undelimited current continuation of an application of faccps.

Given a value of type Int, the continuation produces a result of type α, which is the

answer type of the entire program. Thus applying faccps 3 to the identity function (λx.x)

yields 6 : Int, whilst applying it to the predicate λx.x > 2 yields true : Bool.

Secondly note that every let-binding in fac has become a function application in

faccps. The binding sequence in the else-branch has been turned into a series of nested

function applications. The functions =cps, −cps, and ∗cps denote the CPS versions of

equality testing, subtraction, and multiplication respectively. For clarity, I have meticu-

lously written each continuation function on a newline. For instance, the continuation

of the −cps-application is another application of faccps, whose continuation is an ap-

plication of ∗cps, and its continuation is an application of the current continuation, k, of

faccps. Each return-computation has been turned into an application of the current con-

tinuation k. In the then-branch the continuation applied to 1, whilst in the else-branch

the continuation is applied to the result obtained by multiplying n and m.

Thirdly note that every function application occurs in tail position (recall Defini-

tion 3.1). This is a characteristic property of CPS transforms that make them feasible as

a practical implementation strategy, since programs in CPS notation require only a con-

stant amount of stack space to run, namely, a single activation frame [8]. Although, the

pervasiveness of closures in CPS means that CPS programs make heavy use of the heap

for closure allocation. Some care must be taken when CPS transforming a program as

if done naïvely the image may be inflated with extraneous terms [68]. For example in

faccps the continuation term (λres.k res) is redundant as it is simply an eta expansion of

the continuation k. A more optimal transform would simply pass k. Extraneous terms

can severely impact the runtime performance of a CPS program. A smart CPS trans-

form recognises and eliminates extraneous terms at translation time [67]. Extraneous

terms come in various disguises as we shall see later in this chapter.

The complete exposure of the control flow makes CPS a good fit for implementing

control operators such as effect handlers. It is an established intermediate representation

used by compilers, providing it with merits as a practical compilation target [8, 144].

The purpose of this chapter is to use the CPS formalism to develop a universal im-

plementation strategy for deep, shallow, and parameterised effect handlers. Section 4.1

defines a suitable target calculus λu for CPS transformed programs. Section 4.2 demon-

105

strates how to CPS transform λb-programs to λu-programs. In Section 4.3 develop

a CPS transform for deep handlers through step-wise refinement of the initial CPS

transform for λb. The resulting CPS transform is adapted in Section 4.4 to support

for shallow handlers. As a by-product we develop the notion of generalised continu-

ation, which provides a versatile abstraction for implementing effect handlers. We use

generalised continuations to implement parameterised handlers in Section 4.5.

Chapter outline

Section 4.1 presents the initial target calculus.

Section 4.2 demonstrates how to translate λb to the target calculus via CPS.

Section 4.3 starts from a rather naïve first-order CPS transform for deep handlers. Over

the course of several refinements the naïve CPS transform gets progressively

more sophisticated, ultimately resulting in a higher-order one-pass CPS transform

for deep handlers.

Section 4.4 further extends higher-order CPS to accommodate shallow handlers. Dur-

ing this development the notion of generalised continuations is introduced.

Section 4.5 adapts the translation with generalised continuations to support paramet-

erised handlers as well.

Section 4.6 discusses related work.

Relation to prior work This chapter is based on the following work.

i Daniel Hillerström, Sam Lindley, Robert Atkey, and KC Sivaramakrishnan. Con-

tinuation passing style for effect handlers. In FSCD, volume 84 of LIPIcs, pages

18:1–18:19, 2017

ii Daniel Hillerström and Sam Lindley. Shallow effect handlers. In APLAS, volume

11275 of LNCS, pages 415–435. Springer, 2018

iii Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via generalised

continuations. J. Funct. Program., 30:e5, 2020

Section 4.3.4 is based on item i, however, I have adapted it to follow the notation and

style of item iii.

106 Chapter 4. Continuation-passing style

4.1 Initial target calculus

The syntax, semantics, and syntactic sugar for the target calculus λu is given in Fig-

ure 4.1. The calculus largely amounts to an untyped variation of λb, specifically we

retain the syntactic distinction between values (V) and computations (M). The val-

ues (V) comprise lambda abstractions (λx.M), empty tuples (⟨⟩), pairs (⟨V,W⟩), and

first-class labels (ℓ). Computations (M) comprise values (V), applications (M V), pair

elimination (let ⟨x,y⟩= V in N), label elimination (case V {ℓ 7→M;x 7→ N}), and expli-

cit marking of unreachable code (absurd). A key difference from λb is that the function

position of an application is allowed to be a computation (i.e., the application form is

M W rather than V W). Later, when we refine the initial CPS translation we will be able

to rule out this relaxation.

The reduction semantics follows the trend of the previous reduction semantics in

the sense that it is a small-step context-based reduction semantics. Evaluation contexts

comprise the empty context and function application.

To make the notation more lightweight, we define syntactic sugar for variant values,

record values, list values, let binding, variant eliminators, and record eliminators. We use

pattern matching syntax for deconstructing variants, records, and lists. For desugaring

records, we assume a failure constant ℓ⊥ (e.g. a divergent term) to cope with the case

of pattern matching failure.

4.2 Transforming fine-grain call-by-value

We start by giving a CPS translation of λb in Figure 4.2. Fine-grain call-by-value admits

a particularly simple CPS translation due to the separation of values and computations.

All constructs from the source language are translated homomorphically into the target

language λu, except for return and let (and type abstraction because the translation

performs type erasure). Lifting a value V to a computation return V is interpreted by

passing the value to the current continuation k. Sequencing computations with let is

translated by applying the translation of M to the translation of the continuation N,

which is ultimately applied to the current continuation k. In addition, we explicitly

η-expand the translation of a type abstraction in order to ensure that value terms in the

source calculus translate to value terms in the target.

4.2. Transforming fine-grain call-by-value 107

Syntax

Values U,V,W ∈ UVal ::= x | λx.M || ⟨⟩ | ⟨V,W⟩ | ℓ

Computations M,N ∈ UComp ::= V |M W | let ⟨x,y⟩= V in N

| case V {ℓ 7→M;y 7→ N} | absurdV

Evaluationcontexts E ∈ UCont ::= [] | E W

Reductions

U-App (λx.M)V ⇝ M[V/x]

U-Split let ⟨x,y⟩= ⟨V,W⟩ in N ⇝ N[V/x,W/y]

U-Case1 case ℓ {ℓ 7→M;y 7→ N} ⇝ M

U-Case2 case ℓ {ℓ′ 7→M;y 7→ N} ⇝ N[ℓ/y], if ℓ ̸= ℓ′

U-Lift E [M] ⇝ E [N], if M⇝ N

Syntactic sugar

let x = V in N ≡ N[V/x]

ℓ V ≡ ⟨ℓ;V⟩
⟨⟩ ≡ ℓ⟨⟩

⟨ℓ= V;W⟩ ≡ ⟨ℓ,⟨V,W⟩⟩
[] ≡ ℓ[]

V :: W ≡ ⟨ℓ::,⟨V,W⟩⟩
case V {ℓ x 7→M;y 7→ N} ≡ let y = V in let ⟨z,x⟩= y in

case z {ℓ 7→M;z′ 7→ N}
let ⟨ℓ= x;y⟩= V in N ≡ let ⟨z,z′⟩= V in let ⟨x,y⟩= z′ in

case z {ℓ 7→ N;z′′ 7→ ℓ⊥}

Figure 4.1: Untyped target calculus for the CPS translations.

108 Chapter 4. Continuation-passing style

Values

J−K : Val→ UVal

JxK = x

Jλx.MK = λx.JMK

JΛα.MK = λk.JMK k

J⟨⟩K = ⟨⟩
J⟨ℓ= V;W⟩K = ⟨ℓ= JVK;JWK⟩

Jℓ VK = ℓ JVK

Computations

J−K : Comp→ UComp

JV WK = JVKJWK

JV TK = JVK

Jlet ⟨ℓ= x;y⟩= V in NK = let ⟨ℓ= x;y⟩= JVK in JNK

Jcase V {ℓ x 7→M;y 7→ N}K = case JVK {ℓ x 7→ JMK;y 7→ JNK}
Jabsurd VK = absurd JVK

Jreturn VK = λk.k JVK

Jlet x←M in NK = λk.JMK(λx.JNKk)

Figure 4.2: First-order CPS translation of λb.

4.3. Transforming deep effect handlers 109

4.3 Transforming deep effect handlers

The translation of a computation term by the basic CPS translation in Section 4.2 takes

a single continuation parameter that represents the context. In the presence of effect

handlers in the source language, it becomes necessary to keep track of two kinds of

contexts in which each computation executes: a pure context that tracks the state of pure

computation in the scope of the current handler, and an effect context that describes how

to handle operations in the scope of the current handler. Correspondingly, we have both

pure continuations (k) and effect continuations (h). As handlers can be nested, each

computation executes in the context of a stack of pairs of pure and effect continuations.

On entry into a handler, the pure continuation is initialised to a representation of

the return clause and the effect continuation to a representation of the operation clauses.

As pure computation proceeds, the pure continuation may grow, for example when

executing a let. If an operation is encountered then the effect continuation is invoked.

The current continuation pair (k, h) is packaged up as a resumption and passed to the

current handler along with the operation and its argument. The effect continuation then

either handles the operation, invoking the resumption as appropriate, or forwards the

operation to an outer handler. In the latter case, the resumption is modified to ensure

that the context of the original operation invocation can be reinstated upon invocation

of the resumption.

4.3.1 Curried translation

We first consider a curried CPS translation that extends the translation of Figure 4.2.

The extension to operations and handlers is localised to the additional features because

currying conveniently lets us get away with a shift in interpretation: rather than accept-

ing a single continuation, translated computation terms now accept an arbitrary even

number of arguments representing the stack of pure and effect continuations. Thus, we

can conservatively extend the translation in Figure 4.2 to cover λh, where we imagine

there being some number of extra continuation arguments that have been η-reduced.

110 Chapter 4. Continuation-passing style

The translation of operations and handlers is as follows.

J−K : Comp→ UComp

Jdo ℓ VK def
= λk.λh.h ⟨ℓ,⟨JVK,λx.k x h⟩⟩

Jhandle M with HK def
= JMK JHretK JHopsK

J−K : HDef→ UComp

J{return x 7→ N}K def
= λx.λh.JNK

J{ℓ p r 7→ Nℓ}ℓ∈LK def
= λ⟨z,⟨p,r⟩⟩.case z {(ℓ 7→ JNℓK)ℓ∈L ;y 7→Mforward(y,p,r)}

Mforward(y,p,r)
def
= λk.λh.h⟨y,⟨p,λx.r xk h⟩⟩

The translation of do ℓ V abstracts over the current pure (k) and effect (h) continuations

passing an encoding of the operation into the latter. The operation is encoded as a triple

consisting of the name ℓ, parameter JVK, and resumption λx.k x h, which passes the

same effect continuation h to ensure deep handler semantics.

The translation of handle M with H invokes the translation of M with new pure

and effect continuations for the return and operation clauses of H. The translation of

a return clause is a term which garbage collects the current effect continuation h. The

translation of a set of operation clauses is a function which dispatches on encoded

operations, and in the default case forwards to an outer handler. In the forwarding case,

the resumption is extended by the parent continuation pair to ensure that an eventual

invocation of the resumption reinstates the handler stack.

The translation of complete programs feeds the translated term the identity pure

continuation (which discards its handler argument), and an effect continuation that is

never intended to be called.

⊤J−K : Comp→ UComp

⊤JMK def
= JMK (λx.λh.x) (λ⟨z,_⟩.absurd z)

Conceptually, this translation encloses the translated program in a top-level handler

with an empty collection of operation clauses and an identity return clause.

A pleasing property of this particular CPS translation is that it is a conservative ex-

tension to the CPS translation for λb. Alas, this translation also suffers two displeasing

properties which makes it unviable in practice.

1. The image of the translation is not properly tail-recursive [60, 63, 254], meaning

not every function application occur in tail position in the image, and thus the

image is not stackless. Consequently, the translation cannot readily be used as

the basis for an implementation. This deficiency is essentially due to the curried

representation of the continuation stack.

4.3. Transforming deep effect handlers 111

2. The image of the translation yields static administrative redexes, i.e. redexes

that could be reduced statically. This is a classic problem with CPS translations.

This problem can be dealt with by introducing a second pass to clean up the

image [220]. By clever means the clean up pass and the translation pass can be

fused together to make an one-pass translation [63, 67].

The following minimal example readily illustrates both issues.

⊤Jreturn ⟨⟩K =(λk.k ⟨⟩)(λx.λh.x)(λ⟨z,_⟩.absurdz)

⇝((λx.λh.x)⟨⟩)(λ⟨z,_⟩.absurdz) (∗4.1)

⇝(λh.⟨⟩)(λ⟨z,_⟩.absurdz) (∗4.2)

⇝⟨⟩

The second and third reductions simulate handling return ⟨⟩ at the top level. The

second reduction partially applies the curried function term λx.λh.x to ⟨⟩, which must

return a value such that the third reduction can be applied. Consequently, evaluation

is not tail-recursive. The lack of tail-recursion is also apparent in our relaxation of

fine-grain call-by-value in Figure 4.1 as the function position of an application can be a

computation. In Section 4.3.2 we will refine this translation to be properly tail-recursive.

As for administrative redexes, observe that the first reduction is administrative. It is an

artefact introduced by the translation, and thus it has nothing to do with the dynamic

semantics of the original term. We can eliminate such redexes statically. We will address

this issue in Section 4.3.4.

Nevertheless, we can show that the image of this CPS translation simulates the

preimage. Due to the presence of administrative reductions, the simulation is not on

the nose, but instead up to congruence. For reduction in the untyped target calculus

we write ⇝cong for the smallest relation containing ⇝ that is closed under the term

formation constructs.

Theorem 4.1 (Simulation). If M⇝ N then ⊤JMK⇝+
cong ⊤JNK.

Proof. The result follows by composing a call-by-value variant of Forster et al.’s trans-

lation from effect handlers to delimited continuations [2019] with Materzok and Bier-

nacki’s CPS translation for delimited continuations [2012].

4.3.2 Uncurried translation

In this section we will refine the CPS translation for deep handlers to make it properly

tail-recursive. As remarked in the previous section, the lack of tail-recursion is apparent

112 Chapter 4. Continuation-passing style

Syntax

Computations M,N ∈ UComp ::= · · · |M W | V W | U V W

Evaluationcontexts E ∈ UCont ::= [] | E W

Reductions
U-App1 (λx.M)V ⇝ M[V/x]

U-App2 (λx.λy.M)V W ⇝ M[V/x,W/y]

U-Lift E [M] ⇝ E [N], if M⇝ N

Figure 4.3: Adjustments to the syntax and semantics of λu.

in the syntax of the target calculus λu as it permits an arbitrary computation term in the

function position of an application term.

As a first step we may restrict the syntax of the target calculus such that the term

in function position must be a value. With this restriction the syntax of λu implements

the property that any term constructor features at most one computation term, and this

computation term always appears in tail position. This restriction suffices to ensure that

every function application will be in tail position. Figure 4.3 contains the adjustments

to syntax and semantics of λu. The target calculus now supports both unary and binary

application forms. As we shall see shortly, binary application turns out be convenient

when we enrich the notion of continuation. Both application forms are comprised

only of value terms. As a result the dynamic semantics of λu no longer makes use

of evaluation contexts. The reduction rule U-App1 applies to unary application and it

is the same as the U-App-rule in Figure 4.1. The new U-App2-rule applies to binary

application: it performs a simultaneous substitution of the arguments V and W for the

parameters x and y, respectively, in the function body M.

These changes to λu immediately invalidate the curried translation from the previous

section as the image of the translation is no longer well-formed. The crux of the problem

is that the curried interpretation of continuations causes the CPS translation to produce

‘large’ application terms, e.g. the translation rule for effect forwarding produces a three-

argument application term. To rectify this problem we can adapt the technique of

Materzok and Biernacki [190] to uncurry our CPS translation. Uncurrying necessitates

a change of representation for continuations: a continuation is now an alternating list

of pure continuation functions and effect continuation functions. Thus, we move to

an explicit representation of the runtime handler stack. The change of continuation

4.3. Transforming deep effect handlers 113

representation means the CPS translation for effect handlers is no longer a conservative

extension. The translation is adjusted as follows to account for the new representation.

J−K : Comp→ UComp

Jreturn VK def
= λ(k :: ks).k JVKks

Jlet x←M in NK def
= λ(k :: ks).JMK((λx.λks′.JNK(k :: ks′)) :: ks)

Jdo ℓ VK def
= λ(k :: h :: ks).h⟨ℓ,⟨JVK,λx.λks′.k x(h :: ks′)⟩⟩ks

Jhandle M with HK def
= λks.JMK(JHretK :: JHopsK :: ks)

J−K : HDef→ UComp

J{return x 7→ N}K def
= λx.λks.let (h :: ks′) = ks in JNKks′

J{ℓ p r 7→ Nℓ}ℓ∈LK def
= λ⟨z,⟨p,r⟩⟩.λks.case z {(ℓ 7→ JNℓKks)ℓ∈L ;

y 7→Mforward((y,p,r),ks)}
Mforward((y,p,r),ks) def

= let (k′ :: h′ :: ks′) = ks in
h′ ⟨y,⟨p,λx.λks′′.r x(k′ :: h′ :: ks′′)⟩⟩ks′

⊤J−K : Comp→ UComp

⊤JMK def
= JMK ((λx.λks.x) :: (λ⟨z,⟨p,r⟩⟩.λks.absurd z) :: [])

The other cases are as in the original CPS translation in Figure 4.2. Since we now

use a list representation for the stacks of continuations, we have had to modify the

translations of all the constructs that manipulate continuations. For return and let, we

extract the top continuation k and manipulate it analogously to the original translation in

Figure 4.2. For do, we extract the top pure continuation k and effect continuation h and

invoke h in the same way as the curried translation, except that we explicitly maintain

the stack ks of additional continuations. The translation of handle, however, pushes a

continuation pair onto the stack instead of supplying them as arguments. Handling of

operations is the same as before, except for explicit passing of the ks. Forwarding now

pattern matches on the stack to extract the next continuation pair, rather than accepting

them as arguments.

Let us revisit the example from Section 4.3.1 to see first hand that our refined

translation makes the example properly tail-recursive.

⊤Jreturn ⟨⟩K = (λ(k :: ks).k ⟨⟩ks)((λx.λks.x) :: (λ⟨z,_⟩.λks.absurdz) :: [])

⇝ (λx.λks.x)⟨⟩((λ⟨z,_⟩.λks.absurdz) :: [])

⇝ ⟨⟩

The reduction sequence in the image of this uncurried translation has one fewer steps

(disregarding the administrative steps induced by pattern matching) than in the image

114 Chapter 4. Continuation-passing style

of the curried translation. The ‘missing’ step is precisely the reduction marked (∗4.2),

which was a partial application of the initial pure continuation function that was not in

tail position. Note, however, that the first reduction (corresponding to (∗4.1)) remains

administrative, the reduction is entirely static, and as such, it can be dealt with as part

of the translation.

Administrative redexes We can determine whether a redex is administrative in the

image by determining whether it corresponds to a redex in the preimage. If there is no

corresponding redex, then the redex is said to be administrative. We can further classify

an administrative redex as to whether it is static or dynamic.

A static administrative redex is a by-product of the translation that does not con-

tribute to the implementation of the dynamic behaviour of the preimage. The separa-

tion between value and computation terms in fine-grain call-by-value makes it evid-

ent where static administrative redexes can arise. They arise from computation terms,

which can clearly be seen from the translation where each computation term induces

a λ-abstraction. Each induced λ-abstraction must necessarily be eliminated by a unary

application. These unary applications are administrative; they do not correspond to

reductions in the preimage. The applications that do correspond to reductions in the

preimage are the binary (continuation) applications.

A dynamic administrative redex is a genuine implementation detail that supports

some part of the dynamic behaviour of the preimage. An example of such a detail is

the implementation of effect forwarding. In λh effect forwarding involves no auxiliary

reductions, any operation invocation is instantaneously dispatched to a suitable hand-

ler (if such one exists). The translation presented above realises effect forwarding by

explicitly applying the next effect continuation. This application is an example of a

dynamic administrative reduction. Not every dynamic administrative reduction is ne-

cessary, though. For instance, the implementation of resumptions as a composition of

λ-abstractions gives rise to administrative reductions upon invocation. As we shall see

in Section 4.3.3 administrative reductions due to resumption invocation can be dealt

with by choosing a more clever implementation of resumptions.

4.3.3 Resumptions as explicit reversed stacks

Thus far resumptions have been represented as functions, and forwarding has been

implemented using function composition. The composition of resumption gives rise

4.3. Transforming deep effect handlers 115

to unnecessary dynamic administrative redexes as function composition necessitates

the introduction of an additional lambda abstraction. As an illustration of how and

where these administrative redexes arise let us consider an example with an operation

Ask : ⟨⟩↠ Int and two handlers HReader and HOther such that HAsk
Reader = {⟨⟨Ask ⟨⟩↠

r⟩⟩ 7→ r 42} whilst Ask ̸∈ dom(HOther). We denote the top-level continuation by ks⊤.

⊤Jhandle (handle do Ask⟨⟩ with HOther) with HReaderK

= (definition of ⊤J−K)

(λks.(λks′.(λ(k :: h :: ks′′).h⟨Ask,⟨⟨⟩,λx.λks′′′.k x (h :: ks′′′)⟩⟩ks′′)

(JHret
OtherK :: JHops

OtherK :: ks′))

(JHret
ReaderK :: Hops

Reader :: ks))ks⊤
⇝∗ (multiple applications of U-App, activation of HOther)

JHops
OtherK⟨Ask,⟨⟨⟩,λx.λks′′′.JHret

OtherK x (JHops
OtherK :: ks′′′)⟩⟩(JHret

ReaderK :: Hops
Reader :: ks⊤)

⇝∗ (effect forwarding to HReader)

Hops
Reader ⟨Ask,⟨⟨⟩,λx.λks′′.radmin x (Hret

Reader :: Hops
Reader :: ks′′)⟩⟩ks⊤

where radmin
def
= λx.λks′′′.JHret

OtherK x (JHops
OtherK :: ks′′′)

⇝∗ (invocation of the administrative resumption)

radmin 42 (Hret
Reader :: Hops

Reader :: ks⊤)

⇝∗ (invocation of the resumption of the operation invocation site)

JHret
OtherK 42 (JHops

OtherK :: Hret
Reader :: Hops

Reader :: ks⊤)

Effect forwarding introduces the administrative abstraction radmin, whose sole purpose

is to forward the interpretation of the operation to the operation invocation site. In

a certain sense radmin is a sort of identity frame. The insertion of identities ought to

always trigger the alarm bells as an identity computation is typically extraneous. The

amount of identity frames being generated scales linearly with the number of handlers

the operation needs to pass through before reaching a suitable handler.

We can avoid generating these administrative resumption redexes by applying a

variation of the technique that we used in the previous section to uncurry the curried

CPS translation. Rather than representing resumptions as functions, we move to an ex-

plicit representation of resumptions as reversed stacks of pure and effect continuations.

By choosing to reverse the order of pure and effect continuations, we can construct re-

sumptions efficiently using regular cons-lists. We augment the syntax and semantics of

λu with a computation term let r = resV in N which allow us to convert these reversed

stacks to actual functions on demand.

U-Res let r = res(Vn :: . . . :: V1 :: []) in N ⇝ N[λxk.V1 x(V2 :: . . . :: Vn :: k)/r]

116 Chapter 4. Continuation-passing style

This reduction rule reverses the stack, extracts the top continuation V1, and prepends

the remainder onto the current stack W. The stack representing a resumption and the

remaining stack W are reminiscent of the zipper data structure for representing cursors

in lists [130]. Thus we may think of resumptions as representing pointers into the stack

of handlers. The translations of do, handling, and forwarding need to be modified to

account for the change in representation of resumptions.

J−K : Comp→ UComp

Jdo ℓ VK def
= λk :: h :: ks.h⟨ℓ,⟨JVK,h :: k :: []⟩⟩ks

J−K : HDef→ UComp

J{(ℓ p r 7→ Nℓ)ℓ∈L}K
def
= λ⟨z,⟨p,rs⟩⟩.λks.case z {(ℓ 7→ let r = res rs in JNℓKks)ℓ∈L ;

y 7→Mforward((y,p,rs),ks)}
Mforward((y,p,rs),ks) def

= let (k′ :: h′ :: ks′) = ks in h′ ⟨y,⟨p,h′ :: k′ :: rs⟩⟩ks′

The translation of do constructs an initial resumption stack, operation clauses extract

and convert the current resumption stack into a function using the res construct, and

Mforward augments the current resumption stack with the current continuation pair.

4.3.4 Higher-order translation for deep effect handlers

In the previous sections, we have seen step-wise refinements of the initial curried CPS

translation for deep effect handlers (Section 4.3.1) to be properly tail-recursive (Sec-

tion 4.3.2) and to avoid yielding unnecessary dynamic administrative redexes for re-

sumptions (Section 4.3.3). There is still one outstanding issue, namely, that the transla-

tion yields static administrative redexes. In this section we will further refine the CPS

translation to eliminate all static administrative redexes at translation time. Specific-

ally, the translation will be adapted to a higher-order one-pass CPS translation [62]

that partially evaluates administrative redexes at translation time. Following Danvy and

Nielsen [67], I will use a two-level lambda calculus notation to distinguish between

static lambda abstraction and application in the meta language and dynamic lambda

abstraction and application in the target language. To disambiguate syntax construct-

ors in the respective calculi I will mark static constructors with a blue overline, whilst

dynamic constructors are marked with a red underline. The principal idea is that re-

dexes marked as static are reduced as part of the translation, whereas those marked

as dynamic are reduced at runtime. To facilitate this notation I will write application

explicitly using an infix “at” symbol (@) in both calculi.

4.3. Transforming deep effect handlers 117

Values

J−K : Val→ UVal

JxK def
= x

Jλx.MK def
= λxks.let (k :: h :: ks′) = ks in JMK@ (↑k ::↑h ::↑ks′)

JΛα.MK def
= λ⟨⟩ks.let (k :: h :: ks′) = ks in JMK@ (↑k ::↑h ::↑ks′)

J⟨⟩K def
= ⟨⟩

J⟨ℓ= V;W⟩K def
= ⟨ℓ= JVK;JWK⟩

Jℓ VK def
= ℓ JVK

Computations

J−K : Comp→ SVal∗→ UComp

JV WK def
= λκ.JVK@ JWK@↓κ

JV TK def
= λκ.JVK@ ⟨⟩@↓κ

Jlet ⟨ℓ= x;y⟩= V in NK def
= λκ.let ⟨ℓ= x;y⟩= JVK in JNK@ κ

Jcase V {ℓ x 7→M;y 7→ N}K def
= λκ.case JVK {ℓ x 7→ JMK@ κ;y 7→ JNK@ κ}

Jabsurd VK def
= λκ.absurd JVK

Jreturn VK def
= λθ :: κ.↓θ @ JVK@↓κ

Jlet x←M in NK def
= λθ :: κ.JMK@ (↑(λxks.let (h :: ks′) = ks in

JNK@ (θ ::↑h ::↑ks′)) :: κ)

Jdo ℓ VK def
= λθ :: χ :: κ.↓χ @ ⟨ℓ,⟨JVK,↓χ ::↓θ :: []⟩⟩@↓κ

Jhandle M with HK def
= λκ.JMK@ (↑JHretK ::↑JHopsK :: κ)

Handler definitions

J−K : HDef→ UVal

J{return x 7→ N}K def
= λxks. let (h :: k :: h′ :: ks′) = ks in

JNK@ (↑k ::↑h′ ::↑ks′)

J{(ℓ p r 7→ Nℓ)ℓ∈L}K
def
= λ⟨z,⟨p,rs⟩⟩ks.case z {(ℓ 7→ let r = res rs in

let (k :: h :: ks′) = ks in
JNℓK@ (↑k ::↑h ::↑ks′))ℓ∈L ;

y 7→ Mforward((y,p,rs),ks)}
Mforward((y,p,rs),ks) def

= let (k′ :: h′ :: ks′) = ks in h′@ ⟨y,⟨p,h′ :: k′ :: rs⟩⟩@ ks′

Top level program

⊤J−K : Comp→ UComp

⊤JMK = JMK@ (↑(λxks.x) ::↑(λzks.absurd z) ::↑[])

Figure 4.4: Higher-order uncurried CPS translation of λh.

118 Chapter 4. Continuation-passing style

Static terms As in the dynamic target language, continuations are represented as

alternating lists of pure continuation functions and effect continuation functions. To

ease notation I will make use of pattern matching notation. The static meta language is

generated by the following productions.

Static patterns P ∈ SPat ::= κ | θ :: P
Static values V ,W ∈ SVal ::= ↑V | V :: W | λP .M
Static computations M ∈ SComp ::= V | V @ W | V @ V @ W

The patterns comprise only static list deconstructing. We let P range over static patterns.

The static values comprise reflected dynamic values, static lists, and static lambda

abstractions. We let V ,W range over meta language values; by convention we shall use

variables θ to denote statically known pure continuations, χ to denote statically known

effect continuations, and κ to denote statically known continuations. I shall use M
to range over static computations, which comprise static values, static application and

binary dynamic application of a static value to two dynamic values. Static computations

are subject to the following equational axioms.

(λκ.M)@ V def
= M [V /κ]

(λθ :: κ.M)@ (V :: W)
def
= (λκ.M [V /θ])@ W

The first equation is static β-equivalence, it states that applying a static lambda abstrac-

tion with binder κ and body M to a static value V is equal to substituting V for κ in

M . The second equation provides a means for applying a static lambda abstraction to

a static list component-wise.

Reflected static values are reified as dynamic language values ↓V by induction on

their structure.

↓↑V def
= V ↓(V :: W)

def
= ↓V ::↓W

Higher-order translation As we shall see this translation manipulates the continu-

ation intricate ways; and since we maintain the interpretation of the continuation as

an alternating list of pure continuation functions and effect continuation functions it is

useful to define the ‘parity’ of a continuation as follows: a continuation is said to be

odd if the top element is an effect continuation function, otherwise it is said to even.

The complete CPS translation is given in Figure 4.4. In essence, it is the same as

the refined first-order uncurried CPS translation, although the notation is slightly more

involved due to the separation of static and dynamic parts.

4.3. Transforming deep effect handlers 119

As before, the translation comprises three translation functions, one for each syn-

tactic category: values, computations, and handler definitions. Amongst the three func-

tions, the translation function for computations stands out, because it is the only one that

operates on static continuations. Its type signature, J−K : Comp→ SVal∗→ UComp,

signifies that it is a binary function, taking a λh-computation term as its first argument

and a static continuation (a list of static values) as its second argument, and ultimately

produces a λu-computation term. Thus the computation translation function is able to

manipulate the continuation. In fact, the translation is said to be higher-order because

the continuation parameter is a higher-order: it is a list of functions.

To ensure that static continuation manipulation is well-defined the translation main-

tains the invariant that the statically known continuation stack (θ) always contains at

least two continuation functions, i.e. a complete continuation pair consisting of a pure

continuation function and an effect continuation function. This invariant guarantees

that all translations are uniform in whether they appear statically within the scope of a

handler or not, and this also simplifies the correctness proof (Theorem 4.8). Maintain-

ing this invariant has a cosmetic effect on the presentation of the translation. This effect

manifests in any place where a dynamically known continuation stack is passed in (as

a continuation parameter ks), as it must be deconstructed using a dynamic language let
to expose the continuation structure and subsequently reconstructed as a static value

with reflected variable names.

The translation of λ-abstractions provides an example of this deconstruction and

reconstruction in action. The dynamic continuation ks is deconstructed to expose to the

next pure continuation function k and effect continuation h, and the remainder of the

continuation ks′; these names are immediately reflected and put back together to form

a static continuation that is provided to the translation of the body computation M.

The only translation rule that consumes a complete reflected continuation pair is the

translation of do. The effect continuation function, χ, is dynamically applied to an op-

eration package and the reified remainder of the continuation κ. As usual, the operation

package contains the payload and the resumption, which is represented as a reversed

continuation slice. The only other translation rules that manipulate the continuation are

return and let, which only consume the pure continuation function θ. For example, the

translation of return is a dynamic application of θ to the translation of the value V and

the remainder of the continuation κ. The shape of κ is odd, meaning that the top ele-

ment is an effect continuation function. Thus the pure continuation θ has to account for

this odd shape. Fortunately, the possible instantiations of the pure continuation are few.

120 Chapter 4. Continuation-passing style

We can derive the all possible instantiations systematically by using the operational

semantics of λh. According to the operational semantics the continuation of a return-

computation is either the continuation of a let-expression or a return-clause (a bare

top-level return-computation is handled by the ⊤J−K translation). The translations of

let-expressions and return-clauses each account for odd continuations. For example,

the translation of let consumes the current pure continuation function and generates a

replacement: a pure continuation function which expects an odd dynamic continuation

ks, which it deconstructs to expose the effect continuation h along with the current pure

continuation function in the translation of N. The modified continuation is passed to the

translation of M. To provide a flavour of how this continuation manipulation functions

in practice, consider the following example term.

⊤Jlet x← return V in NK

= (definition of ⊤J−K)

(λθ :: κ.Jreturn VK@ (↑(λxks.let (h :: ks′) = ks in
JNK@ (θ ::↑h ::↑ks′)) :: κ)

@(↑(λxks.x) ::↑(λzks.absurd z) ::↑[]))
= (definition of J−K)

(λθ :: κ.(λθ :: κ.↓θ @ JVK@↓κ)@ (↑(λxks.let (h :: ks′) = ks in
JNK@ (θ ::↑h ::↑ks′)) :: κ)

@(↑(λxks.x) ::↑(λzks.absurd z) ::↑[]))
= (static β-reduction)

(λθ :: κ.↓θ @ JVK@↓κ)@ (↑(λxks.let (h :: ks′) = ks in
JNK@ (↑(λxks.x) ::↑h ::↑ks′))

::↑(λzks.absurd z) ::↑[]))
= (static β-reduction)

(λxks.let (h :: ks′) = ks in JNK@ (↑(λxks.x) ::↑h ::↑ks′))

@ JVK@ ((λzks.absurd z) :: [])

⇝ (U-App2)

let (h :: ks′) = (λzks.absurd z) :: [] in JN[V/x]K@ (↑(λxks.x) ::↑h ::↑ks′))

⇝+ (dynamic pattern matching and substitution)

JN[V/x]K@ (↑(λxks.x) ::↑(λzks.absurd z) ::↑[])

The translation of return provides the generated dynamic pure continuation function

with the odd continuation ((λzks.absurd z) :: []). After the U-App2 reduction, the pure

continuation function deconstructs the odd continuation in order to bind the current

effect continuation function to the name h, which would have been used during the

4.3. Transforming deep effect handlers 121

translation of N.

The translation of handle applies the translation of M to the current continuation

extended with the translation of the return-clause, acting as a pure continuation func-

tion, and the translation of operation-clauses, acting as an effect continuation function.

The translation of a return-clause discards the effect continuation h and in addition

exposes the next pure continuation k and effect continuation h′ which are reflected to

form a static continuation for the translation of N. The translation of operation clauses

unpacks the provided operation package to perform a case-split on the operation label

z. The branch for ℓ deconstructs the continuation ks in order to expose the continuation

structure. The forwarding branch also deconstructs the continuation, but for a differ-

ent purpose; it augments the resumption rs with the next pure and effect continuation

functions.

Let us revisit the example from Section 4.3.1 to see that the higher-order translation

eliminates the static redex at translation time.

⊤Jreturn ⟨⟩K = (λθ :: κ.θ @ ⟨⟩@↓κ)@ (↑(λxks.x) ::↑(λzks.absurd z) ::↑[])
= (λxks.x)@ ⟨⟩@ (↑(λzks.absurd z) :: [])

⇝ ⟨⟩

In contrast with the previous translations, the reduction sequence in the image of this

translation contains only a single dynamic reduction (disregarding the dynamic admin-

istrative reductions arising from continuation construction and deconstruction); both

(∗4.1) and (∗4.2) reductions have been eliminated as part of the translation.

The elimination of static redexes coincides with a refinements of the target calculus.

Unary application is no longer a necessary primitive. Every unary application dealt

with by the metalanguage, i.e. all unary applications are static.

Implicit lazy continuation deconstruction An alternative to the explicit deconstruc-

tion of continuations is to implicitly deconstruct continuations on demand when static

pattern matching fails. I took this approach in Hillerström et al. [121]. On one hand this

approach leads to a slightly slicker presentation. On the other hand it complicates the

proof of correctness as one must account for static pattern matching failure. A practical

argument in favour of the explicit eager continuation deconstruction is that it is more

accessible from an implementation point of view. No implementation details are hidden

away in side conditions. Also, it is not clear that lazy deconstruction has any advantage

over eager deconstruction, as the translation must reify the continuation when it trans-

122 Chapter 4. Continuation-passing style

itions from computations to values and reflect the continuation when it transitions from

values to computations, in which case static pattern matching would fail.

Correctness

We establish the correctness of the higher-order uncurried CPS translation via a simula-

tion result in the style of Plotkin [220] (Theorem 4.8). Before we can state and prove

this result, we first several auxiliary lemmas describing how translated terms behave.

First, the higher-order CPS translation commutes with substitution.

Lemma 4.2 (Substitution). The higher-order uncurried CPS translation commutes with

substitution in value terms

JWK[JVK/x] = JW[V/x]K,

and with substitution in computation terms

(JMK@ (θ :: χ :: κ))[JVK/x] = JM[V/x]K@ (θ :: χ :: κ)[JVK/x],

and with substitution in handler definitions

JHretK[JVK/x] = JHret[V/x]K,

JHopsK[JVK/x] = JHops[V/x]K.

Proof. By mutual induction on the structure of W, M, Hret, and Hops.

It follows as a corollary that top-level substitution is well-behaved.

Corollary 4.3 (Top-level substitution).

⊤JMK[JVK/x] =⊤JM[V/x]K.

Proof. Follows immediately by the definitions of ⊤J−K and Lemma 4.2.

In order to reason about the behaviour of the S-Op rule, which is defined in terms

of an evaluation context, we need to extend the CPS translation to evaluation contexts.

J−K : Cont→ SVal

J[]K def
= λκ.κ

Jlet x← E in NK def
= λθ :: κ.JEK@ (↑(λxks.let (h :: ks′) = ks in

JNK@ (θ ::↑h ::↑ks′)) :: κ)

Jhandle E with HK def
= λκ.JEK@ (JHretK :: JHopsK :: κ)

The following lemma is the characteristic property of the CPS translation on evaluation

contexts. It provides a means for decomposing an evaluation context, such that we can

focus on the computation contained within the evaluation context.

4.3. Transforming deep effect handlers 123

Lemma 4.4 (Decomposition).

JE [M]K@ (V :: W) = JMK@ (JEK@ (V :: W))

Proof. By structural induction on the evaluation context E .

Even though we have eliminated the static administrative redexes, we still need

to account for the dynamic administrative redexes that arise from pattern matching

against a reified continuation. To properly account for these administrative redexes it is

convenient to treat list pattern matching as a primitive in λu, therefore we introduce a

new reduction rule U-SplitList in λu.

U-SplitList let (k :: ks) = V :: W in M ⇝ M[V/k,W/ks]

Note this rule is isomorphic to the U-Split rule with lists encoded as right nested pairs

using unit to denote nil. We write⇝a for the compatible closure of U-SplitList.

We also need to be able to reason about the computational content of reflection after

reification. By definition we have that ↓↑V = V , the following lemma lets us reason

about the inverse composition.

Lemma 4.5 (Reflect after reify). Reflection after reification may give rise to dynamic

administrative reductions, i.e.

JMK@ (V1 :: . . .Vn ::↑↓W)⇝∗a JMK@ (V1 :: . . .Vn :: W)

Proof. By induction on the structure of M.

We next observe that the CPS translation simulates forwarding.

Lemma 4.6 (Forwarding). If ℓ /∈ dom(H1) then

JHops
1 K@ ⟨ℓ,⟨U,V⟩⟩@ (V2 :: JHops

2 K :: W)⇝+ JHops
2 K@ ⟨ℓ,⟨U,JHops

2 K :: V2 :: V⟩⟩@ W

Proof. By direct calculation.

Now we show that the translation simulates the S-Op rule.

Lemma 4.7 (Handling). If ℓ /∈ BL(E) and Hℓ = {ℓpr 7→ Nℓ} then

Jdo ℓ VK@ (JEK@ (↑JHretK ::↑JHopsK :: V))⇝+⇝∗a
(JNℓK@ V)[JVK/p,(λyks.Jreturn yK@ (JEK@ (↑JHretK ::↑JHopsK ::↑ks)))/]

Proof. Follows from Lemmas 4.4, 4.5, and 4.6.

124 Chapter 4. Continuation-passing style

Finally, we have the ingredients to state and prove the simulation result. The follow-

ing theorem shows that the only extra behaviour exhibited by a translated term is the

bureaucracy of deconstructing the continuation stack.

Theorem 4.8 (Simulation). If M⇝ N then ⊤JMK⇝+⇝∗a ⊤JNK.

Proof. By case analysis on the reduction relation using Lemmas 4.4–4.7. The S-Op

case follows from Lemma 4.7.

4.4 Transforming shallow effect handlers

In this section we will continue to build upon the higher-order uncurried CPS translation

(Section 4.3.4) in order to add support for shallow handlers. The dynamic nature of

shallow handlers pose an interesting challenge, because unlike deep resumption capture,

a shallow resumption capture discards the handler leaving behind a dangling pure

continuation. The dangling pure continuation must be ‘adopted’ by whichever handler

the resumption invocation occur under. This handler is determined dynamically by the

context, meaning the CPS translation must be able to modify continuation pairs.

In Section 4.4.1 I will discuss an attempt at a ‘natural’ extension of the higher-order

uncurried CPS translation for deep handlers, but for various reasons this extension is

flawed. However, the insights gained by attempting this extension leads to yet another

change of the continuation representation (Section 4.4.2) resulting in the notion of a

generalised continuation. In Section 4.4.4 we will see how generalised continuations

provide a basis for implementing deep and shallow effect handlers simultaneously,

solving all of the problems encountered thus far uniformly.

4.4.1 A specious attempt

Initially it is tempting to try to extend the interpretation of the continuation represent-

ation in the higher-order uncurried CPS translation for deep handlers to squeeze in

shallow handlers. The main obstacle one encounters is how to decouple a pure continu-

ation from its handler such that a it can later be picked up by another handler.

To fully uninstall a handler, we must uninstall both the pure continuation function

corresponding to its return clause and the effect continuation function corresponding to

its operation clauses. In the current setup it is impossible to reliably uninstall the former

as due to the translation of let-expressions it may be embedded arbitrarily deep within

4.4. Transforming shallow effect handlers 125

the current pure continuation and the extensional representation of pure continuations

means that we cannot decompose them.

A quick fix to this problem is to treat pure continuation functions arising from

return clauses separately from pure continuation functions arising from let-expressions.

Thus we can interpret the continuation as a sequence of triples consisting of two pure

continuation functions followed by an effect continuation function, where the first pure

continuation function corresponds the continuation induced by some let-expression

and the second corresponds to the return clause of the current handler. To distinguish

between the two kinds of pure continuations, we shall write χret for statically known

pure continuations arising from return clauses, and hret for dynamically known ones.

Similarly, we write χops and hops, respectively, for statically and dynamically, known

effect continuations. With this notation in mind, we may translate operation invocation

and handler installation using the new interpretation of the continuation representation

as follows.

J−K : Comp→ SVal∗→ UComp

Jdo ℓ VK def
= λθ :: χret :: χops :: κ.↓χops@⟨ℓ,⟨JVK,↓χops ::↓χret ::↓θ :: []⟩⟩

@↓κ

Jhandle† M with HK def
= λκ.JMK@ (↑Vid ::↑JHretK ::↑JHopsK† :: κ)

Vid
def
= λxks.let (hret :: ks′) = ks in hret @ x @ ks′

The only change to the translation of operation invocation is the extra bureaucracy

induced by the additional pure continuation. The translation of handler installation is

a little more interesting as it must make up an initial pure continuation in order to

maintain the sequence of triples interpretation of the continuation structure. As the

initial pure continuation we use the administrative function Vid, which amounts to a

dynamic variation of the translation rule for the trivial computation term return: it

invokes the next pure continuation with whatever value it was provided.

Although, I will not demonstrate it here, the translation rules for λ-abstractions,

Λ-abstractions, and let-expressions must also be adjusted accordingly to account for

the extra bureaucracy. The same is true for the translation of return-clause, thus it is

rather straightforward to adapt it to the new continuation interpretation.

J−K : HDef→ UVal

J{return x 7→ N}K def
= λxks.let (_ :: k :: hret :: hops :: ks′) = ks in

JNK@ (↑k ::↑hret ::↑hops ::↑ks′)

126 Chapter 4. Continuation-passing style

As before, the translation ensures that the associated effect continuation is discarded

(the first element of the dynamic continuation ks). In addition the next continuation

triple is extracted and reified as a static continuation triple. The interesting rule is the

translation of operation clauses.

J{(ℓ p r 7→ Nℓ)ℓ∈L}K† def
= λ⟨z,⟨p,rs⟩⟩ks.

case z {(ℓ 7→ let (k :: hret :: hops :: ks′) = ks in
let (_ :: _ :: rs′) = rs in
let r = res(Vops :: Vret :: rs′) in
JNℓK@ (↑k ::↑hret ::↑hops ::↑ks′))ℓ∈L

y 7→Mforward((y,p,rs),ks)}

Mforward((y,p,rs),ks) def
= let (k :: hret :: hops :: ks′) = ks in

hops @ ⟨y,⟨p,hops :: hret :: k :: rs⟩⟩@ ks′

Vops
def
= λ⟨z,⟨p,rs⟩⟩ks.Mforward((z,p,rs),ks)

Vret
def
= λxks.let (hops :: k :: ks′) = ks in k @ x @ ks′

The main difference between this translation rule and the translation rule for deep

handler operation clauses is the realisation of resumptions. Recall that a resumption is

represented as a reversed slice of a continuation. Thus the deconstruction of the resump-

tion rs effectively ensures that the current handler gets properly uninstalled. However,

it presents a new problem as the remainder rs′ is not a well-formed continuation slice,

because the top element is a pure continuation without a handler.

To rectify this problem, we can insert a dummy identity handler composed from

Vops and Vret. The effect continuation Vops forwards every operation, and the pure

continuation Vret is an identity clause. Thus every operation and the return value will

effectively be handled by the next handler. Unfortunately, insertion of such identity

handlers lead to memory leaks [120, 146].

The use of identity handlers is symptomatic for the need of a more general notion

of resumptions. During resumption invocation the dangling pure continuation should

be composed with the current pure continuation which suggests the need for a shallow

variation of the resumption construction primitive res.

let r = res†(_ :: _ :: k :: hops
n :: hret

n :: kn :: · · · :: hops
1 :: hret

1 :: k1 :: []) in N⇝

N[(λxks.let (k′ :: ks′) = ks in
k1 @ x @ (hret

1 :: hops
1 · · · :: kn :: hret

n :: hops
n :: (k′ ◦ k) :: ks′))/r]

4.4. Transforming shallow effect handlers 127

where ◦ is defined to be function composition in continuation passing style.

g◦ f def
= λxks.let (k :: ks′) = ks in

f @ x @ ((λxks.g @ x @ (k :: ks)) :: ks′)

The idea is that res† uninstalls the appropriate handler and composes the dangling

pure continuation k with the next dynamically determined pure continuation k′, and

reverses the remainder of the resumption and composes it with the modified dynamic

continuation ((k′ ◦ k) :: ks′).

While the underlying idea is correct, this particular realisation of the idea is prob-

lematic as the use of function composition reintroduces a variation of the dynamic

administrative redexes that we dealt with in Section 4.3.3. In order to avoid generating

these administrative redexes we need a more intensional continuation representation.

Another telltale sign that we require a more intensional continuation representation is

the necessary use of the administrative function Vid in the translation of handle as a

placeholder for the empty pure continuation. In terms of aesthetics, the non-uniform

continuation deconstructions also suggest that we could benefit from a more structured

interpretation of continuations. Although it is seductive to program with lists, it quickly

gets unwieldy.

4.4.2 Generalised continuations

One problem is that the continuation representation used by the higher-order uncurried

translation for deep handlers is too extensional to support shallow handlers efficiently.

Specifically, the representation of pure continuations needs to be more intensional to

enable composition of pure continuations without having to materialise administrative

continuation functions.

Another problem is that the continuation representation integrates the return clause

into the pure continuations, but the semantics of shallow handlers demands that this

return clause is discarded when any of the operations is invoked.

The solution to the first problem is to reuse the key idea of Section 4.3.3 to avoid

administrative continuation functions by representing a pure continuation as an explicit

list consisting of pure continuation functions. As a result the composition of pure

continuation functions can be realised as a simple cons-operation.

The solution to the second problem is to pair the continuation functions correspond-

ing to the return-clause and operation clauses in order to distinguish the pure continu-

ation function induced by a return-clause from those induced by let-expressions.

128 Chapter 4. Continuation-passing style

Plugging these two solutions yields the notion of generalised continuations. A

generalised continuation is a list of continuation frames. A continuation frame is a

triple ⟨fs,⟨hret,hops⟩⟩, where fs is list of stack frames representing the pure continuation

for the computation occurring between the current execution and the handler, hret is the

(translation of the) return clause of the enclosing handler, and hops is the (translation of

the) operation clauses.

The change of representation of pure continuations does mean that we can no longer

invoke them by simple function application. Instead, we must inspect the structure of

the pure continuation fs and act appropriately. To ease notation it is convenient introduce

a new computation form for pure continuation application app V W that feeds a value

W into the continuation represented by V . There are two reduction rules.

U-KAppNil app (⟨[],⟨hret,hops⟩⟩ :: ks)W ⇝ hret W ks

U-KAppCons app (⟨f :: fs,h⟩ :: ks)W ⇝ f W (⟨fs,h⟩ :: ks)

The first rule describes what happens when the pure continuation is exhausted and the

return clause of the enclosing handler is invoked. The second rule describes the case

when the pure continuation has at least one element: this pure continuation function is

invoked and the remainder of the continuation is passed in as the new continuation.

We must also change how resumptions (i.e. reversed continuations) are converted

into functions that can be applied. Resumptions for deep handlers (resV) are similar

to Section 4.3.3, except that we now use app to invoke the continuation. Resumptions

for shallow handlers (res† V) are more complex. Instead of taking all the frames and

reverse appending them to the current stack, we remove the current handler h and move

the pure continuation (f1 :: · · · :: fm :: []) into the next frame. This captures the intended

behaviour of shallow handlers: they are removed from the stack once they have been

invoked. The following two reduction rules describe their behaviour.

U-Res let r = res(Vn :: · · · :: V1 :: []) in N⇝ N[λxks.app (V1 :: . . .Vn :: ks)x/r]

U-Res† let r = res† (⟨f1 :: · · · :: fm :: [],h⟩ :: Vn :: · · · :: V1 :: []) in N⇝

N[λxks.let⟨fs′,h′⟩ :: ks′ = ks in
app(V1 :: · · · :: Vn :: ⟨f1 :: · · · :: fm :: fs′,h′⟩ :: ks′)x/r]

These constructs along with their reduction rules are macro-expressible in terms of

the existing constructs. I choose here to treat them as primitives in order to keep the

presentation relatively concise.

Essentially, a generalised continuation amounts to a sort of defunctionalised con-

tinuation, where app acts as an interpreter for the continuation structure [66, 240].

4.4. Transforming shallow effect handlers 129

4.4.3 Dynamic terms: the target calculus revisited

Let us revisit the target calculus. Figure 4.5 depicts the untyped target calculus with

support for generalised continuations. This is essentially the same as the target calculus

used for the higher-order uncurried CPS translation for deep effect handlers in Sec-

tion 4.3.4, except for the addition of recursive functions. The calculus also includes

the app and let r = resδ V in N constructs described in Section 4.4.2. There is a small

difference in the reduction rules for the resumption constructs: for deep resumptions

we do an additional pattern match on the current continuation (ks). This is required to

make the simulation proof for the CPS translation with generalised continuations (Sec-

tion 4.4.4) go through, because it makes the functions that resumptions get converted

to have the same shape as the translation of source level functions – this is required be-

cause the operational semantics does not treat resumptions as distinct first-class objects,

but rather as a special kinds of functions.

4.4.4 Translation with generalised continuations

The CPS translation is given in Figure 4.6. In essence, it is the same as the CPS trans-

lation for deep effect handlers as described in Section 4.3.4, though it is adjusted to

account for generalised continuation representation. For notational convenience, we

write χ to denote a statically known effect continuation frame ⟨χret,χops⟩. The transla-

tion of return invokes the continuation κ using the continuation application primitive

app. The translations of deep and shallow handlers differ only in their use of the re-

sumption construction primitive.

A major aesthetic improvement due to the generalised continuation representation

is that continuation construction and deconstruction are now uniform: only a single

continuation frame is inspected at a time.

Correctness

The correctness of this CPS translation (Theorem 4.14) follows closely the correctness

result for the higher-order uncurried CPS translation for deep handlers (Theorem 4.8).

Save for the syntactic difference, the most notable difference is the extension of the

operation handling lemma (Lemma 4.13) to cover shallow handling in addition to deep

handling. Each lemma is stated in terms of static continuations, where the shape of

the top element is always known statically, i.e., it is of the form ⟨Vfs,⟨Vret,Vops⟩⟩ :: W .

Moreover, the static values Vfs, Vret, and Vops are all reflected dynamic terms (i.e., of

130 Chapter 4. Continuation-passing style

the form ↑V). This fact is used implicitly in the proofs. For brevity we write Vf to

denote a statically known continuation frame ⟨Vfs,⟨Vret,Vops⟩⟩. The full proof details

are published in Appendix A of Hillerström et al. [122].

Lemma 4.9 (Substitution). The CPS translation commutes with substitution in value

terms

JWK[JVK/x] = JW[V/x]K,

and with substitution in computation terms

(JMK@ (Vf :: W))[JVK/x]

= JM[V/x]K@ (Vf :: W)[JVK/x],

and with substitution in handler definitions

JHretK[JVK/x] = JHret[V/x]K,

JHopsK[JVK/x] = JHops[V/x]K.

In order to reason about the behaviour of the S-Op and S-Op† rules, which are

defined in terms of evaluation contexts, we extend the CPS translation to evaluation

contexts, using the same translations as for the corresponding constructs in λh† .

J[]K = λκ.κ

Jlet x← E in NK = λ⟨θ,χ⟩ :: κ.

JEK@ (⟨↑((λxks.let ⟨fs,⟨hret,hops⟩⟩ :: ks′ = ks in
JNK@ (⟨↑fs,⟨↑hret,↑hops⟩⟩ ::↑ks′)) ::↓θ),

χ⟩ :: κ)

Jhandleδ E with HK = λκ.JEK@ (⟨[],JHKδ⟩ :: κ)

The following lemma is the characteristic property of the CPS translation on evaluation

contexts. This allows us to focus on the computation within an evaluation context.

Lemma 4.10 (Evaluation context decomposition).

JE [M]K@ (Vf :: W) = JMK@ (JEK@ (Vf :: W))

By definition, reifying a reflected dynamic value is the identity (↓↑V = V), but we

also need to reason about the inverse composition. As a result of the invariant that the

translation always has static access to the top of the handler stack, the translated terms

are insensitive to whether the remainder of the stack is statically known or is a reflected

version of a reified stack. This is captured by the following lemma. The proof is by

4.4. Transforming shallow effect handlers 131

induction on the structure of M (after generalising the statement to stacks of arbitrary

depth), and relies on the observation that translated terms either access the top of the

handler stack, or reify the stack to use dynamically, whereupon the distinction between

reflected and reified becomes void. Again, this lemma holds when the top of the static

continuation is known.

Lemma 4.11 (Reflect after reify).

JMK@ (Vf ::↑↓W) = JMK@ (Vf :: W).

The next lemma states that the CPS translation correctly simulates forwarding. The

proof is by inspection of how the translation of operation clauses treats non-handled

operations.

Lemma 4.12 (Forwarding). If ℓ /∈ dom(H1) then:

JHops
1 Kδ @ ⟨ℓ,⟨Vp,Vrs⟩⟩@ (⟨Vfs,JH2Kδ⟩ :: W)⇝+

JHops
2 Kδ @ ⟨ℓ,⟨Vp,⟨Vfs,JH2Kδ⟩ :: Vrs⟩⟩@ W.

The following lemma is central to our simulation theorem. It characterises the

sense in which the translation respects the handling of operations. Note how the values

substituted for the resumption variable r in both cases are in the image of the translation

of λ-terms in the CPS translation. This is thanks to the precise way that the reductions

rules for resumption construction works in our dynamic language, as described above.

Lemma 4.13 (Handling). Suppose ℓ /∈ BL(E) and Hℓ = {ℓpr 7→ Nℓ}. If H is deep then

Jdo ℓ VK@ (JEK@ (⟨↑[],JHK⟩ :: Vf :: W))⇝+

(JNℓK@ (Vf :: W))[JVK/p,λxks.let ⟨fs,⟨hret,hops⟩⟩ :: ks′ = ks in Jreturn xK

@(JEK@ (⟨↑[],JHK⟩ :: ⟨↑fs,⟨↑hret,↑hops⟩⟩ ::↑ks′))/r].

Otherwise if H is shallow then

Jdo ℓ VK@ (JEK@ (⟨↑[],JHK†⟩ :: Vf :: W))⇝+

(JNℓK@ (Vf :: W))[JVK/p,λxks.let ⟨fs,⟨hret,hops⟩⟩ :: ks′ = ks in Jreturn xK

@(JEK@ (⟨↑fs,⟨↑hret,↑hops⟩⟩ ::↑ks′))/r].

With the aid of the above lemmas we can state and prove the main result for the

translation: a simulation result in the style of Plotkin [220].

Theorem 4.14 (Simulation). If M⇝ N then

JMK@ (⟨Vfs,⟨Vret,Vops⟩⟩ :: W)⇝+ JNK@ (⟨Vfs,⟨Vret,Vops⟩⟩ :: W).

132 Chapter 4. Continuation-passing style

Proof. The proof is by case analysis on the reduction relation using Lemmas 4.10–4.13.

In particular, the S-Op and S-Op† cases follow from Lemma 4.13.

In common with most CPS translations, full abstraction does not hold (a function

could count the number of handlers it is invoked within by examining the continuation,

for example). However, as the semantics is deterministic it is straightforward to show a

backward simulation result.

Lemma 4.15 (Backwards simulation). If ⊤JMK⇝+ V then there exists W such that

M⇝∗ W and ⊤JWK = V.

Corollary 4.16. M⇝∗ V if and only if ⊤JMK⇝∗ ⊤JVK.

4.5 Transforming parameterised handlers

Generalised continuations provide a versatile implementation strategy for effect hand-

lers as exemplified in the previous section. In this section we add further emphasis on the

versatility of generalised continuations by demonstrating how to adapt the continuation

structure to accommodate parameterised handlers. In order to support parameterised

handlers, each effect continuation must store the current value of the handler parameter.

Thus, an effect continuation becomes a triple consisting of the parameter, return clause,

and operation clause(s). Furthermore, the return clause gets transformed into a binary

function, that takes the current value of the handler parameter as its first argument and

the return value of the handled computation as its second argument. Similarly, the oper-

ation clauses are transformed into a binary function, that takes the handler parameter

first and the operation package second. This strategy effectively amounts to explicit

state passing as the parameter value gets threaded through every handler continuation

function. Operationally, the pure continuation invocation rule U-KAppNil requires a

small adjustment to account for the handler parameter.

app (⟨[],⟨q,hret,hops⟩⟩ :: ks)V⇝ hret @ ⟨q,V⟩@ ks

The pure continuation v is now applied to a pair consisting of the current value of the

handler parameter q and the return value V . Similarly, the resumption rule U-Res must

also be adapted to update the value of the handler parameter.

let r = res‡ (⟨q,hret,hops⟩ :: · · · :: V1 :: []) in N⇝

N[λ⟨q′,x⟩ks.app (V1 :: · · · :: ⟨q′,hret,hops⟩ :: ks) x/r]

4.6. Related work 133

The rule is not much different from the original U-Res rule. The difference is that this

rule unpacks the current handler parameter q along with the return clause, hret, and

operation clauses, hops. The reduction constructs a resumption function, whose first

parameter q′ binds the updated value of the handler parameter. The q′ is packaged with

the original hret and hops such that the next activation of the handler gets the parameter

value q′ rather than q.

The CPS translation is updated accordingly to account for the triple effect continu-

ation structure. This involves updating the cases that scrutinise the effect continuation

structure as it now includes the additional state value. The cases that need to be updated

are shown in Figure 4.7. We write ξ to denote static handler parameters. The transla-

tion of do invokes the effect continuation ↓χops with a triple consisting of the value of

the handler parameter, the operation, and the operation payload. The parameter is also

pushed onto the reversed resumption stack. This is necessary to account for the case

where the effect continuation ↓χops does not handle operation ℓ.

The translation of the return and operation clauses are parameterised by the name

of the binder for the handler parameter. Each translation yields functions that take a

pair as input in addition to the current continuation. The forwarding case is adjusted

in the same way as the translation for do. The current continuation k is deconstructed

in order to identify the next effect continuation hops and its parameter q. Then hops

is invoked with the updated resumption stack and the value of its parameter q. The

top-level translation adds a ‘dummy’ unit value, which is ignored by both the pure

continuation and effect continuation.We can avoid the use of such values entirely if

the target language had proper sums to tag effect continuation frames accordingly.

Obviously, this entails performing a case analysis every time an effect continuation

frame is deconstructed.

4.6 Related work

CPS transforms for effect handlers The one-pass higher-order CPS translation for

deep, shallow, and parameterised handlers draws on insights from the literature on CPS

translations for delimited control operators such as shift and reset [62, 63, 67, 190].

Other CPS translations for handlers use a monadic approach. For example, Leijen [165]

implements deep and parameterised handlers in Koka [164] by translating them into a

free monad primitive in the runtime. Leijen uses a selective CPS translation to lift code

into the monad. The selective aspect is important in practice to avoid overhead in code

134 Chapter 4. Continuation-passing style

that does not use effect handlers. Scala Effekt [35, 37] provides an implementation of

effect handlers as a library for the Scala programming language. The implementation

is based closely on the monadic delimited control framework of Dybvig et al. [75]. A

variation of the Scala Effekt library is used to implement effect handlers as an interface

for programming with delimited continuations in Java [36]. The implementation of

delimited continuations depend on special byte code instructions, inserted via a selective

type-driven CPS translation.

The Effekt language (which is distinct from the Effekt library) implements handlers

by a translation into capability-passing style, which may more informatively be dubbed

handler-passing style as handlers are passed downwards to the invocation sites of

their respective operations [39, 243]. The translation into capability-passing style is

realised by way of a effect-type directed iterated CPS transform, which introduces a

continuation argument per handler in scope [243]. The idea of iterated CPS is due to

Danvy and Filinski [62], who used it to give develop a CPS transform for shift and reset.

Xie et al. [277] have devised an evidence-passing translation for deep effect handlers.

The basic idea is similar to capability-passing style as evidence for handlers are passed

downwards to their operations in shape of a vector containing the handlers in scope

through computations. Xie and Leijen [276] have realised handlers by evidence-passing

style as a Haskell library.

There are clear connections between the CPS translations presented in this chapter

and the continuation monad implementation of Kammar et al. [143]. Whereas Kammar

et al. present a practical Haskell implementation depending on sophisticated features

such as type classes, which to some degree obscures the essential structure, here we

have focused on a foundational formal treatment. Kammar et al. obtain impressive

performance results by taking advantage of the second class nature of type classes in

Haskell coupled with the aggressive fusion optimisations GHC performs [275].

Plotkin’s colon translation The original method for proving the correctness of a

CPS translation is by way of a simulation result. Simulation states that every reduction

sequence in a given source program is mimicked by its CPS transformation. Static

administrative redexes in the image of a CPS translation provide hurdles for proving

simulation, since these redexes do not arise in the source program. Plotkin [220] uses

the so-called colon translation to overcome static administrative reductions. Informally,

it is defined such that given some source term M and some continuation k, then the term

M : k is the result of performing all static administrative reductions on JMKk, that is to

4.6. Related work 135

say JMKk⇝∗a M : k. Thus this translation makes it possible to bypass administrative

reductions and instead focus on the reductions inherited from the source program. The

colon translation captures precisely the intuition that drives CPS transforms, namely,

that if in the source M⇝∗ return V then in the image JMKk⇝∗ k JVK.

136 Chapter 4. Continuation-passing style

Syntax

Values V,W ∈ UVal ::= x | λxks.M | recgxks.M | ℓ | ⟨V,W⟩

Computations M,N ∈ UComp ::= V | U @ V @ W | let ⟨x,y⟩= V in N

| case V {ℓ 7→M;x 7→ N} | absurd V

| appV W | let r = resδ V in M

Syntactic sugar

let x = V in N ≡ N[V/x]

ℓ V ≡ ⟨ℓ,V⟩
⟨⟩ ≡ ℓ⟨⟩

⟨ℓ= V;W⟩ ≡ ℓ ⟨V,W⟩
[] ≡ ℓ[]

V :: W ≡ ℓ:: ⟨V,W⟩

case V {ℓx 7→M;y 7→ N} ≡
let y = V in let ⟨z,x⟩= y in
case z {ℓ 7→M;z 7→ N}

let ⟨ℓ= x;y⟩= V in N ≡
let ⟨z,z′⟩= V in let ⟨x,y⟩= z′ in
case z {ℓ 7→ N;z 7→ ℓ⊥}

Standard reductions

U-App (λxks.M)@ V @ W ⇝ M[V/x,W/ks]

U-Rec (recgxks.M)@ V @ W ⇝ M[recgxks.M/g,V/x,W/ks]

U-Split let ⟨x,y⟩= ⟨V,W⟩ in N ⇝ N[V/x,W/y]

U-Case1 case ℓ{ℓ 7→M;x 7→ N} ⇝ M

U-Case2 case ℓ{ℓ′ 7→M;x 7→ N} ⇝ N[ℓ/x], if ℓ ̸= ℓ′

Continuation reductions

U-KAppNil app (⟨[],⟨v,e⟩⟩ :: ks)V ⇝ v @ V @ ks

U-KAppCons app (⟨f :: fs,h⟩ :: ks)V ⇝ f @ V @ (⟨fs,h⟩ :: ks)

Resumption reductions

U-Res let r = res(Vn :: · · · :: V1 :: []) in N⇝

N[λxks.let ⟨fs,⟨hret,hops⟩⟩ :: ks′ = ks in
app (V1 :: · · · :: Vn :: ⟨fs,⟨hret,hops⟩⟩ :: ks′) x/r]

U-Res† let r = res†(⟨f1 :: · · · :: fm :: [],h⟩ :: Vn :: · · · :: V1 :: []) in N⇝

N[λxk.let ⟨fs′,h′⟩ :: ks′ = ks in
app (V1 :: · · · :: Vn :: ⟨f1 :: · · · :: fm :: fs′,h′⟩ :: ks′) x/r]

Figure 4.5: Untyped target calculus supporting generalised continuations.

4.6. Related work 137

Values

J−K : Val→ UVal

JxK def
= x

Jλx.MK def
= λxks.let (k :: ks′) = ks in JMK@ (↑k ::↑ks′)

JΛα.MK def
= λ⟨⟩ks.let (k :: ks′) = ks in JMK@ (↑k ::↑ks′)

Jrecgx.MK def
= recgxks.let (k :: ks′) = ks in JMK@ (↑k ::↑ks′)

J⟨⟩K def
= ⟨⟩ J⟨ℓ=V;W⟩K def

= ⟨ℓ=JVK;JWK⟩ JℓVK def
= ℓJVK

Computations

J−K : Comp→ SVal∗→ UComp

JV WK def
= λκ.JVK@ JWK@↓κ

JV TK def
= λκ.JVK@ ⟨⟩@↓κ

Jlet ⟨ℓ= x;y⟩= V in NK def
= λκ.let ⟨ℓ= x;y⟩= JVK in JNK@ κ

Jcase V {ℓ x 7→M;y 7→ N}K def
= λκ.case JVK {ℓ x 7→ JMK@ κ;y 7→ JNK@ κ}

Jabsurd VK def
= λκ.absurd JVK

JreturnVK def
= λκ.app (↓κ) JVK

Jlet x←M in NK def
= λ⟨θ,χ⟩ :: κ.JMK@ (⟨↑((λxks.let (k :: ks′) = ks in

JNK@ (↑k ::↑ks′))

::↓θ),χ⟩ :: κ)

Jdo ℓ VK def
= λ⟨θ,⟨χret,χops⟩⟩ :: κ.↓χops@⟨ℓ,⟨JVK,⟨↓θ,⟨↓χret,↓χops⟩⟩ :: []⟩⟩

@↓κ
Jhandleδ M with HK def

= λκ.JMK@ (⟨↑[],⟨↑JHretK,↑JHopsKδ⟩⟩ :: κ)

Handler definitions

J−K : HDef→ UVal

J{return x 7→ N}K def
= λxks.let (k :: ks′) = ks in JNK@ (↑k ::↑ks′)

J{(ℓ p r 7→ Nℓ)ℓ∈L}Kδ def
= λ⟨z,⟨p,rs⟩⟩ks.case z {(ℓ 7→ let r = resδ rs in

let (k :: ks′) = ks in
JNℓK@ (↑k ::↑ks′))ℓ∈L

y 7→Mforward((y,p,rs),ks)}
Mforward((y,p,rs),ks) def

= let ⟨fs,⟨hret,hops⟩⟩ :: ks′ = ks in
hops @ ⟨y,⟨p,⟨fs,⟨hret,hops⟩⟩ :: rs⟩⟩@ ks′

Top-level program

⊤J−K : Comp→ UComp

⊤JMK def
= JMK@ (⟨↑[],⟨↑λxks.x,↑λ⟨z,⟨p,rs⟩⟩ks.absurd z⟩⟩ ::↑[])

Figure 4.6: Higher-order uncurried CPS translation for effect handlers.

138 Chapter 4. Continuation-passing style

Computations

J−K : Comp→ SVal∗→ UComp

Jdo ℓ VK def
= λ⟨θ,⟨ξ,χret,χops⟩⟩ :: κ.↓χops@⟨↓ξ, ℓ,⟨JVK,⟨↓θ,⟨↓ξ,↓χret,↓χops⟩⟩

::[]⟩⟩@↓κ

Jhandle‡ M with (q.H)(W)K def
= λκ.JMK@ (⟨↑[],⟨↑JWK,↑JHretK‡

q,↑JHopsK‡
q⟩⟩ :: κ)

Handler definitions

J−K : HDef×UVal→ UVal

J{return x 7→ N}K‡
q

def
= λ⟨q,x⟩ks.let (k :: ks′) = ks in JNK@ (↑k ::↑ks′)

J{(ℓ p r 7→ Nℓ)ℓ∈L}K‡
q

def
= λ⟨q,z,⟨p,rs⟩⟩ks.case z {(ℓ 7→ let r = res‡ rs in

let (k :: ks′) = ks in
JNℓK@ (↑k ::↑ks′))ℓ∈L

y 7→Mforward((y,p,rs),ks)}
Mforward((y,p,rs),ks) def

= let ⟨fs,⟨q,hret,hops⟩⟩ :: ks′ = ks in
hops @ ⟨q,y,⟨p,⟨fs,⟨q,hret,hops⟩⟩ :: rs⟩⟩@ ks′

Top-level program

⊤JMK = JMK@ (⟨[],⟨↑⟨⟩,↑λ⟨q,x⟩ks.x,↑λ⟨q,z⟩ks.absurd z⟩⟩ ::↑[])

Figure 4.7: CPS translation for parameterised handlers.

Chapter 5

Abstract machine semantics

Abstract machine semantics are an operational semantics that makes program control

more apparent than context-based reduction semantics. In a some sense abstract ma-

chine semantics are a lower level semantics than reduction semantics as they provide a

model of computation based on abstract machines, which capture some core aspects of

how actual computers might go about executing programs. Abstract machines come in

different style and flavours, though, a common trait is that they are defined in terms of

configurations. A configuration includes the essentials to describe the machine state as

it were, i.e. some abstract notion of call stack, memory, program counter, etc.

In this chapter I will demonstrate an application of generalised continuations (Sec-

tion 4.4.2) to abstract machines that emphasises the usefulness of generalised con-

tinuations to implement various kinds of effect handlers. The key takeaway from this

application is that it is possible to plug the generalised continuation structure into a

standard framework to achieve a simultaneous implementation of deep, shallow, and

parameterised effect handlers. Specifically I will change the continuation structure of a

standard Felleisen and Friedman style CEK machine to fit generalised continuations.

The CEK machine (CEK is an acronym for Control, Environment, Kontinuation [83])

is an abstract machine with an explicit environment, which models the idea that pro-

cessor registers name values as an environment associates names with values. Thus

by using the CEK formalism we depart from the substitution-based model of compu-

tation used in the preceding chapters and move towards a more ‘realistic’ model of

computation (realistic in the sense of emulating how a computer executes a program).

Another significant difference is that in the CEK formalism evaluation contexts are no

longer syntactically intertwined with the source program. Instead evaluation contexts

are separately managed through the continuation of the CEK machine.

139

140 Chapter 5. Abstract machine semantics

Chapter outline

Section 5.1 augments the standard CEK notion of configurations to accommodate

generalised continuations.

Section 5.2 gives the reduction rules for the CEK machine with generalised continu-

ations.

Section 5.3 discusses ways to realise the machine and potential efficiency pitfalls.

Section 5.4 shows that the machine with generalised continuations simulates the substitution-

based reduction semantics of λh.

Section 5.5 discusses related work.

Relation to prior work The work in this chapter is based on work in the following

previously published papers.

i Daniel Hillerström and Sam Lindley. Liberating effects with rows and handlers. In

TyDe@ICFP, pages 15–27. ACM, 2016

ii Daniel Hillerström and Sam Lindley. Shallow effect handlers. In APLAS, volume

11275 of LNCS, pages 415–435. Springer, 2018

iii Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via generalised

continuations. J. Funct. Program., 30:e5, 2020

The particular presentation in this chapter is adapted from item iii.

5.1 Configurations with generalised continuations

Syntactically, the CEK machine consists of three components: 1) the control compon-

ent, which focuses the term currently being evaluated; 2) the environment component,

which maps free variables to machine values, and 3) the continuation component, which

describes what to evaluate next (some literature uses the term ‘control string’ in lieu

of continuation to disambiguate it from programmatic continuations in the source lan-

guage). Intuitively, the continuation component captures the idea of call stack from

actual programming language implementations.

5.1. Configurations with generalised continuations 141

The abstract machine is formally defined in terms of configurations. A configuration

⟨M | γ | κ◦κ′⟩ ∈ Conf is a triple consisting of a computation term M ∈ Comp, an envir-

onment γ∈ Env, and a pair of generalised continuations κ,κ′ ∈GenCont. The complete

abstract machine syntax is given in Figure 5.1. The control and environment compon-

ents are completely standard as they are similar to the components in Felleisen and

Friedman’s original CEK machine modulo the syntax of the source language. However,

the structure of the continuation component is new. This component comprises two

generalised continuations, where the latter continuation κ′ is an entirely administrat-

ive object that materialises only during operation invocations as it is used to construct

the reified segment of the continuation up to an appropriate enclosing handler. For

the most part κ′ is empty, therefore we will write ⟨M | γ | κ⟩ as syntactic sugar for

⟨M | γ | κ◦ []⟩ where [] is the empty continuation (an alternative is to syntactically differ-

entiate between regular and administrative configurations by having both three-place

and four-place configurations as for example as Biernacka et al. [23] do).

An environment is either empty, written /0, or an extension of some other environ-

ment γ, written γ[x 7→ v], where x is the name of a variable and v is a machine value. The

machine values consist of function closures, recursive function closures, type function

closures, records, variants, and reified continuations. The three abstraction forms are

paired with an environment that binds the free variables in the their bodies. The records

and variants are transliterated from the value forms of the source calculi. Figure 5.2

defines the value interpretation function, which turns any source language value into a

corresponding machine value. A continuation κ is a stack of generalised continuation

frames [θ1, . . . ,θn]. As in Section 4.4.2 each continuation frame θ = (σ,χ) consists

of a pure continuation σ, corresponding to a sequence of let bindings, interpreted un-

der some handler, which in this context is represented by the handler closure χ. A

pure continuation is a stack of pure frames. A pure frame (γ,x,N) closes a let-binding

let x = [] in N over environment γ. The pure continuation structure is similar to the

continuation structure of Felleisen and Friedman’s original CEK machine. There are

three kinds of handler closures, one for each kind of handler. A deep handler closure is

a pair (γ,H) which closes a deep handler definition H over environment γ. Similarly, a

shallow handler closure (γ,H†) closes a shallow handler definition over environment

γ. Finally, a parameterised handler closure (γ,(q.H)) closes a parameterised handler

definition over environment γ. As a syntactic shorthand we write Hδ to range over deep,

shallow, and parameterised handler definitions. Sometimes Hδ will range over just two

kinds of handler definitions; it will be clear from the context which handler definition is

142 Chapter 5. Abstract machine semantics

Configurations C ∈ Conf ::= ⟨M | γ | κ◦κ′⟩
Value environments γ ∈ Env ::= /0 | γ[x 7→ v]

Values v,w ∈Mval ::= (γ,λxA.M) | (γ,recA→C x.M)

| (γ,ΛαK.M)

| ⟨⟩ | ⟨ℓ= v;w⟩ | (ℓv)R

| κA | (κ,σ)A

Continuations κ ∈ GenCont ::= [] | θ :: κ

Continuation frames θ ∈ GenFrame ::= (σ,χ)

Pure continuations σ ∈ PureCont ::= [] | φ :: σ

Pure continuation frames φ ∈ PureFrame ::= (γ,x,N)

Handler closures χ ∈ HClo ::= (γ,H) | (γ,H†) | (γ,(q.H))

Figure 5.1: Abstract machine syntax.

J−K : Val×Env→Mval

JxKγ
def
= γ(x)

JλxA.MKγ
def
= (γ,λxA.M)

JrecgA→C x.MKγ
def
= (γ,recgA→C x.M)

JΛαK.MKγ
def
= (γ,ΛαK.M)

J⟨⟩Kγ
def
= ⟨⟩

J⟨ℓ= V;W⟩Kγ
def
= ⟨ℓ= JVKγ;JWKγ⟩

J(ℓV)RKγ
def
= (ℓJVKγ)R

Figure 5.2: Value interpretation definition.

omitted. We extend the clause projection notation to handler closures and generalised

continuation frames, i.e.

θret def
= (σ,χret)

def
= Hret, where χ = (γ,Hδ)

θℓ
def
= (σ,χℓ)

def
= Hℓ, where χ = (γ,Hδ)

Values are annotated with types where appropriate to facilitate type reconstruction in

order to make the results of Section 5.4 easier to state.

5.2. Generalised continuation-based machine semantics 143

−→
⊆

C
on

f×
C

on
f

M
-A

pp
⟨V

W
|γ
|κ
⟩−
→
⟨M
|γ
′ [

x
7→

JW
Kγ
]|

κ
⟩,

if
JV

Kγ
=
(γ
′ ,

λ
xA
.M

)

M
-A

pp
R

ec
⟨V

W
|γ
|κ
⟩−
→
⟨M
|γ
′ [

g
7→

(γ
′ ,

re
cg

A
→

C
x.

M
),

x
7→

JW
Kγ
]|

κ
⟩,

if
JV

Kγ
=
(γ
′ ,

re
cg

A
→

C
x.

M
)

M
-A

pp
Ty

pe
⟨V

T
|γ
|κ
⟩−
→
⟨M

[T
/α

]|
γ
′ |

κ
⟩,

if
JV

Kγ
=
(γ
′ ,

Λ
α

K
.M

)

M
-R

es
um

e
⟨V

W
|γ
|κ
⟩−
→
⟨r

et
ur

n
W
|γ
|κ
′ +
+

κ
⟩,

if
JV

Kγ
=
(κ
′)

A

M
-R

es
um

e†
⟨V

W
|γ
|(

σ
,χ
)

::
κ
⟩−
→
⟨r

et
ur

n
W
|γ
|κ
′ +
+
((

σ
′ +
+

σ
,χ
)

::
κ
)⟩
,

if
JV

Kγ
=
(κ
′ ,

σ
′)

A

M
-R

es
um

e‡
⟨V
⟨W

;W
′ ⟩
|γ
|κ
⟩−
→
⟨r

et
ur

n
W
|γ
|κ
′ +
+
[(

σ
,(

γ
′ [

q
7→

JW
′ K

γ
],

q.
H
))
]+
+

κ
⟩,

if
JV

Kγ
=

κ
′ +
+
[(

σ
,(

γ
′ ,

q.
H
))
])

A

M
-S

pl
it

⟨le
t⟨
ℓ
=

x;
y⟩

=
V

in
N
|γ
|κ
⟩−
→
⟨N
|γ
[x
7→

v,
y
7→

w
]|

κ
⟩,

if
JV

Kγ
=
⟨ℓ

=
v;

w
⟩

M
-C

as
e

⟨c
as

e
V
{ℓ

x
7→

M
;y
7→

N
}
|γ
|κ
⟩−
→

{ ⟨M
|γ
[x
7→

v]
|κ
⟩,

⟨N
|γ
[y
7→

ℓ′
v]
|κ
⟩,

if
JV

Kγ
=
ℓ

v

if
JV

Kγ
=
ℓ′

v
an

d
ℓ
̸=
ℓ′

M
-L

et
⟨le

tx
←

M
in

N
|γ
|(

σ
,χ
)

::
κ
⟩−
→
⟨M
|γ
|(
(γ
,x
,N

)
::

σ
,χ
)

::
κ
⟩

M
-H

an
dl

eδ
⟨h

an
dl

eδ
M

w
ith

H
δ
|γ
|κ
⟩−
→
⟨M
|γ
|(
[]
,(

γ
,H

δ
))

::
κ
⟩

M
-H

an
dl

e‡
⟨h

an
dl

e‡
M

w
ith

(q
.H

)(
W
)
|γ
|κ
⟩−
→
⟨M
|γ
|(
[]
,(

γ
[q
7→

JW
Kγ
],

H
))

::
κ
⟩

M
-P

ur
eC

on
t
⟨r

et
ur

n
V
|γ
|(
(γ
′ ,

x,
N
)

::
σ
,χ
)

::
κ
⟩−
→
⟨N
|γ
′ [

x
7→

JV
Kγ
]|
(σ
,χ
)

::
κ
⟩

M
-G

en
C

on
t

⟨r
et

ur
n

V
|γ
|(
[]
,(

γ
′ ,

H
δ
))

::
κ
⟩−
→
⟨M
|γ
′ [

x
7→

JV
Kγ
]|

κ
⟩,

if
H

re
t
=
{r

et
ur

n
x
7→

M
}

M
-D

oδ
⟨(

do
ℓ

V
)E
|γ
|(
(σ
,(

γ
′ ,

H
δ
))

::
κ
)
◦κ
′ ⟩
−→
⟨M
|γ
′ [

p
7→

JV
Kγ
,r
7→

(κ
′ +
+
[(

σ
,(

γ
′ ,

H
δ
))
])

B
]|

κ
⟩,

if
ℓ

:A
→

B
∈

E
an

d
H

ℓ
=
{⟨⟨

ℓ
p
↠

r⟩⟩
7→

M
}

M
-D

o†
⟨(

do
ℓ

V
)E
|γ
|(
(σ
,(

γ
′ ,

H
)†)

::
κ
)
◦κ
′ ⟩
−→
⟨M
|γ
′ [

p
7→

JV
Kγ
,r
7→

(κ
′ ,

σ
)B
]|

κ
⟩,

if
ℓ

:A
→

B
∈

E
an

d
H

ℓ
=
{⟨⟨

ℓ
p
↠

r⟩⟩
7→

M
}

M
-F

or
w

ar
d

⟨(
do

ℓ
V
)E
|γ
|(

θ
::

κ
)
◦κ
′ ⟩
−→
⟨(

do
ℓ

V
)E
|γ
|κ
◦(

κ
′ +
+
[θ
])
⟩,

if
θ
ℓ
=

/ 0

Fi
gu

re
5.

3:
A

bs
tr

ac
tm

ac
hi

ne
tr

an
si

tio
ns

.

144 Chapter 5. Abstract machine semantics

Initial continuation
κ0

def
= [([],(/0,{return x 7→ x}))]

Initialisation −→⊆ Comp×Conf

M-Init M −→ ⟨M | /0 | κ0⟩

Finalisation −→⊆ Conf×Val

M-Halt ⟨return V | γ | []⟩ −→ JVKγ

Figure 5.4: Machine initialisation and finalisation.

5.2 Generalised continuation-based machine semantics

The semantics of the abstract machine is defined in terms of a transition relation −→⊆
Conf×Conf on machine configurations. The definition of the transition relation is

given in Figure 5.3. A fair amount of the transition rules involve manipulating the

continuation. We adopt the same stack notation conventions used in the CPS translation

with generalised continuations (Section 4.4.4) and write [] for an empty stack, x :: s for

the result of pushing x on top of stack s, and s++ s′ for the concatenation of stack s on

top of s′. We use pattern matching to deconstruct stacks.

The first eight rules enact the elimination of values. The first three rules concern

closures (M-App, M-AppRec, M-AppType); they all essentially work the same. For ex-

ample, the M-App uses the value interpretation function J−K to interpret the abstractor

V in the machine environment γ to obtain the closure. The body M of closure gets put

into the control component. Before the closure environment γ′ gets installed as the new

machine environment, it gets extended with a binding of the formal parameter of the

abstraction to the interpretation of argument W in the previous environment γ. The rule

M-AppRec behaves the almost the same, the only difference is that it binds the variable

g to the recursive closure in the environment. The rule M-AppType does not extend

the environment, instead the type is substituted directly into the body. In either rule

continuation component remains untouched.

The resumption rules (M-Resume, M-Resume†, M-Resume‡), however, manipulate

the continuation component as they implement the context restorative behaviour of

deep, shallow, and parameterised resumption application respectively. The M-Resume

rule handles deep resumption invocations. A deep resumption is syntactically a gener-

alised continuation, and therefore it can be directly composed with the machine con-

5.2. Generalised continuation-based machine semantics 145

tinuation. Following a deep resumption invocation the argument gets placed in the

control component, whilst the reified continuation κ′ representing the resumptions gets

concatenated with the machine continuation κ in order to restore the captured context.

The rule M-Resume† realises shallow resumption invocations. Syntactically, a shallow

resumption consists of a pair whose first component is a dangling pure continuation σ′,

which is leftover after removal of its nearest enclosing handler, and the second compon-

ent contains a reified generalised continuation κ′. The dangling pure continuation gets

adopted by the top-most handler χ as σ′ gets appended onto the pure continuation σ

running under χ. The resulting continuation gets composed with the reified continuation

κ′. The rule M-Resume‡ implements the behaviour of parameterised resumption invoc-

ations. Syntactically, a parameterised resumption invocation is generalised continuation

just like an ordinary deep resumption. The primary difference between M-Resume and

M-Resume‡ is that in the latter rule the top-most frame of κ′ contains a parameterised

handler definition, whose parameter q needs to be updated following an invocation. The

handler closure environment γ′ gets extended by a mapping of q to the interpretation of

the argument W ′ such that this value of q is available during the next activation of the

handler. Following the environment update the reified continuation gets reconstructed

and appended onto the current machine continuation.

The rules M-Split and M-Case concern record destructing and variant scrutinising,

respectively. Record destructing binds both the variable x to the value v at label ℓ in

the record V and the variable y to the tail of the record in current environment γ. Case

splitting dispatches to the first branch with the variable x bound to the variant payload

in the environment if the label of the variant V matches ℓ, otherwise it dispatches to the

second branch with the variable y bound to the interpretation of V in the environment.

The rules M-Let, M-Handleδ, and M-Handle‡ augment the current continuation with

let bindings and handlers. The rule M-Let puts the computation M of a let expression

into the control component and extends the current pure continuation with the closure

of the (source) continuation of the let expression. The M-Handleδ rule covers both

ordinary deep and shallow handler installation. The computation M is placed in the

control component, whilst the continuation is extended by an additional generalised

frame with an empty pure continuation and the closure of the handler H. The rule

M-Handle‡ covers installation of parameterised handlers. The only difference here is

that the parameter q is initialised to the interpretation of W in handler environment γ′.

The current continuation gets shrunk by rules M-PureCont and M-GenCont. If the

current pure continuation is nonempty then the rule M-PureCont binds a returned value,

146 Chapter 5. Abstract machine semantics

otherwise the rule M-GenCont invokes the return clause of a handler if the pure con-

tinuation is empty.

The forwarding continuation is used by rules M-Doδ, M-Do†, and M-Forward. The

rule M-Doδ covers operation invocations under deep and parameterised handlers. If the

top-most handler handles the operation ℓ, then corresponding clause computation M

gets placed in the control component, and the handler environment γ′ is installed with

bindings of the operation payload and the resumption. The resumption is the forwarding

continuation κ′ extended by the current generalised continuation frame. The rule M-Do†

is much like M-Doδ, except it constructs a shallow resumption, discarding the current

handler but keeping the current pure continuation. The rule M-Forward appends the

current continuation frame onto the end of the forwarding continuation.

As a slight abuse of notation, we overload −→ to inject computation terms into

an initial machine configuration as well as projecting values. Figure 5.4 depicts the

structure of the initial machine continuation and two additional pseudo transitions.

The initial continuation consists of a single generalised continuation frame with an

empty pure continuation running under an identity handler. The M-Init rule provides a

canonical way to map a computation term onto a configuration, whilst M-Halt provides

a way to extract the final value of some computation from a configuration.

5.2.1 Putting the machine into action

To gain a better understanding of how the abstract machine concretely transitions

between configurations we will consider a small program consisting of a deep, paramet-

erised, and shallow handler. For the deep handler we will use the nondet handler from

Section 2.4 which handles invocations of the operation Fork : 1↠ Bool; it is reproduced

here in fine-grain call-by-value syntax.

nondet : (1→ α!{Fork : 1↠ Bool})→ List α

nondet m def
= handle m⟨⟩ with

return x 7→ [x]

⟨⟨Fork ⟨⟩↠ resume⟩⟩ 7→ let xs← resume true in
let ys← resume false in xs++ ys

As for the parameterised handler we will use a handler, which implements a simple

counter that supports one operation Incr : 1↠ Int, which increments the value of the

5.2. Generalised continuation-based machine semantics 147

counter and returns the previous value. It is defined as follows.

incr : ⟨Int;1→ α!{Incr : 1↠ Int}⟩ → α

incr⟨i0;m⟩ def
= handle‡ m⟨⟩ with(

i.
return x 7→ return x

⟨⟨Incr ⟨⟩↠ resume⟩⟩ 7→ let i′← i+1 in resume⟨i′; i⟩

)
i0

We will use the pipe and copipe shallow handlers from Section 2.6 to construct a small

pipeline.

pipe : ⟨1→ α!{Yield : β↠ 1};1→ α!{Await : 1↠ β}⟩ → α

pipe⟨p;c⟩ def
= handle† c⟨⟩ with

return x 7→ return x

⟨⟨Await ⟨⟩↠ resume⟩⟩ 7→ copipe⟨resume;p⟩

copipe : ⟨β→ α!{Await : 1↠ β};1→ α!{Yield : β↠ 1}⟩ → α

copipe⟨c;p⟩ def
= handle† p⟨⟩ with

return x 7→ return x

⟨⟨Yield y↠ resume⟩⟩ 7→ pipe⟨resume;λ⟨⟩.cy⟩

We use the following the producer and consumer computations for the pipes.

prod : 1→ α!{Incr : 1↠ Int;Yield : Int↠ 1}
prod⟨⟩ def

= let j← do Incr⟨⟩ in let x← do Yield j in prod⟨⟩

cons : 1→ Int!{Fork : 1↠ Bool;Await : 1↠ Int}
cons⟨⟩ def

= let b← do Fork⟨⟩ in let x← do Await⟨⟩ in
if b then x∗2 else x∗ x

The producer computation prod invokes the operation Incr to increment and retrieve the

previous value of some counter. This value is supplied as the payload to an invocation of

Yield. The consumer computation cons first performs an invocation of Fork to duplicate

the stream, and then it performs an invocation Await to retrieve some value. The return

value of cons depends on the instance runs in the original stream or forked stream. The

original stream multiplies the retrieved value by 2, and the duplicate squares the value.

Finally, the top-level computation plugs all of the above together.

nondet(λ⟨⟩.incr⟨1;λ⟨⟩.pipe⟨prod;cons⟩⟩) (5.1)

Function interpretation is somewhat heavy notation-wise as environments need to be

built. To make the notation a bit more lightweight I will not define the initial environ-

ments for closures explicitly. By convention I will subscript initial environments with

148 Chapter 5. Abstract machine semantics

the name of function, e.g. γcons denotes the initial environment for the closure of cons.

Extensions of initial environments will use superscripts to differentiate themselves, e.g.

γ′cons is an extension of γcons. As a final environment simplification, I will take the ini-

tial environments to contain the bindings for parameters of their closures, that is, an

initial environment is really the environment for the body of its closure. In a similar

fashion, I will use superscripts and subscripts to differentiate handler closures, e.g. χ
†
pipe

denotes the handler closure for the shallow handler definition in pipe. The environment

of a handler closure is to be understood implicitly. Furthermore, the definitions above

should be understood to be implicitly let-sequenced, whose tail computation is (5.1).

Evaluation of this sequence gives rise to a ‘toplevel’ environment, which binds the

closures for the definition. I shall use γ0 to denote this environment.

The machine executes the top-level computation in an initial configuration with the

top-level environment γ0. The first couple of transitions install the three handlers in

order: nondet, incr, and pipe.

nondet(λ⟨⟩.incr⟨1;λ⟨⟩.pipe⟨prod;cons⟩⟩)
−→ (M-Init with γ0)

⟨nondet(λ⟨⟩.incr⟨0;λ⟨⟩.pipe⟨prod;cons⟩⟩) | γ0 | κ0⟩
−→+ (3×(M-App, M-Handleδ))

⟨c⟨⟩ | γpipe | ([],χ†
pipe) :: ([],χ‡

incr) :: ([],χnondet) :: κ0⟩

At this stage the continuation consists of four frames. The first three frames each

corresponds to an installed handler, whereas the last frame is the identity handler. The

control component focuses the application of consumer computation provided as an

argument to pipe. The next few transitions get us to the first operation invocation.

−→+ (M-App, M-Let)

⟨do Fork⟨⟩ | γcons | ([(γcons,b, let x← ···)],χ†
pipe) :: ([],χ‡

incr) :: ([],χnondet) :: κ0⟩
−→+ (M-Forward, M-Forward)

⟨do Fork⟨⟩ | γcons | [([],χnondet),([],χid)]◦κ′⟩
where κ′ = [([(γcons,b, let x← ·· ·)],χ†

pipe),([],χ
‡
incr)]

The pure continuation under χ
†
pipe has been augmented with the pure frame correspond-

ing to let-binding of the invocation of Fork. Operation invocation causes the machine

to initiate a search for a suitable handler, as the top-most handler pipe does not handle

Fork. The machine performs two M-Forward transitions, which moves the two top-most

frames from the program continuation onto the forwarding continuation. As a result the,

5.2. Generalised continuation-based machine semantics 149

now, top-most frame of the program continuation contains a suitable handler for Fork.

Thus the following transitions transfer control to Fork-case inside the nondet handler.

−→+ (M-Do, M-Let)

⟨resume true | γ′nondet | κ′0⟩
where γ′nondet = γnondet[resume 7→ κ′++[([],χnondet)]]

κ′0 = [([(γ′nondet,xs, let ys← ···)],χid)]

The M-Do transition is responsible for activating the handler, and the M-Let transition

focuses the first resumption invocation. The resumption resume is bound in the environ-

ment to the forwarding continuation κ′ extended with the frame for the current handler.

The pure continuation running under the identity handler gets extended with the let-
binding containing the first resumption invocation. The next transitions reassemble the

program continuation and focuses control on the invocation of Await.

−→+ (M-Resume, M-PureCont, M-Let)

⟨do Await⟨⟩ | γ′cons | ([(γ′cons,x, if b · · ·)],χ†
pipe) :: ([],χ‡

incr) :: ([],χnondet) :: κ′0⟩
where γ′cons = γcons[b 7→ true]

At this stage the context of cons has been restored with b being bound to the value

true. The pure continuation running under pipe has been extended with pure frame

corresponding to the continuation of the let-binding of the Await invocation. Handling

of this invocation requires no use of the forwarding continuation as the top-most frame

contains a suitable handler.

−→ (M-Do†)

⟨copipe⟨resume;p⟩ | γ′pipe | ([],χ
‡
incr) :: ([],χnondet) :: κ′0⟩

where γ′pipe = γpipe[resume 7→ ([], [(γ′cons,x, if b · · ·)])]

Now the Await-case of the pipe handler has been activated. The resumption resume

is bound to the shallow resumption in the environment. The generalised continuation

component of the shallow resumption is empty, because no forwarding was involved

in locating the handler. The next transitions install the copipe handler and runs the

150 Chapter 5. Abstract machine semantics

producer computation.

−→+ (M-App, M-Handle†)

⟨p⟨⟩ | γ′copipe | ([],χ
†
copipe) :: κ′⟩

where γ′copipe = γcopipe[c 7→ ([], [(γ′cons,x, if b · · ·)])]
−→+ (M-AppRec, M-Let)

⟨do Incr⟨⟩ | γprod | ([(γprod, j, let x← ···)],χ†
copipe) :: κ′⟩

−→+ (M-Forward, M-Do‡, M-Let, M-App, M-PureCont)

⟨resume⟨i′; i⟩ | γ′incr | ([],χnondet) :: κ′0⟩
where γ′incr = γincr[i 7→ 1, i′ 7→ 2,

resume 7→ [([(γprod, j, let x← ·· ·)],χ†
copipe),([],χ

‡
incr)]]

The producer computation performs the Incr operation, which requires one M-Forward

transition in order to locate a suitable handler for it. The Incr-case of the incr handler

increments the counter i by one. The environment binds the current value of the counter.

The following M-Resume‡ transition updates the counter value to be that of i′ and

continues the producer computation.

−→+ (M-Resume‡, M-PureCont, M-Let)

⟨do Yield j | γ′′prod | ([(γ′′prod,x,prod⟨⟩)],χ†
copipe) :: ([],χ‡

incr) :: ([],χnondet) :: κ′0⟩
where γ′′prod = γ′prod[j 7→ 1]

−→ (M-Do†)

⟨pipe⟨resume;λ⟨⟩.cy⟩ | γ′pipe | ([],χ
‡
incr) :: ([],χnondet) :: κ′0⟩

where γ′pipe = γpipe[y 7→ 1,resume 7→ ([], [(γ′′prod,x,prod⟨⟩)])]
−→+ (M-App, M-Handle†, M-Resume†, M-PureCont)

⟨if b then x∗2 else x∗ x | γ′′cons | ([],χ
†
pipe) :: ([],χ‡

incr) :: ([],χnondet) :: κ′0⟩
where γ′′cons = γ′cons[x 7→ 1]

The Yield operation causes another instance of the pipe to be installed in place of the

copipe. The M-Resume† transition occurs because the consumer argument provided

to pipe is the resumption of captured by the original instance of pipe, thus invoking

it causes the context of the original consumer computation to be restored. Since b is

true the if-expression will dispatch to the then-branch, meaning the computation will

ultimately return 2. This return value gets propagated through the handler stack.

−→+ (M-Case, M-App, M-GenCont, M-GenCont, M-GenCont)

⟨return [x] | γnondet[x 7→ 2] | κ′0⟩

The return-clauses of the pipe and incr handlers are identities, and thus, the return value

x passes through unmodified. The return-case of nondet lifts the value into a singleton

5.3. Realisability and efficiency implications 151

list. Next the pure continuation is invoked, which restores the handling context of the

first operation invocation Fork.

−→ (M-PureCont, M-Let)

⟨resume false | γ′nondet | κ′′0⟩
where γ′′nondet = γ′nondet[xs 7→ [3]]

κ′′0 = [([(γ′′nondet,ys,xs++ ys)],χid)]

−→+ (M-Resume, M-PureCont, M-Let)

⟨do Await⟨⟩ | γ′′′cons | ([(γ′′′cons,x, if b · · ·)],χ†
pipe) :: ([],χ‡

incr) :: ([],χnondet) :: κ′′0⟩
where γ′′′cons = γ′′cons[b 7→ false]

The second invocation of the resumption resume interprets Fork as false. The consumer

computation is effectively restarted with b bound to false. The previous transitions will

be repeated.

−→+ (same reasoning as above)

⟨resume⟨i′; i⟩ | γ′′incr | ([],χnondet) :: κ′′0⟩
where γ′incr = γincr[i 7→ 2, i′ 7→ 3,

resume 7→ [([(γ′′prod, i, let x← ·· ·)],χ†
copipe),([],χ

‡
incr)]]

After some amount transitions the parameterised handler incr will be activated again.

The counter variable i is bound to the value computed during the previous activation

of the handler. The machine proceeds as before and eventually reaches concatenation

application inside the Fork-case.

−→+ (same reasoning as above)

⟨xs++ ys | γ′′nondet | κ0⟩
where γ′′nondet = γ′nondet[ys 7→ [4]]

−→ (M-App, M-GenCont, M-Halt)

[3,4]

5.3 Realisability and efficiency implications

A practical benefit of the abstract machine semantics over the context-based small-step

reduction semantics with explicit substitutions is that it provides either a blueprint for

a high-level interpreter-based implementation or an outline for how stacks should be

manipulated in a low-level implementation along with a more practical and precise cost

model. The cost model is more practical in the sense of modelling how actual hardware

152 Chapter 5. Abstract machine semantics

might go about executing instructions, and it is more precise as it eliminates the declar-

ative aspect of the contextual semantics induced by the S-Lift rule. For example, the

asymptotic cost of handler lookup is unclear in the contextual semantics, whereas the

abstract machine clearly tells us that handler lookup involves a linear search through

the machine continuation.

The abstract machine is readily realisable using standard persistent functional data

structures such as lists and maps [210]. The concrete choice of data structures required

to realise the abstract machine is not set in stone, although, its definition is suggestive

about the choice of data structures it leaves space for interpretation. For example, gen-

eralised continuations can be implemented using lists, arrays, or even heaps. However,

the concrete choice of data structure is going to impact the asymptotic time and space

complexity of the primitive operations on continuations: continuation augmentation

(::) and concatenation (++). For instance, a linked list provides a fast constant time

implementations of either operation, whereas a fixed-size array can only provide imple-

mentations of either operation that run in linear time due to the need to resize and copy

contents in the extreme case. An implementation based on a singly-linked list admits

constant time for both continuation augmentation as this operation corresponds directly

to list cons. However, it admits only a linear time implementation for continuation con-

catenation. Alternatively, an implementation based on a Hughes list [131] reverses the

cost as a Hughes list uses functions to represent cons cells, thus meaning concatenation

is simply function composition, but accessing any element, including the head, always

takes linear time in the size of the list. In practice, this difference in efficiency means

we can either trade-off fast interpretation of let-bindings and handle-computations for

‘slow’ handling and context restoration or vice versa depending on what we expect to

occur more frequently.

The pervasiveness of let-bindings in fine-grain call-by-value means that the top-

most pure continuation is likely to be augmented and shrunk repeatedly, thus it is a

sensible choice to simply represent generalisation continuations as singly linked list

in order to provide constant time pure continuation augmentation (handler installation

would be constant time too). However, the continuation component contains two gener-

alisation continuations. In the rule M-Forward the forwarding continuation is extended

using concatenation, thus we may choose to represent the forwarding continuation as

a Hughes list for greater efficiency. A consequence of this choice is that upon resump-

tion invocation we must convert the forwarding continuation into singly linked list

such that it can be concatenated with the program continuation. Both the conversion

5.4. Simulation of the context-based reduction semantics 153

and the concatenation require a full linear traversal of the forwarding continuation. A

slightly clever choice is to represent both continuations using Huet’s Zipper data struc-

ture [130], which essentially boils down to using a pair of singly linked lists, where the

first component contains the program continuation, and the second component contains

the forwarding continuation. We can make a non-asymptotic improvement by represent-

ing the forwarding continuation as a reversed continuation such that we may interpret

the concatenation operation (++) in M-Forward as regular cons (::). In the M-Resumeδ

rules we must then interpret concatenation as reverse append, which needs to traverse

the forwarding continuation only once.

Continuation copying A convenient consequence of using persistent functional data

structure to realise the abstract machine is that multi-shot resumptions become effi-

ciency as continuation copying becomes a constant time operation. However, if we

were only interested one-shot or linearly used resumptions, then we may wish to use

in-place mutations to achieve greater efficiency. In-place mutations do not exclude sup-

port for multi-shot resumptions, however, with mutable data structures the resumptions

needs to be copied before use. One possible way to copy resumptions is to expose an

explicit copy instruction in the source language. Alternatively, if the source language is

equipped with a linear type system, then the linear type information can be leveraged

to provide an automatic insertion of copy instructions prior to resumption invocations.

5.4 Simulation of the context-based reduction semantics

We now show that the base abstract machine is correct with respect to the combined

context-based small-step semantics of λh, λh† , and λh‡ via a simulation result.

Initial states provide a canonical way to map a computation term onto the abstract

machine. A more interesting question is how to map an arbitrary configuration to

a computation term. Figure 5.5 describes such a mapping L−M from configurations

to terms via a collection of mutually recursive functions defined on configurations,

continuations, handler closures, computation terms, handler definitions, value terms,

and machine values. The mapping makes use of a domain operation and a restriction

operation on environments.

154 Chapter 5. Abstract machine semantics

Definition 5.1. The domain of an environment is defined recursively as follows.

dom : Env→ Var

dom(/0)
def
= /0

dom(γ[x 7→ v]) def
= {x}∪dom(γ)

We write γ\{x1, . . . ,xn} for the restriction of environment γ to dom(γ)\{x1, . . . ,xn}.

The L−M function enables us to classify the abstract machine reduction rules accord-

ing to how they relate to the context-based small-step semantics. Both the rules M-Let

and M-Forward are administrative in the sense that L−M is invariant under either rule.

This leaves the β-rules M-App, M-AppRec, M-TyApp, M-Resumeδ, M-Split, M-Case,

M-PureCont, and M-GenCont. Each of these corresponds directly with performing a

reduction in the small-step semantics. We extend the notion of transition to account for

administrative steps.

Definition 5.2 (Auxiliary reduction relations). We write −→a for administrative steps

and ≃a for the symmetric closure of −→∗a . We write −→β for β-steps and =⇒ for a

sequence of steps of the form −→∗a−→β.

The following lemma describes how we can simulate each reduction in the small-

step reduction semantics by a sequence of administrative steps followed by one β-step

in the abstract machine.

Lemma 5.3. Suppose M is a computation and C is configuration such that LC M = M,

then if M⇝ N there exists C ′ such that C =⇒ C ′ and LC ′M = N, or if M ̸⇝ then C ̸=⇒.

Proof. By induction on the derivation of M⇝ N.

The correspondence here is rather strong: there is a one-to-one mapping between

⇝ and the quotient relation of =⇒ and ≃a. Notice that Lemma 5.3 does not require

that M be well-typed. This is mostly a convenience to simplify the lemma. The lemma

is used in the following theorem where it is being applied only on well-typed terms.

Theorem 5.4 (Simulation). If ⊢ M : A!E and M ⇝+ N such that N is normal with

respect to E, then ⟨M | /0 | κ0⟩ −→+ C such that LC M= N, or M ̸⇝ then ⟨M | /0 | κ0⟩ ̸−→.

Proof. By repeated application of Lemma 5.3.

5.5. Related work 155

5.5 Related work

The literature on abstract machines is vast and rich. I describe here the basic structure

of some selected abstract machines from the literature.

Handler machines Chronologically, the machine presented in this chapter was the

first abstract machine specifically designed for effect handlers to appear in the literat-

ure. Subsequently, this machine has been extended and used to explain the execution

model for the Multicore OCaml implementation [252]. Their primary extension cap-

tures the finer details of the OCaml runtime as it models the machine continuation as a

heterogeneous sequence consisting of interleaved OCaml and C frames.

An alternative machine has been developed by Biernacki et al. [27] for the Helium

language. Although, their machine is based on Biernacka et al.’s definitional abstract

machine for the control operators shift and reset [24], the continuation structure of

the resulting machine is essentially the same as that of a generalised continuation.

The primary difference is that in their presentation a generalised frame is either pair

consisting of a handler closure and a pure continuation (as in the presentation in this

chapter) or a coercion paired with a pure continuation.

SECD machine Landin’s SECD machine was the first abstract machine for λ-calculus

viewed as a programming language [58, 158]. The machine is named after its structure

as it consists of a stack component, environment component, control component, and

a dump component. The stack component maintains a list of intermediate value. The

environment maps free variables to values. The control component holds a list of direct-

ives that manipulate the stack component. The dump acts as a caller-saved register as

it maintains a list of partial machine state snapshots. Prior to a closure application, the

machine snapshots the state of the stack, environment, and control components such

that this state can be restored once the stack has been reduced to a single value and the

control component is empty. The structure of the SECD machine lends itself to a simple

realisation of the semantics of Landin’s the J operator as its behaviour can realised by

reifying the dump the as value. Plotkin [220] proved the correctness of the machine in

style of a simulation result with respect to a reduction semantics [1].

The SECD machine is a precursor to the CEK machine as the latter can be viewed

as a streamlined variation of the SECD machine, where the continuation component

unifies stack and dump components of the SECD machine. For a deep dive into the

156 Chapter 5. Abstract machine semantics

operational details of Landin’s SECD machine, the reader may consult Danvy [58],

who dissects the SECD machine, and as a follow up on that work Danvy and Millikin

[64] perform several rational deconstructions and reconstructions of the SECD machine

with the J operator.

Krivine machine The Krivine machine takes its name after its designer Krivine [156].

It is designed for call-by-name λ-calculus computation as it performs reduction to weak

head normal form [156, 168]. The structure of the Krivine machine is similar to that of

the CEK machine as it features a control component, which focuses the current term

under evaluation; an environment component, which binds variables to closures; and a

stack component, which contains a list of closures. Evaluation of an application term

pushes the argument along with the current environment onto the stack and continues

to evaluate the abstractor term. Dually evaluation of a λ-abstraction places the body in

the control component, subsequently it pops the top most closure from the stack and

extends the current environment with this closure [73].

Krivine [156] has also designed a variation of the machine which supports a call-

by-name variation of the callcc control operator. In this machine continuations have

the same representation as the stack component, and they can be stored on the stack.

Then the continuation capture mechanism of callcc can be realised by popping and

installing the top-most closure from the stack, and then saving the tail of the stack as

the continuation object, which is to be placed on top of the stack. An application of a

continuation can be realised by replacing the current stack with the stack embedded

inside the continuation object [156].

ZINC machine The ZINC machine is a strict variation of Krivine’s machine, though

it was designed independently by Leroy [168]. The machine is used as the basis for the

OCaml byte code interpreter [168, 169]. There are some cosmetic difference between

Krivine’s machine and the ZINC machine. For example, the latter decomposes the stack

component into an argument stack, holding arguments to function calls, and a return

stack, which holds closures. A peculiar implementation detail of the ZINC machine

that affects the semantics of the OCaml language is that for n-ary function application

to be efficient, function arguments are evaluated right-to-left rather than left-to-right as

customary in call-by-value language [168]. The OCaml manual leaves the evaluation

order for function arguments unspecified [169]. However, for a long time the native

code compiler for OCaml would emit code utilised left-to-right evaluation order for

5.5. Related work 157

function arguments, consequently the compilation method could affect the semantics

of a program, as the evaluation order could be observed using effects, e.g. by raising

an exception [43]. Anecdotally, Damien Doligez told me in person at ICFP 2017 that

unofficially the compiler has been aligned with the byte code interpreter such that

code running on either implementation exhibits the same semantics. Even though the

evaluation order remains unspecified in the manual any other observable order than

right-to-left evaluation order is now considered a bug (subject to some exceptions,

notably short-circuiting logical and/or functions).

Mechanical machine derivations There are deep mathematical connections between

environment-based abstract machine semantics and standard reduction semantics with

explicit substitutions. For example, Ager et al. [1, 2, 3] relate abstract machines and

functional evaluators by way of a two-way derivation that consists of closure conver-

sion, transformation into CPS, and defunctionalisation of continuations. Biernacka and

Danvy [22] demonstrate how to formally derive an abstract machine from a small-step

reduction strategy. Their presentation has been formalised by Swierstra [258] in the

dependently-typed programming language Agda. Hutton and Wright [133] demonstrate

how to calculate a correct-by-construction abstract machine from a given specification

using structural induction. Notably, their example machine supports basic computa-

tional effects in the form of exceptions. Ager et al. [4] also extended their technique to

derive abstract machines from monadic-style effectful evaluators.

158 Chapter 5. Abstract machine semantics

Configurations

L⟨M | γ | κ◦κ
′⟩M def

= Lκ′++κM(LMMγ) def
= Lκ′M(LκMLMMγ)

Pure continuations

L[]MM def
= M L((γ,x,N) :: σ)MM def

= LσM(let x←M in LNM(γ\{x}))

Continuations

L[]MM def
= M L(σ,χ) :: κMM def

= LκM(LχM(LσM(M)))

Handler closures
L(γ,Hδ)MM def

= handleδ M with LHδMγ

Computation terms

LV WMγ def
= LVMγLWMγ

LV TMγ def
= LVMγT

Llet ⟨ℓ= x;y⟩= V in NMγ def
= let ⟨ℓ= x;y⟩= LVMγ in LNM(γ\{x,y})

Lcase V {ℓ x 7→M;y 7→ N}Mγ def
= case LVMγ{ℓ x 7→ LMM(γ\{x});y 7→ LNM(γ\{y})}

Lreturn VMγ def
= return LVMγ

Llet x←M in NMγ def
= let x← LMMγ in LNM(γ\{x})

Ldo ℓ VMγ def
= do ℓ LVMγ

Lhandleδ M with HMγ def
= handleδ LMMγ with LHMγ

Handler definitions

L{return x 7→M}Mγ def
= {return x 7→ LMM(γ\{x})}

L{⟨⟨ℓ p↠ r⟩⟩ 7→M}⊎HδMγ def
= {⟨⟨ℓ p↠ r⟩⟩ 7→ LMM(γ\{p,r}}⊎ LHδMγ

L(q.H)Mγ def
= LHM(γ\{q})

Value terms and values

LxMγ def
= LvM, if γ(x) = v

LxMγ def
= x, if x /∈ dom(γ)

LλxA.MMγ def
= λxA.LMM(γ\{x})

LΛαK.MMγ def
= ΛαK.LMMγ

L⟨⟩Mγ def
= ⟨⟩

L⟨ℓ= V;W⟩Mγ def
= ⟨ℓ= LVMγ;LWMγ⟩

L(ℓ V)RMγ def
= (ℓ LVMγ)R

LκAM def
= λxA.LκM(return x)

L(κ,σ)AM def
= λxA.LσM(LκM(return x))

L(γ,λxA.M)M def
= λxA.LMM(γ\{x})

L(γ,ΛαK.M)M def
= ΛαK.LMMγ

L⟨⟩M def
= ⟨⟩

L⟨ℓ= v;w⟩M def
= ⟨ℓ= LvM;LwM⟩

L(ℓ v)RM def
= (ℓ LvM)R

LrecgA→C x.MMγ def
= recgA→C x.LMM(γ\{g,x}) def

= L(γ,recgA→C x.M)M

Figure 5.5: Mapping from abstract machine configurations to terms.

Part III

Expressiveness

159

Chapter 6

Interdefinability of effect handlers

On the surface, shallow handlers seem to offer more flexibility than deep handlers as

they do not enforce a particular recursion scheme over effectful computations. An inter-

esting hypothesis worth investigating is whether this flexibility is a mere programming

convenience or whether it enables shallow handlers to implement programs that would

otherwise be impossible to implement with deep handlers. Put slightly different, the

hypothesis to test is whether handlers can implement one another. To test this sort of hy-

pothesis we first need to pin down what it means for ‘something to be able to implement

something else’.

For example in Section 2.6 I asserted that shallow handlers provide the natural basis

for implementing pipes, suggesting that an implementation based on deep handlers

would be fiddly. If we were to consider the wider design space of programming language

features, then it turns out that deep handlers offer a direct implementation of pipes by

shifting recursion from terms to the level of types (the interested reader may consult

either Kammar et al. [143] or Hillerström and Lindley [120] for the precise details).

Thus in some sense pipes are implementable with deep handlers, however, this particular

implementation strategy is not realisable in the λh-calculus since it has no notion of

recursive types, meaning we cannot use this strategy to argue that deep handlers can

implement pipes in our setting.

We will restrict our attention to the calculi λh, λh† , and λh‡ and use the notion of

typeability-preserving macro-expressiveness to determine whether handlers are inter-

definable [99]. In our particular setting, typeability-preserving macro-expressiveness

asks whether there exists a local transformation that can transform one kind of handler

into another kind of handler, whilst preserving typeability in the image of the transform-

ation. By mandating that the transform is local we rule out the possibility of rewrit-

161

162 Chapter 6. Interdefinability of effect handlers

ing the entire program in, say, CPS notation to implement deep and shallow handlers

as in Chapter 4. In this chapter we use the notion of typeability-preserving macro-

expressiveness to show that shallow handlers and general recursion can simulate deep

handlers up to congruence, and that deep handlers can simulate shallow handlers up to

administrative reductions.

Chapter outline

Section 6.1 develops an encoding of deep handlers in terms of shallow handlers.

Section 6.2 shows an encoding going the other way, i.e. shallow handlers encoded

using deep handlers.

Section 6.3 demonstrates that parameterised handlers are encodable using ordinary

deep handlers with the state-passing technique.

Section 6.4 discusses related work.

Relation to prior work The results in this chapter has been published previously in

the following papers.

i Daniel Hillerström and Sam Lindley. Shallow effect handlers. In APLAS, volume

11275 of LNCS, pages 415–435. Springer, 2018

ii Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via generalised

continuations. J. Funct. Program., 30:e5, 2020

The results of Sections 6.1 and 6.2 appear in item i, whilst the result of Section 6.3

appears in item ii.

6.1 Deep as shallow

The implementation of deep handlers using shallow handlers (and recursive functions)

is by a direct local translation, similar to how one would implement a fold (catamorph-

ism) in terms of general recursion. Each handler is wrapped in a recursive function and

each resumption has its body wrapped in a call to this recursive function. Formally, the

translation SJ−K is defined as the homomorphic extension of the following equations

6.1. Deep as shallow 163

to all terms and substitutions.

SJ−K : Comp→ Comp

SJhandle M with HK def
= (rec h f .handle† f ⟨⟩ with SJHKh)(λ⟨⟩.SJMK)

SJ−K : HDef×Val→ HDef

SJ{return x 7→ N}Kh
def
= {return x 7→ SJNK}

SJ{⟨⟨ℓ p↠ r⟩⟩ 7→ Nℓ}ℓ∈LKh
def
= {⟨⟨ℓ p↠ r⟩⟩ 7→ let r← return λx.h(λ⟨⟩.r x)

in SJNℓK}ℓ∈L

The translation of handle uses a rec-abstraction to introduce a fresh name h for the

handler H. This name is used by the translation of the handler definitions. The trans-

lation of return-clauses is the identity, and thus ignores the handler name. However,

the translation of operation clauses uses the name to simulate a deep resumption by

guarding invocations of the shallow resumption r with h.

In order to exemplify the translation, let us consider a variation of the env handler

from Section 2.3, which handles an operation Ask : 1↠ Int.

D

u

ww
v

handle do Ask⟨⟩+do Ask⟨⟩ with
return x 7→ return x

⟨⟨Ask ⟨⟩↠ r⟩⟩ 7→ r 42

}

��
~

= (rec env f .handle† f ⟨⟩ with
return x 7→ return x

⟨⟨Ask ⟨⟩↠ r⟩⟩ 7→ let r← return λx.env (λ⟨⟩.r x) in
r 42) (λ⟨⟩.do Ask⟨⟩+do Ask⟨⟩)

The deep semantics are simulated by generating the name env for the shallow handlers

and recursively apply the handler under the modified resumption.

The translation commutes with substitution and preserves typeability.

Lemma 6.1. Let σ denote a substitution. The translation SJ−K commutes with substi-

tution, i.e.

SJVKSJσK = SJVσK, SJMKSJσK = SJMσK, SJHKSJσK = SJHσK.

Proof. By induction on the structures of V , M, and H.

Theorem 6.2. If ∆;Γ ⊢M : C then ∆;Γ ⊢ SJMK : SJCK.

Proof. By induction on the typing derivations.

164 Chapter 6. Interdefinability of effect handlers

In order to obtain a simulation result, we allow reduction in the simulated term

to be performed under lambda abstractions (and indeed anywhere in a term), which

is necessary because of the redefinition of the resumption to wrap the handler around

its body. Nevertheless, the simulation proof makes minimal use of this power, merely

using it to rename a single variable.

Theorem 6.3 (Simulation up to congruence). If M⇝ N then SJMK⇝+
cong SJNK.

Proof. By case analysis on⇝ using Lemma 6.1. The interesting case is S-Op, which

is where we apply a single β-reduction, renaming a variable, under the λ-abstraction

representing the resumption. The proof of this case is as follows.

SJhandle E [do ℓ V] with HK

= (definition of SJ−K)

(rec h f .handle† f ⟨⟩ with SJHKh)(λ⟨⟩.SJEK[do ℓ SJVK])

⇝+ (S-Rec, S-App, S-Op† with Hℓ = {⟨⟨ℓ p↠ r⟩⟩ 7→ N})
(let r← return λx.h(λ⟨⟩.r x) in SJNK)[λy.SJEK[return y]/r,SJVK/p]

= (definition of [-])

(let r← return λx.h(λ⟨⟩.(λy.SJEK[return y]) x) in SJNK[SJVK/p]

⇝cong (S-App reduction under λx. · · ·)
(let r← return λx.h(λ⟨⟩.SJEK[return x]) in SJNK[SJVK/p]

⇝ (S-Let and Lemma 6.1)

SJN[V/p,λx.h(λ⟨⟩.E [return x])/r]K

6.2 Shallow as deep

Implementing shallow handlers in terms of deep handlers is slightly more involved than

the other way round. It amounts to the encoding of a case split by a fold and involves a

translation on handler types as well as handler terms. Formally, the translation DJ−K

is defined as the homomorphic extension of the following equations to all types, terms,

6.2. Shallow as deep 165

type environments, and substitutions.

DJ−K : HType→ HType

DJA!E1⇒ B!E2K
def
= DJA!E1K⇒ ⟨1→DJC!E1K;1→DJB!E2K⟩!DJE2K

DJ−K : Comp→ Comp

DJhandle† M with HK def
= let z← handle DJMK with DJHK in

let ⟨f ;g⟩= z in g⟨⟩

DJ−K : HDef→ HDef

DJ{return x 7→ N}K def
= {return x 7→ return ⟨λ⟨⟩.return x;λ⟨⟩.DJNK⟩}

DJ{⟨⟨ℓ p↠ r⟩⟩ 7→ N}ℓ∈LK def
= {⟨⟨ℓ p↠ r⟩⟩ 7→

let r← λx.let z← r x in let ⟨f ;g⟩= z in f ⟨⟩ in
return ⟨λ⟨⟩.let x← do ℓ p in r x;λ⟨⟩.DJNK⟩}ℓ∈L

As evident from the translation of handler types, each shallow handler is encoded as

a deep handler that returns a pair of thunks. It is worth noting that the handler con-

struction is actually pure, yet we need to annotate the pair with the translated effect

signature DJE2K, because the calculus has no notion of effect subtyping. Technically we

could insert an administrative identity handler to coerce the effect signature. There are

practical reasons for avoiding administrative handlers, though, as we shall discuss mo-

mentarily the inordinate administrative overhead of this transformation might conceal

the additional overhead incurred by the introduction of administrative identity hand-

lers. The first component of the pair forwards all operations, acting as the identity on

computations. The second component interprets a single operation before reverting to

forwarding. The following example illustrates the translation on an instance of the pipe

operator from Section 2.6 using the consumer computation do Await⟨⟩+do Await⟨⟩

166 Chapter 6. Interdefinability of effect handlers

and the suspended producer computation rec ones⟨⟩.do Yield 1;ones⟨⟩.

D

u

ww
v

handle† do Await⟨⟩+do Await⟨⟩ with
return x 7→ return x

⟨⟨Await ⟨⟩↠ r⟩⟩ 7→ copipe⟨r;rec ones⟨⟩.do Yield 1;ones⟨⟩⟩

}

��
~

= let z← handle (λ⟨⟩.do Await⟨⟩+do Await⟨⟩)⟨⟩ with
return x 7→ return ⟨λ⟨⟩.return x;λ⟨⟩.return x⟩
⟨⟨Await ⟨⟩↠ r⟩⟩ 7→

let r← λx.let z← r x in let ⟨f ;g⟩= z in f ⟨⟩ in
return ⟨λ⟨⟩.let x← do ℓ p in r x;

λ⟨⟩.DJcopipeK⟨r;rec ones⟨⟩.do Yield 1;ones⟨⟩⟩⟩
in let ⟨f ;g⟩= z in g⟨⟩

Evaluation of both the left hand side and right hand side of the equals sign yields

the value 2 : Int. The return-case in the image contains a redundant pair, because

the return-case of pipe is the identity. The translation of the Await-case sets up the

forwarding component and handling component of the pair of thunks.

The distinction between deep and shallow handlers is that the latter is discharged

after handling a single operation, whereas the former is persistent and apt for continual

operation interpretations. The persistence of deep handlers means that any handler in

the image of the translation remains in place for the duration of the handled computa-

tion after handling a single operation, which has noticeable asymptotic performance

implications. Each activation of a handler in the image introduces another layer of

indirection that any subsequent operation invocation have to follow. Supposing some

source program contains n handlers and performs k operation invocations, then the

image introduces k additional handlers, meaning the total amount of handlers in the

image is n+ k. Viewed through the practical lens of the CPS translation (Chapter 4)

or abstract machine (Chapter 5) it means that in the worst case handler lookup takes

O(n+k) time. For example, consider the extreme case where n = 1, that is, the handler

lookup takes O(1) time in the source, but in the image it takes O(k) time. Thus this

translation is more of theoretical significance than practical interest. It also demon-

strates that typeability-preserving macro-expressiveness is rather coarse-grained notion

of expressiveness, as it blindly considers whether some construct is computable using

another construct without considering the computational cost.

The translation commutes with substitution and preserves typeability.

6.2. Shallow as deep 167

Lemma 6.4. Let σ denote a substitution. The translation DJ−K commutes with substi-

tution, i.e.

DJVKDJσK = DJVσK, DJMKDJσK = DJMσK, DJHKDJσK = DJHσK.

Proof. By induction on the structures of V , M, and H.

Theorem 6.5. If ∆;Γ ⊢M : C then DJ∆K;DJΓK ⊢DJMK : DJCK.

Proof. By induction on the typing derivations.

As with the implementation of deep handlers as shallow handlers, the implementa-

tion is again given by a typeability-preserving local translation. However, this time the

administrative overhead is more significant. Reduction up to congruence is insufficient

and we require a more semantic notion of administrative reduction.

Definition 6.6 (Administrative evaluation contexts). An evaluation context E ∈ Cont

is administrative, admin(E), when the following two criteria hold.

1. For all values V ∈ Val, we have: E [return V]⇝∗ return V

2. For all evaluation contexts E ′ ∈ Cont, operations ℓ ∈ BL(E)\BL(E ′), and values

V ∈ Val:

E [E ′[do ℓ V]]⇝∗cong let x← do ℓ V in E [E ′[return x]].

The intuition is that an administrative evaluation context behaves like the empty

evaluation context up to some amount of administrative reduction, which can only

proceed once the term in the context becomes sufficiently evaluated. Values annihilate

the evaluation context and handled operations are forwarded.

Definition 6.7 (Approximation up to administrative reduction). Define ≳ as the com-

patible closure of the following inference rules.

M ≳M

M⇝M′ M′ ≳ N

M ≳ N

admin(E) M ≳ N

E [M]≳ N

We say that M approximates N up to administrative reduction if M ≳ N.

Approximation up to administrative reduction captures the property that adminis-

trative reduction may occur anywhere within a term. The following lemma states that

the forwarding component of the translation is administrative.

168 Chapter 6. Interdefinability of effect handlers

Lemma 6.8. For all shallow handlers H, the following context is administrative

let z← handle [] with DJHK in let ⟨f ;_⟩= z in f ⟨⟩.

Proof. We have to check both conditions of Definition 6.6.

1. Follows by direct calculation.

2. Follows by direct calculation using the assumption that ℓ /∈ BL(E ′).

let z← handle E ′[do ℓ V] with DJHK in let ⟨f ;_⟩= z in f ⟨⟩
⇝ (S-Op using assumption ℓ /∈ BL(E ′))

let z← let r← λx.let z← (λx.handle E ′[return x] with DJHK) x

in let ⟨f ;g⟩= z in f ⟨⟩
in return ⟨λ⟨⟩.let x← do ℓ V in r x;λ⟨⟩.DJNK⟩

in ⟨f ;_⟩= z in f ⟨⟩
⇝+ (S-Let, S-Split, S-App)

(let x← do ℓ V in r x)[(λx.let z← (λx.handle E ′[return x] with DJHK)x

in let ⟨f ;g⟩= z in f ⟨⟩)/r]

⇝cong (S-App tail position reduction)

let x← do ℓ V in let z← (λx.handle E ′[return x] with DJHK)x in
let ⟨f ;g⟩= z in f ⟨⟩

⇝cong (S-App reduction under binder)

let x← do ℓ V in let z← handle E ′[return x] with DJHK in
let ⟨f ;g⟩= z in f ⟨⟩

Theorem 6.9 (Simulation up to administrative reduction). If M′ ≳DJMK and M⇝ N

then there exists N′ such that N′ ≳DJNK and M′⇝+ N′.

Proof. By induction on M′ ≳ DJMK and case analysis on M⇝ N using Lemma 6.4

and Lemma 6.8. The interesting case is reflexivity of ≳ where M⇝ N is an application

of S-Op†, which we will show.

In the reflexivity case we have M′ ≳DJMK, where M = handle† E [do ℓ V] with H

and N = Nℓ[V/p,λy.E [return y]/r] such that M ⇝ N where ℓ /∈ BL(E) and Hℓ =

{⟨⟨ℓ p↠ r⟩⟩ 7→Nℓ}. Hence by reflexivity of≳we have M′=DJhandle† E [do ℓ V]with HK.

6.2. Shallow as deep 169

Now we can compute N′ by direct calculation starting from M′ yielding

DJhandle† E [do ℓ V] with HK

= (definition of DJ−K)

let z← handle DJEK[do ℓ DJVK] with DJHK in
let ⟨f ;g⟩= z in g⟨⟩

⇝+ (S-Op using assumption ℓ /∈ BL(DJEK), S-Let, S-Let)

let ⟨f ;g⟩= ⟨λ⟨⟩.let x← do ℓ DJVK in r x;

λ⟨⟩.DJNℓK⟩[λx.let z← (λy.handle DJEK[return y] with DJHK) x in
let ⟨f ;g⟩= z in f ⟨⟩/r,DJVK/p] in g⟨⟩

⇝+ (S-Split, S-App)

DJNℓK[λx.let z← (λy.handle DJEK[return y] with DJHK) x in
let ⟨f ;g⟩= z in f ⟨⟩/r,DJVK/p]

= (by Lemma 6.4)

DJNℓ[λx.let z← (λy.handle E [return y] with H) x in
let ⟨f ;g⟩= z in f ⟨⟩/r,V/p]K

Take the final term to be N′. If the resumption r /∈ FV(Nℓ) then the two terms N′ and

DJNℓ[V/p,λy.E [return y]/r]K are the identical, and thus the result follows immediate

by reflexivity of the ≳-relation. Otherwise the proof reduces to showing that the larger

resumption term simulates the smaller resumption term, i.e (note we lift the ≳-relation

to value terms).

(λx.let z← (λy.handle DJEK[return y] with DJHK) x in
let ⟨f ;g⟩= z in f ⟨⟩)≳ (λy.DJEK[return y]).

We use the congruence rules to apply a single S-App on the left hand side to obtain

(λx.let z← handle DJEK[return x] with DJHK in
let ⟨f ;g⟩= z in f ⟨⟩)≳ (λy.DJEK[return y]).

Now the trick is to define the following context

E ′ def
= let z← handle [] with DJHK in let ⟨f ;g⟩= z in f ⟨⟩.

The context E ′ is an administrative evaluation context by Lemma 6.8. Now it follows

by Defintion 6.7 that (λx.E ′[DJEK[return x]])≳ (λy.DJEK[return y]).

170 Chapter 6. Interdefinability of effect handlers

6.3 Parameterised handlers as ordinary deep handlers

As mentioned in Section 3.4, parameterised handlers codify the parameter-passing

idiom. They may be seen as an optimised form of parameter-passing deep handlers.

We now show formally that parameterised handlers are special instances of ordinary

deep handlers. We define a local transformation P J−K which translates parameterised

handlers into ordinary deep handlers. Formally, the translation is defined on terms,

types, environments, and substitutions. We omit the homomorphic cases and show only

the interesting cases.

P J−K : HType→ HType

P J⟨C;A⟩ ⇒‡ B!EK def
= P JCK⇒ (P JAK→ P JB!EK)!P JEK

P J−K : Comp→ Comp

P Jhandle‡ M with (q.H)(W)K def
= (handle P JMK with P JHKq) P JWK

P J−K : HDef×Val→ HDef

P J{return x 7→M}Kq
def
= {return x 7→ λq.P JMK}

P J{⟨⟨ℓ p↠ r⟩⟩ 7→M}Kq
def
= {⟨⟨ℓ p↠ r⟩⟩ 7→ λq.let r← return λ⟨x;q′⟩.r x q′ in P JMK}

The parameterised handle‡ construct becomes an application of a handle construct to

the translation of the parameter. The translation of return and operation clauses are

parameterised by the name of the handler parameter as each clause body is enclosed

in a λ-abstraction whose formal parameter is the handler parameter q. As a result the

ordinary deep resumption r is a curried function. However, the uses of r in M expects a

binary function. To repair this discrepancy, we construct an uncurried interface of r by

embedding it under a binary λ-abstraction.

To illustrate the translation in action consider the following example program that

adds the results obtained by performing two invocations of some stateful operation

Incr : 1↠ Int, which increments some global counter and returns its prior value.

P

u

ww
v

handle‡ do Incr⟨⟩+do Incr⟨⟩ with(
q.

return x 7→ return ⟨x;q⟩
⟨⟨Incr ⟨⟩↠ r⟩⟩ 7→ r ⟨q;q+1⟩

)
40

}

��
~

=


handle do Incr⟨⟩+do Incr⟨⟩ with

return x 7→ λq.return ⟨x;q⟩
⟨⟨Incr ⟨⟩↠ r⟩⟩ 7→ λq.let r← return λ⟨x;q⟩.r x q in r ⟨q;q+1⟩

 40

Evaluation of the program on either side of the equals sign yields ⟨81;42⟩ : Int. The trans-

lation desugars the parameterised handler into an ordinary deep handler that makes use

6.3. Parameterised handlers as ordinary deep handlers 171

of the parameter-passing idiom to maintain the state of the handled computation [232].

The translation commutes with substitution and preserves typeability.

Lemma 6.10. Let σ denote a substitution. The translation P J−K commutes with sub-

stitution, i.e.

P JVKP JσK = P JVσK, P JMKP JσK = P JMσK, P J(q.H)KP JσK = P J(q.H)σK.

Proof. By induction on the structures of V , M, and q.H.

Theorem 6.11. If ∆;Γ ⊢M : C then P J∆K;DJΓK ⊢ P JMK : P JCK.

Proof. By induction on the typing derivations.

This translation of parameterised handlers simulates the native semantics. As with

the simulation of deep handlers via shallow handlers in Section 6.1, this simulation is

not quite on the nose as the image simulates the source only up to congruence due to

the need for an application of a pure function to a variable to be reduced.

Theorem 6.12 (Simulation up to congruence). If M⇝ N then P JMK⇝+
cong P JNK.

Proof. By case analysis on the relation ⇝ using Lemma 6.10. The interesting case

is S-Op‡, which is where we need to reduce under the λ-abstraction representing the

172 Chapter 6. Interdefinability of effect handlers

parameterised resumption.

P Jhandle‡ E [do ℓ V] with (q. H)(W)K

= (definition of P J−K)

(handle P JEK[do ℓ P JVK] with P JHKq) P JWK

⇝ (S-Op with Hℓ = {⟨⟨ℓ p↠ r⟩⟩ 7→ N})
((λq.let r← λ⟨x;q′⟩.r x q in

P JNK)[P JVK/p,λx.handle P JEK[return x] with P JHKq/r]) P JWK

= (definition of [−])
(λq.let r← λ⟨x,q′⟩.(λx.handle P JEK[return x] with P JHKq) x q′ in

P JNK[P JVK/p])P JWK

⇝ (S-App)

let r← λ⟨x;q′⟩.(λx.handle P JEK[return x] with P JHKq) x q′ in
P JNK[P JVK/p,P JWK/q]

⇝cong (S-App under λ⟨x;q′⟩. · · ·)
let r← λ⟨x;q′⟩.(handle P JEK[return x] with P JHKq) q′ in
P JNK[P JVK/p,P JWK/q]

⇝ (S-Let)

P JNK[P JVK/p,P JWK/q,

λ⟨x,q′⟩.(handle P JEK[return x] with P JHKq) q′/r]

= (definition of P J−K and Lemma 6.10)

P JN[V/p,W/q,λ⟨x,q′⟩.handle‡ E [return x] with (q. H)(q′)/r]K

6.4 Related work

Precisely how effect handlers fit into the landscape of programming language features

is largely unexplored in the literature. The most relevant related work in this area

is due to my collaborators and myself on the inherited efficiency of effect handlers

(c.f. Chapter 7) and Forster et al. [98], who investigate various relationships between

effect handlers, delimited control in the form of shift/reset, and monadic reflection

using the notions of typeability-preserving macro-expressiveness and untyped macro-

expressiveness [98, 99]. They show that in an untyped setting all three are interdefinable,

whereas in a simply typed setting effect handlers cannot macro-express either. Piróg

et al. [217] build upon the work of Forster et al. as they show that with sufficient

polymorphism effect handlers and delimited control can simulate one another.

6.4. Related work 173

The work of Shan [247, 248] is related in spirit to the work presented in this chapter.

Shan shows that static and dynamic notions of delimited control are interdefinable in

an untyped setting. The work in this chapter has a similar flavour to Shan’s work as

we can view deep handlers as a kind of static control facility and shallow handlers as

a kind of dynamic control facility. In order to simulate dynamic control using static

control, Shan’s translation makes use of recursive delimited continuations to construct

the dynamic context surrounding and including the invocation context. A recursive con-

tinuation allows the captured context and continuation invocation context to coincide.

Chapter 7

Asymptotic speedup with effect
handlers

When extending some programming language L ⊂ L ′ with some new feature it is desir-

able to know exactly how the new feature impacts the language. At a bare minimum it is

useful to know whether the extended language L ′ is unsound as a result of inhabiting the

new feature (although, some languages are designed deliberately to be unsound [21]).

More fundamentally, it may be useful for theoreticians and practitioners alike to know

whether the extended language is more expressive than the base language as it may

inform programming practice. Specifically, it may be of interest to know whether the

extended language L ′ exhibits any essential expressivity when compared to the base

language L . Questions about essential expressivity fall under three different headings.

Programmability Are there programmable operations that can be done more easily in

L ′ than in L?

Computability Are there operations of a given type that are programmable in L ′ but

not expressible at all in L?

Complexity Are there operations programmable in L ′ with some asymptotic runtime

bound (e.g. ‘O(n2)’) that cannot be achieved in L?

The purpose of this chapter is to give a clear example of an essential complexity dif-

ference. Specifically, we will show that if we take a typical PCF-like base language, λ→b ,

and extend it with effect handlers, λ→h , then there exists a class of programs that have

asymptotically more efficient realisations in λ→h than possible in λ→b , hence establishing

that effect handlers enable an asymptotic speedup for some programs.

175

176 Chapter 7. Asymptotic speedup with effect handlers

To this end, we consider the following generic count problem, parametric in n: given

a boolean-valued predicate P on the space Bn of boolean vectors of length n, return the

number of such vectors q for which Pq = true. We shall consider boolean vectors of

any length to be represented by the type Nat→ Bool; thus for each n, we are asking for

an implementation of a certain third-order function.

countn : ((Nat→ Bool)→ Bool)→ Nat

A naïve implementation strategy is simply to apply P to each of the 2n vectors in turn.

However, one can do better with a curious approach due to Berger [19], which achieves

the effect of ‘pruned search’ where the predicate allows it. This should be taken as a

warning that counter-intuitive phenomena can arise in this territory. Nonetheless, under

the mild condition that P must inspect all n components of the given vector before

returning, both these approaches will have a Ω(n2n) runtime. Moreover, we shall show

that in λ→b , a typical call-by-value language without advanced control features, one can-

not improve on this: any implementation of countn must necessarily take time Ω(n2n)

on any predicate P. Conversely, in the extended language λ→h it becomes possible to

bring the runtime down to O(2n): an asymptotic gain of a factor of n.

The key to enabling the speedup is backtracking via multi-shot resumptions. The

idea is to memorise the control state at each component inspection to make it possible

to quickly backtrack to a prior inspection and make a different decision as soon as

one possible result has been computed. Concretely, suppose for example n = 3, and

suppose that the predicate P always inspects the components of its argument in the order

0,1,2. A naïve implementation of count3 might start by applying the given predicate

P to q0 = (true, true, true), and then to q1 = (true, true, false). Note that there is some

duplication here: the computations of Pq0 and Pq1 will proceed identically up to the

point where the value of the final component is requested. Ideally, we would record

the state of the computation of Pq0 at just this point, so that we can later resume this

computation with false supplied as the final component value in order to obtain the

value of Pq1. Of course, a bespoke search function implementation would apply this

backtracking behaviour in a standard manner for some particular choice of P (e.g. the

n-queens problem); but to apply this idea of resuming previous subcomputations in the

generic setting (i.e. uniformly in P) requires some special control feature such as effect

handlers with multi-shot resumptions. Obviously, one can remove the need a special

control feature by a change of type for the predicate P, but this such a change shifts the

perspective. The intention is precisely to show that the languages differ in an essential

177

way as regards to their power to manipulate data of type (Nat→ Bool)→ Bool.

The idea of using first-class control achieve backtracking is fairly well-known in

the literature [152], and there is a clear programming intuition that this yields a speedup

unattainable in languages without such control features.

Chapter outline

Section 7.1 introduces the core calculi λ→b ⊂ λ→h , which are essentially simply-typed

variations of λb and λh, respectively.

Section 7.2 develops an abstract machine for each core calculus. Both machines are

simpler variations of the machine developed in Chapter 5.

Section 7.3 presents the gadgetry required to set up and proof the results for the generic

count problem. It also shows that there exists an efficient implementation of

generic count in λ→h .

Section 7.4 establishes the lower bound runtime result for implementations of generic

count in λ→b .

Section 7.5 discusses extensions and variations of the phenomenon.

Section 7.6 investigates an empirical evaluation of the phenomenon.

Section 7.7 discusses related work.

Relation to prior work This chapter is based entirely on the following previously

published paper.

Daniel Hillerström, Sam Lindley, and John Longley. Effects for efficiency: Asymp-

totic speedup with first-class control. Proc. ACM Program. Lang., 4(ICFP):

100:1–100:29, 2020

The contents of Sections 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6 are almost verbatim copies of

Sections 3, 4, 5, 6, 7, and 8 of the above paper. I have made a few stylistic adjustments

to make the Sections fit with the rest of this dissertation.

178 Chapter 7. Asymptotic speedup with effect handlers

Types A,B,C,D ∈ Type ::= Nat | 1 | A→ B | A×B | A+B

Type environments Γ ∈ TyEnv ::= · | Γ,x : A

Values V,W ∈ Val ::= x | k | c | λxA.M | rec f A→B x.M

| ⟨⟩ | ⟨V,W⟩ | (inlV)B | (inrW)A

Computations M,N ∈ Comp ::= V W | let ⟨x,y⟩= V in N

| case V {inl x 7→M; inr y 7→ N}
| return V | let x←M in N

Figure 7.1: Syntax of λ→b .

7.1 Simply-typed base and handler calculi

In this section, we present a base language λ→b and its extension with effect handlers

λ→h , both of which amounts to simply-typed variations of λb and λh, respectively. Sec-

tions 7.1.1–7.2.2 essentially recast the developments of Chapters 3 and 5 to fit the

calculi λ→b and λ→h . I will quickly glance over the details here, only highlighting the key

differences as I am making use of a crucial design decision in Section 7.1.2 to make

continuation reification a constant time operation.

7.1.1 Base calculus

The base calculus λ→b is a fine-grain call-by-value [170] variation of PCF [219]. In

essence it is a simply-typed variation of λb. Figure 7.1 depicts the type syntax, type

environment syntax, and term syntax of λ→b . The main difference in the type language

between λb and λ→b is that the latter does not feature polymorphism nor an effect track-

ing system. At the term level, λ→b does not feature polymorphic records and variants, but

rather plain pairs and sums. For sums the left injection is introduced by (inl V)B, where

the type annotation B is the type of the right injection. Similarly, the right injection is

introduced by (inl W)A, where A is the type of the left injection. The case-construct

eliminates sums. The last crucial difference between λb and λ→b is that the latter in-

cludes natural numbers and primitive operations on natural numbers (+,−,=). We let

k range over natural numbers and c range over primitive operations on natural numbers

(+,−,=). As usual we let x,y,z range over term variables. For convenience, we also

use f , g, and h for variables of function type, i and j for variables of type Nat, and r to

denote resumptions.

7.1. Simply-typed base and handler calculi 179

Values

T-Var

x : A ∈ Γ

Γ ⊢ x : A

T-Unit

Γ ⊢ ⟨⟩ : 1

T-Nat

k ∈ N

Γ ⊢ k : Nat

T-Const

c : A→ B

Γ ⊢ c : A→ B

T-Lam

Γ,x : A ⊢M : B

Γ ⊢ λxA.M : A→ B

T-Rec

Γ, f : A→ B,x : A ⊢M : B

Γ ⊢ rec f A→B x.M : A→ B

T-Prod

Γ ⊢ V : A Γ ⊢W : B

Γ ⊢ ⟨V,W⟩ : A×B

T-Inl

Γ ⊢ V : A

Γ ⊢ (inlV)B : A+B

T-Inr

Γ ⊢W : B

Γ ⊢ (inrW)A : A+B

Computations

T-App

Γ ⊢ V : A→ B Γ ⊢W : A

Γ ⊢ V W : B

T-Split

Γ ⊢ V : A×B Γ,x : A,y : B ⊢ N : C

Γ ⊢ let ⟨x,y⟩= V in N : C

T-Case

Γ ⊢ V : A+B Γ,x : A ⊢M : C Γ,y : B ⊢ N : C

Γ ⊢ case V {inl x 7→M; inr y 7→ N} : C

T-Return

Γ ⊢ V : A

Γ ⊢ return V : A

T-Let

Γ ⊢M : A Γ,x : A ⊢ N : C

Γ ⊢ let x←M in N : C

Figure 7.2: Typing rules for λ→b .

180 Chapter 7. Asymptotic speedup with effect handlers

S-App (λxA.M)V ⇝ M[V/x]

S-AppRec (rec f A x.M)V ⇝ M[(rec f A x.M)/f ,V/x]

S-Const c V ⇝ return (⌜c⌝(V))

S-Split let ⟨x,y⟩= ⟨V,W⟩ in N ⇝ N[V/x,W/y]

S-Case-inl case (inlV)B {inl x 7→M; inr y 7→ N} ⇝ M[V/x]

S-Case-inr case (inrV)A {inl x 7→M; inr y 7→ N} ⇝ N[V/y]

S-Let let x← return V in N ⇝ N[V/x]

S-Lift E [M] ⇝ E [N], if M⇝ N

Evaluation contexts E ∈ Cont ::= [] | let x← E in N

Figure 7.3: Contextual small-step operational semantics.

The typing rules are given in Figure 7.2. These are similar to the ones given in

Figure 3.4 modulo the polymorphism. The constants have the following types.

{(+),(−)} : Nat×Nat→ Nat (=) : Nat×Nat→ 1+1

We give a small-step operational semantics for λ→b with evaluation contexts in the style

of Felleisen [79]. The reduction rules are given in Figure 7.3. We write M[V/x] for M

with V substituted for x and ⌜c⌝ for the usual interpretation of constant c as a meta-level

function on closed values. The reduction relation⇝ is defined on computation terms.

The statement M⇝ N reads: term M reduces to term N in one step.

Notation We use the same notation as introduced in Section 3.1.3. Although, we

adapt the encoding of booleans to use regular sums.

Bool
def
= 1+1 true

def
= inl ⟨⟩ false

def
= inr ⟨⟩

if V then M else N def
= case V {inl ⟨⟩ 7→M; inr ⟨⟩ 7→ N}

7.1. Simply-typed base and handler calculi 181

7.1.2 Handler calculus

We now define λ→h as an extension of λ→b .

Operation symbols ℓ ∈ L
Signatures Σ ∈ Sig ::= · | {ℓ : A→ B}∪Σ

Handler types F ∈ HType ::= C⇒ D

Computations M,N ∈ Comp ::= · · · | do ℓ V | handle M with H

Handlers H ::= {return x 7→M} | {⟨⟨ℓ p↠ r⟩⟩ 7→ N}⊎H

Again, λ→h is essentially a simply-typed variation of λh. There are a couple of key

differences. The first key difference is that in the absence of an effect system λ→h uses a

nominal notion of effects. Following Pretnar [232], we assume a global effect signature

Σ for every program. An effect signature Σ is a map from operation symbols to their

types, thus we assume that each operation symbol in a signature is distinct.We write

dom(Σ)⊆ L for the set of operation symbols in a signature Σ. The second and last key

difference is that we adopt Plotkin and Pretnar’s convention that a handler with missing

operation clauses (with respect to Σ) is syntactic sugar for one in which all missing

clauses perform explicit forwarding [228], i.e.

{⟨⟨ℓ p↠ r⟩⟩ 7→ let x← do ℓp in r x}.

This convention makes effect forwarding explicit, whereas in λh effect forwarding was

implicit. As we shall see soon, an important semantic consequence of making effect

forwarding explicit is that the abstract machine model in Section 7.2.2 has no rule

for effect forwarding as it instead happens as a sequence of explicit do invocations in

the term language. As a result, we become able to reason about continuation reifica-

tion as a constant time operation, because a do invocation will just reify the top-most

continuation frame.

The typing rules for handlers and operation invocation are similar to those of λh

given in Section 3.2. The main difference is that the type of operations are retrieved

from the global effect signature Σ rather than the current effect context. The typing

rules are given in Figure 7.4.

The reduction rules for handlers are similar to those of λh.

S-Ret handle (return V) with H ⇝ N[V/x], where Hret = {return x 7→ N}

S-Op handle E [do ℓV] with H ⇝ N[V/p,(λy.handle E [return y] with H)/r],

where Hℓ = {⟨⟨ℓ p↠ r⟩⟩ 7→ N}

182 Chapter 7. Asymptotic speedup with effect handlers

Computations

T-Do

(ℓ : A→ B) ∈ Σ Γ ⊢ V : A

Γ ⊢ do ℓ V : B

T-Handle

Γ ⊢M : C Γ ⊢ H : C⇒ D

Γ ⊢ handle M with H : D

Handlers

T-Handler

Hret = {return x 7→M} [Hℓ = {⟨⟨ℓ p↠ r⟩⟩ 7→ Nℓ}]ℓ∈dom(Σ)

Γ,x : C ⊢M : D [Γ,p : Aℓ,r : Bℓ→ D ⊢ Nℓ : D](ℓ:Aℓ→Bℓ)∈Σ

Γ ⊢ H : C⇒ D

Figure 7.4: Additional typing rules for λ→h .

However, the attentive reader may notice that the S-Op is missing the side condition

regarding ℓ not appearing in the bound labels of E . The notion of bound labels is

of no use to us here due the convention that every handler handles every operation.

Instead, we use a different notion of evaluation context. Although, some care must be

taken to ensure the language semantics remains deterministic. As if we were naïvely to

extend evaluation contexts with the handle construct then our semantics would become

nondeterministic, as it may pick an arbitrary handler in scope. In order to ensure that

the semantics is deterministic, we add a distinct form of evaluation context for effectful

computation, which we call handler contexts.

Handler contexts H ∈ HCtx ::= [] | handle H with H | let x←H in N

We replace the S-Lift rule with a corresponding rule for handler contexts.

H [M] ⇝ H [N], if M⇝ N

The separation between pure evaluation contexts E and handler contexts H ensures

that the S-Op rule always selects the innermost handler.

The computation normal forms and type soundness property of λh carry over with

modest changes. A computation term is now normal with respect to the global signature

Σ rather than the current effect context.

Definition 7.1 (Computation normal forms). A computation term N is normal with

respect to Σ, if N = return V for some V or N = E [do ℓW] for some ℓ ∈ dom(Σ), E ,

and W.

7.2. A practical model of computation 183

Theorem 7.2 (Type soundness). If ⊢M : C, then either there exists ⊢ N : C such that

M⇝∗ N and N is normal with respect to Σ, or M diverges.

7.1.3 The role of types

Readers familiar with backtracking search algorithms may wonder where types come

into the expressiveness picture. Types will not play a direct role in our proofs but

rather in the characterisation of which programs can be meaningfully compared. In

particular, types are used to rule out global approaches such as continuation passing

style (CPS): without types one could obtain an efficient pure generic count program by

CPS transforming the entire program.

Readers familiar with effect handlers may wonder why our handler calculus does

not include an effect type system. As types frame the comparison of programs between

languages, we require that types be fixed across languages; hence λ→h does not include

effect types. Future work includes reconciling effect typing with our approach to ex-

pressiveness.

7.2 A practical model of computation

The calculi λ→b and λ→h use a substitution model for evaluation. Whilst this model is

semantically pleasing, it falls short of providing a realistic account of practical compu-

tation as substitution is an expensive operation. Instead we shall use a slightly simpler

variation of the abstract machine from Chapter 5 as it provides a more practical model

of computation (it is simpler, because the source language is simpler).

7.2.1 Base machine

The base machine is similar to the abstract machine from Chapter 5. The main dif-

ferences are that the base machine does not feature support for effect handlers, and

therefore it has a considerably simpler continuation structure, and it interprets the base

language λ→b rather than λb.

Formally, the base machine operates on configurations of the form ⟨M | γ | σ⟩.
The first component contains the computation currently being evaluated. The second

component contains the environment γ which binds free variables. The third component

contains the continuation which instructs the machine how to proceed once evaluation

184 Chapter 7. Asymptotic speedup with effect handlers

of the current computation is complete. The syntax of abstract machine states is as

follows.

Configurations C ∈ Conf ::= ⟨M | γ | σ⟩
Environments γ ∈ Env ::= /0 | γ[x 7→ v]

Machine values v,w ∈Mval ::= x | n | c | ⟨⟩ | ⟨v,w⟩
| (γ,λxA.M) | (γ,rec f A→B x.M)

| (inlv)B | (inrw)A

Pure continuations σ ∈ PureCont ::= [] | (γ,x,N) :: σ

Values consist of function closures, constants, pairs, and left or right tagged values.

We refer to continuations of the base machine as pure. A pure continuation is a stack

of pure continuation frames. A pure continuation frame (γ,x,N) closes a let-binding

let x← [] in N over environment γ. We write [] for an empty pure continuation and φ :: σ

for the result of pushing the frame φ onto σ. We use pattern matching to deconstruct

pure continuations.

The abstract machine semantics is given in Figure 7.5. The transition relation (−→)

makes use of the value interpretation (J−K) from value terms to machine values. The

machine is initialised by placing a term in a configuration alongside the empty environ-

ment (/0) and identity pure continuation ([]). The rules (M-App), (M-AppRec), (M-Const),

(M-Split), (M-CaseL), and (M-CaseR) eliminate values. The (M-Let) rule extends the

current pure continuation with let bindings. The (M-PureCont) rule pops the top frame

of the pure continuation and extends the environment with the returned value. Given

an input of a well-typed closed computation term ⊢M : A, the machine will either di-

verge or return a value of type A. A final state is given by a configuration of the form

⟨return V | γ | []⟩ in which case the final return value is given by the denotation JVKγ

of V under environment γ.

Correctness The base machine faithfully simulates the operational semantics for λ→b ;

most transitions correspond directly to β-reductions, but M-Let performs an administrat-

ive step to bring the computation M into evaluation position. The proof of correctness

is similar to the proof of Theorem 5.4 and the required proof gadgetry is the same. The

full details are published in Appendix A of Hillerström et al. [124].

7.2. A practical model of computation 185

Transition relation −→⊆Conf×Conf

M-App ⟨V W | γ | σ⟩ −→ ⟨M | γ′[x 7→ JWKγ] | σ⟩,
if JVKγ = (γ′,λxA.M)

M-AppRec ⟨V W | γ | σ⟩ −→ ⟨M | γ′[f 7→ (γ′,rec f A→B x.M),

x 7→ JWKγ] | σ⟩,
if JVKγ = (γ′,rec f A→B x.M)

M-Const ⟨V W | γ | σ⟩ −→ ⟨return (⌜c⌝(JWKγ)) | γ | σ⟩,
if JVKγ = c

M-Split ⟨let ⟨x,y⟩= V in N | γ | σ⟩ −→ ⟨N | γ[x 7→ v,y 7→ w] | σ⟩,
if JVKγ = ⟨v;w⟩

M-CaseL
⟨case V {inlx 7→M;

inry 7→ N} | γ | σ⟩
−→ ⟨M | γ[x 7→ v] | σ⟩,

if JVKγ = inlv

M-CaseR
⟨case V {inlx 7→M;

inry 7→ N} | γ | σ⟩
−→ ⟨N | γ[y 7→ v] | σ⟩,

if JVKγ = inrv

M-Let ⟨let x←M in N | γ | σ⟩ −→ ⟨M | γ | (γ,x,N) :: σ⟩
M-PureCont ⟨return V | γ | (γ′,x,N) :: σ⟩ −→ ⟨N | γ′[x 7→ JVKγ] | σ⟩

Value interpretation J−K : Val×Env→Mval

JxKγ
def
= γ(x)

J⟨⟩Kγ
def
= ⟨⟩

JnKγ
def
= n

JcKγ
def
= c

JλxA.MKγ
def
= (γ,λxA.M)

Jrec f A→B x.MKγ
def
= (γ,rec f A→B x.M)

J⟨V,W⟩Kγ
def
= ⟨JVKγ,JWKγ⟩

J(inlV)BKγ
def
= (inl JVKγ)B

J(inrV)AKγ
def
= (inr JVKγ)A

Figure 7.5: Abstract machine semantics for λ→b .

186 Chapter 7. Asymptotic speedup with effect handlers

7.2.2 Handler machine

The abstract machine for λ→h closely follows the machine definition in Chapter 5,

though, this machine supports only deep handlers. The syntax is extended as follows.

Configurations C ∈ Conf ::= ⟨M | γ | κ⟩
Resumptions ρ ∈ Res ::= (σ,χ)

Continuations κ ∈ GenCont ::= [] | ρ :: κ

Handler closures χ ∈ GenFrame ::= (γ,H)

Machine values v,w ∈Mval ::= · · · | ρ

The notion of configurations changes slightly as the continuation component is re-

placed by a generalised continuation κ ∈ GenCont, in the same way as described in

Chapter 5.The identity continuation is a singleton list containing the identity resump-

tion, which is an empty pure continuation paired with the identity handler closure:

κ0
def
= [([],(/0,{return x 7→ x}))]

Besides the structure of the continuation component, the primary difference between

the base machine and this machine is that the machine values are augmented to include

resumptions as an operation invocation causes the topmost frame of the machine con-

tinuation to be reified (and bound to the resumption parameter in the operation clause).

In addition, the handler machine adds transition rules for handlers, and modifies (M-Let)

and (M-PureCont) from the base machine to account for the richer continuation struc-

ture. Figure 7.6 depicts the new and modified rules. The (M-Handle) rule pushes a

handler closure along with an empty pure continuation onto the continuation stack.

The (M-GenCont) rule transfers control to the success clause of the current handler

once the pure continuation is empty. The (M-Op) rule transfers control to the matching

operation clause on the topmost handler, and during the process it reifies the handler

closure. Finally, the (M-Resume) rule applies a reified handler closure, by pushing it

onto the continuation stack. The handler machine has two possible final states: either it

yields a value or it gets stuck on an unhandled operation.

Correctness The handler machine faithfully simulates the operational semantics of

λ→h . The proof of correctness is almost a carbon copy of the proof of Theorem 5.4. The

full details are published in Appendix B of Hillerström et al. [124].

7.2. A practical model of computation 187

Transition relation

M-Resume ⟨V W | γ | κ⟩ −→ ⟨return W | γ | (σ,χ) :: κ⟩,
if JVKγ = (σ,χ)

M-Let ⟨let x←M in N | γ | (σ,χ) :: κ⟩ −→ ⟨M | γ | ((γ,x,N) :: σ,χ) :: κ⟩
M-PureCont ⟨return V | γ | ((γ′,x,N) :: σ,χ) :: κ⟩ −→ ⟨N | γ′[x 7→ JVKγ] | (σ,χ) :: κ⟩
M-Handle ⟨handle M with H | γ | κ⟩ −→ ⟨M | γ | ([],(γ,H)) :: κ⟩
M-GenCont ⟨return V | γ | ([],(γ′,H)) :: κ⟩ −→ ⟨M | γ′[x 7→ JVKγ] | κ⟩,

if Hret = {return x 7→M}
M-Op ⟨do ℓ V | γ | (σ,(γ′,H)) :: κ⟩ −→ ⟨M | γ′[p 7→ JVKγ,

r 7→ (σ,(γ′,H))] | κ⟩,
if ℓ : A→ B ∈ Σ

and Hℓ = {⟨⟨ℓ p↠ r⟩⟩ 7→M}

Figure 7.6: Abstract machine semantics for λ→h .

7.2.3 Realisability and asymptotic complexity

As discussed in Section 5.3 the machine is readily realisable using standard persistent

functional data structures. Pure continuations on the base machine and generalised

continuations on the handler machine can be implemented using linked lists with a time

complexity of O(1) for the extension operation (_ :: _). The topmost pure continuation

on the handler machine may also be extended in time O(1), as extending it only requires

reaching under the topmost handler closure. Environments, γ, can be realised using a

map, with a time complexity of O(log |γ|) for extension and lookup [210].

The worst-case time complexity of a single machine transition is exhibited by rules

which involve operations on the environment, since any other operation is constant time,

hence the worst-time complexity of a transition is O(log |γ|). The value interpretation

function J−Kγ is defined structurally on values. Its worst-time complexity is exhibited

by a nesting of pairs of variables J⟨x1, . . . ,xn⟩Kγ which has complexity O(n log |γ|).

Continuation copying On the handler machine the topmost continuation frame can

be copied in constant time due to the persistent runtime and the layout of machine

continuations. An alternative design would be to make the runtime non-persistent in

which case copying a continuation frame ((σ,_) :: _) would be a O(|σ|) time operation.

188 Chapter 7. Asymptotic speedup with effect handlers

Primitive operations on naturals Our model assumes that arithmetic operations

on arbitrary natural numbers take O(1) time. This is common practice in the study

of algorithms when the main interest lies elsewhere [54, Section 2.2]. If desired, one

could adopt a more refined cost model that accounted for the bit-level complexity of

arithmetic operations; however, doing so would have the same impact on both of the

situations we are wishing to compare, and thus would add nothing but noise to the

overall analysis.

7.3 Predicates, decision trees, and generic count

We now come to the crux of the chapter. In this section and the next, we prove that λ→h

supports implementations of certain operations with an asymptotic runtime bound that

cannot be achieved in λ→b (Section 7.4). While the positive half of this claim essentially

consolidates a known piece of folklore, the negative half appears to be new. To establish

our result, it will suffice to exhibit a single ‘efficient’ program in λ→h , then show that no

equivalent program in λ→b can achieve the same asymptotic efficiency. We take generic

search as our example.

Generic search is a modular search procedure that takes as input a predicate P on

some multi-dimensional search space, and finds all points of the space satisfying P.

Generic search is agnostic to the specific instantiation of P, and as a result is applicable

across a wide spectrum of domains. Classic examples such as Sudoku solving [30], the

n-queens problem [16] and graph colouring can be cast as instances of generic search,

and similar ideas have been explored in connection with Nash equilibria and exact real

integration [55, 249].

For simplicity, we will restrict attention to search spaces of the form Bn, the set of

bit vectors of length n. To exhibit our phenomenon in the simplest possible setting, we

shall actually focus on the generic count problem: given a predicate P on some Bn,

return the number of points of Bn satisfying P. However, we shall explain why our

results are also applicable to generic search proper.

We shall view Bn as the set of functions Nn→B, where Nn
def
= {0, . . . ,n−1}. In both

λ→b and λ→h we may represent such functions by terms of type Nat→ Bool. We will

often informally write Natn in place of Nat to indicate that only the values 0, . . . ,n−1

are relevant, but this convention has no formal status since our setup does not support

dependent types.

7.3. Predicates, decision trees, and generic count 189

To summarise, in both λ→b and λ→h we will be working with the types

Point
def
= Nat→ Bool Pointn

def
= Natn→ Bool

Predicate
def
= Point→ Bool Predicaten

def
= Pointn→ Bool

and will be looking for programs

countn : Predicaten→ Nat

such that for suitable terms P representing semantic predicates Π : Bn→ B, countn P

finds the number of points of Bn satisfying Π.

Before formalising these ideas more closely, let us look at some examples, which

will also illustrate the machinery of decision trees that we will be using.

7.3.1 Examples of points, predicates and trees

Consider first the following terms of type Point:

q0
def
= λ_.true q1

def
= λi.i = 0

q2
def
= λi. if i = 0 then true else if i = 1 then false else⊥

(Here ⊥ is the diverging term (rec f i.f i)⟨⟩.) Then q0 represents ⟨true, . . . , true⟩ ∈ Bn

for any n; q1 represents ⟨true, false, . . . , false⟩ ∈ Bn for any n ≥ 1; and q2 represents

⟨true, false⟩ ∈ B2.

Next some predicates. First, the following terms all represent the constant true

predicate B2→ B:

T0
def
= λq.true T1

def
= λq.(q1;q0; true) T2

def
= λq.(q0;q0; true)

These illustrate that in the course of evaluating a predicate term P at a point q, for each

i < n the value of q at i may be inspected zero, one or many times.

Likewise, the following all represent the ‘identity’ predicate B1→ B (here && is

shortcut ‘and’):

I0
def
= λq.q0 I1

def
= λq. if q0 then true else false I2

def
= λq.(q0)&&(q0)

Slightly more interestingly, for each n we have the following program which de-

termines whether a point contains an odd number of true components:

oddn
def
= λq. fold⊗ false (map q [0, . . . ,n−1])

190 Chapter 7. Asymptotic speedup with effect handlers

!true

(a) T0

?0

?0

!true !false

!false

(b) I2

?0

?1

!false !true

?1

!true !false

(c) odd2

Figure 7.7: Examples of decision trees.

Here fold and map are the standard combinators on lists, and⊗ is exclusive-or. Applying

odd2 to q0 yields false; applying it to q1 or q2 yields true.

We can think of a predicate term P as participating in a ‘dialogue’ with a given

point Q : Pointn. The predicate may query Q at some coordinate k; Q may respond with

true or false and this returned value may influence the future course of the dialogue.

After zero or more such query/response pairs, the predicate may return a final answer

(true or false).

The set of possible dialogues with a given term P may be organised in an obvious

way into an unrooted binary decision tree, in which each internal node is labelled with

a query ?k (with k < n), and with left and right branches corresponding to the responses

true, false respectively. Any point will thus determine a path through the tree, and each

leaf is labelled with an answer !true or !false according to whether the corresponding

point or points satisfy the predicate.

Decision trees for a sample of the above predicate terms are depicted in Figure 7.7;

the relevant formal definitions are given in the next subsection. In the case of I2, one

of the !false leaves will be ‘unreachable’ if we are working in λ→b (but reachable in a

language supporting mutable state).

We think of the edges in the tree as corresponding to portions of computation

undertaken by P between queries, or before delivering the final answer. The tree is

unrooted (i.e. starts with an edge rather than a node) because in the evaluation of PQ

there is potentially some ‘thinking’ done by P even before the first query or answer is

reached. For the purpose of our runtime analysis, we will also consider timed variants

of these decision trees, in which each edge is labelled with the number of computation

7.3. Predicates, decision trees, and generic count 191

steps involved.

It is possible that for a given P the construction of a decision tree may hit trouble,

because at some stage P either goes undefined or gets stuck at an unhandled operation.

It is also possible that the decision tree is infinite because P can keep asking quer-

ies forever. However, we shall be restricting our attention to terms representing total

predicates: those with finite decision trees in which every path leads to a leaf.

In order to present our complexity results in a simple and clear form, we will give

special prominence to certain well-behaved decision trees. For n ∈ N, we shall say a

tree is n-standard if it is total (i.e. every maximal path leads to a leaf labelled with an

answer) and along any path to a leaf, each coordinate k < n is queried once and only

once. Thus, an n-standard decision tree is a complete binary tree of depth n+1, with

2n−1 internal nodes and 2n leaves. However, there is no constraint on the order of the

queries, which indeed may vary from one path to another. One pleasing property of

this notion is that for a predicate term with an n-standard decision tree, the number of

points in Bn satisfying the predicate is precisely the number of !true leaves in the tree.

Of the examples we have given, the tree for T0 is 0-standard; those for I0 and I1 are

1-standard; that for oddn is n-standard; and the rest are not n-standard for any n.

7.3.2 Formal definitions

We now formalise the above notions. We will present our definitions in the setting of λ→h ,

but everything can clearly be relativised to λ→b with no change to the meaning in the case

of λ→b terms. For the purpose of this subsection we fix n ∈ N, set Nn
def
= {0, . . . ,n−1},

and use k to range over Nn. We write B for the set of booleans, which we shall identify

with the (encoded) boolean values of λ→h , and use b to range over B.

As suggested by the foregoing discussion, we will need to work with both syntax

and semantics. For points, the relevant definitions are as follows.

Definition 7.3 (n-points). A closed value Q : Point is said to be a syntactic n-point if:

∀k ∈ Nn.∃b ∈ B. Q k⇝∗ return b

A semantic n-point π is simply a mathematical function π : Nn → B. (We shall also

write π ∈ Bn.) Any syntactic n-point Q is said to denote the semantic n-point JQK given

by:

∀k ∈ Nn, b ∈ B. JQK(k) = b ⇔ Q k⇝∗ return b

Any two syntactic n-points Q and Q′ are said to be distinct if JQK ̸= JQ′K.

192 Chapter 7. Asymptotic speedup with effect handlers

By default, the unqualified term n-point will from now on refer to syntactic n-points.

Likewise, we wish to work with predicates both syntactically and semantically. By

a semantic n-predicate we shall mean simply a mathematical function Π : Bn → B.

One slick way to define syntactic n-predicates would be as closed terms P : Predicate

such that for every n-point Q, PQ evaluates to either return true or return false. For

our purposes, however, we shall favour an approach to n-predicates via decision trees,

which will yield more information on their behaviour.

We will model decision trees as certain partial functions from addresses to labels.

An address will specify the position of a node in the tree via the path that leads to it,

while a label will represent the information present at a node. Formally:

Definition 7.4 (untimed decision tree).

(i) The address set Addr is simply the setB∗ of finite lists of booleans. If bs,bs′ ∈Addr,

we write bs⊑ bs′ (resp. bs⊏ bs′) to mean that bs is a prefix (resp. proper prefix)

of bs′.

(ii) The label set Lab consists of queries parameterised by a natural number and

answers parameterised by a boolean:

Lab
def
= {?k | k ∈ N}∪{!b | b ∈ B}

(iii) An (untimed) decision tree is a partial function τ : Addr ⇀ Lab such that:

• The domain of τ (written dom(τ)) is prefix closed.

• Answer nodes are always leaves: if τ(bs) = !b then τ(bs′) is undefined

whenever bs⊏ bs′.

As our goal is to reason about the time complexity of generic count programs

and their predicates, it is also helpful to decorate decision trees with timing data that

records the number of machine steps taken for each piece of computation performed

by a predicate:

Definition 7.5 (timed decision tree). A timed decision tree is a partial function τ :

Addr ⇀ Lab×N such that its first projection bs 7→ τ(bs).1 is a decision tree. We write

labs(τ) for the first projection (bs 7→ τ(bs).1) and steps(τ) for the second projection

(bs 7→ τ(bs).2) of a timed decision tree.

7.3. Predicates, decision trees, and generic count 193

Here we think of steps(τ)(bs) as the computation time associated with the edge

whose target is the node addressed by bs.

We now come to the method for associating a specific tree with a given term P. One

may think of this as a kind of denotational semantics, but here we shall extract a tree

from a term by purely operational means using our abstract machine model. The key

idea is to try applying P to a distinguished free variable q : Point, which we think of as

an ‘abstract point’. Whenever P wants to interrogate its argument at some index i, the

computation will get stuck at some term qi: this both flags up the presence of a query

node in the decision tree, and allows us to explore the subsequent behaviour under both

possible responses to this query.

The core of our definition is couched in terms of abstract machine configurations.

We write Confq for the set of λh configurations possibly involving q (but no other free

variables). We write a ≃ b for Kleene equality: either both a and b are undefined or

both are defined and a = b.

It is convenient to define the timed tree and then extract the untimed one from it:

Definition 7.6.

(i) Define T : Confq→ Addr ⇀ (Lab×N) to be the minimal family of partial func-

tions satisfying the following equations:

T (⟨return W | γ | []⟩) [] = (!b,0), if JWKγ = b

T (⟨zV | γ | κ⟩) [] = (?JVKγ,0), if γ(z) = q

T (⟨zV | γ | κ⟩)(b :: bs) ≃ T (⟨return b | γ | κ⟩)bs, if γ(z) = q

T (⟨M | γ | κ⟩)bs ≃ inc(T (⟨M′ | γ′ | κ′⟩)bs),

if ⟨M | γ | κ⟩ −→ ⟨M′ | γ′ | κ′⟩

Here inc(ℓ,s) = (ℓ,s + 1), and in all of the above equations γ(q) = γ′(q) = q.

Clearly T (C) is a timed decision tree for any C ∈ Confq.

(ii) The timed decision tree of a computation term is obtained by placing it in the

initial configuration: T (M)
def
= T (⟨M, /0[q 7→ q],κ0⟩).

(iii) The timed decision tree of a closed value P : Predicate is T (Pq). Since q plays

the role of a dummy argument, we will usually omit it and write T (P) for T (Pq).

(iv) The untimed decision tree U(P) is obtained from T (P) via first projection: U(P)=

labs(T (P)).

194 Chapter 7. Asymptotic speedup with effect handlers

If the execution of a configuration C runs forever or gets stuck at an unhandled

operation, then T (C)(bs) will be undefined for all bs. Although this is admitted by our

definition of decision tree, we wish to exclude such behaviours for the terms we accept

as valid predicates. Specifically, we frame the following definition:

Definition 7.7. A decision tree τ is an n-predicate tree if it satisfies the following:

• For every query ?k appearing in τ, we have k ∈ Nn.

• Every query node has both children present:

∀bs ∈ Addr, k ∈ Nn, b ∈ B. τ(bs) = ?k⇒ bs++[b] ∈ dom(τ)

• All paths in τ are finite (so every maximal path terminates in an answer node).

A closed term P : Predicate is a (syntactic) n-predicate if U(P) is an n-predicate tree.

If τ is an n-predicate tree, clearly any semantic n-point π gives rise to a path b0b1 . . .

through τ, given inductively by:

∀j. if τ(b0 . . .bj−1) = ?kj then bj = π(kj)

This path will terminate at some answer node b0b1 . . .br−1 of τ, and we may write

τ•π ∈ B for the answer at this leaf.

Proposition 7.8. If P is an n-predicate and Q is an n-point, then PQ⇝∗ return b

where b = U(P)• JQK.

Proof. By interleaving the computation for the relevant path through U(P) with com-

putations for queries to Q, and appealing to the correspondence between the small-step

reduction and abstract machine semantics. We omit the routine details.

It is thus natural to define the denotation of an n-predicate P to be the semantic

n-predicate JPK given by JPK(π) = U(P)•π.

As mentioned earlier, we shall also be interested in a more constrained class of trees

and predicates:

Definition 7.9 (n-standard trees and predicates). An n-predicate tree τ is said to be

n-standard if the following hold:

• The domain of τ is precisely Addrn, the set of bit vectors of length ≤ n.

7.3. Predicates, decision trees, and generic count 195

• There are no repeated queries along any path in τ:

∀bs,bs′ ∈ dom(τ), k ∈ Nn. bs⊑ bs′∧ τ(bs) = τ(bs′) = ?k⇒ bs = bs′

A timed decision tree τ is n-standard if its underlying untimed decision tree (bs 7→
τ(bs).1) is so. An n-predicate P is n-standard if T (P) is n-standard.

Clearly, in an n-standard tree, each of the n queries ?0, . . . ,?(n−1) appears exactly

once on the path to any leaf, and there are 2n leaves, all of them answer nodes.

7.3.3 Specification of counting programs

We can now specify what it means for a program K : Predicate→ Nat to implement

counting.

Definition 7.10. (i) The count of a semantic n-predicate Π, written ♯Π, is simply the

number of semantic n-points π ∈ Bn for which Π(π) = true.

(ii) If P is any n-predicate, we say that K correctly counts P if K P⇝∗ return m,

where m = ♯JPK.

This definition gives us the flexibility to talk about counting programs that operate

on various classes of predicates, allowing us to state our results in their strongest natural

form. On the positive side, we shall shortly see that there is a single ‘efficient’ program

in λ→h that correctly counts all n-standard λ→h predicates for every n; in Section 7.5.1

we improve this to one that correctly counts all n-predicates of λ→h . On the negative

side, we shall show that an n-indexed family of counting programs written in λ→b , even

if only required to work correctly on n-standard λb predicates, can never compete with

our λ→h program for asymptotic efficiency even in the most favourable cases.

7.3.4 Efficient generic count with effects

Now we are ready to implement a generic count function using effect handlers. In fact,

the implementation is so generic that it works on all n-standard predicates.

The program uses a variation of the handler for nondeterministic computation from

Section 2.4. The main idea is to implement points as nondeterministic computations

using the Branch operation such that the handler may respond to every query twice, by

invoking the provided resumption with true and subsequently false. The key insight is

that the resumption restarts computation at the invocation site of Branch, which means

196 Chapter 7. Asymptotic speedup with effect handlers

that prior computation need not be repeated. In other words, the resumption ensures that

common portions of computations prior to any query are shared between both branches.

We assert that Branch : 1→ Bool ∈ Σ is a distinguished operation that may not be

handled in the definition of any input predicate (it has to be forwarded according to the

default convention). The algorithm is then as follows.

effcount : ((Nat→ Bool)→ Bool)→ Nat

effcountpred def
= handle pred (λ_.do Branch ⟨⟩) with

returnx 7→ if x then return 1 else return 0

⟨⟨Branch ⟨⟩↠ r⟩⟩ 7→ let xtrue← r true in
let xfalse← r false in xtrue + xfalse

The handler applies predicate pred to a single ‘generic point’ defined using Branch.

The boolean return value is interpreted as a single solution, whilst Branch is interpreted

by alternately supplying true and false to the resumption and summing the results. The

sharing enabled by the use of the resumption is exactly the ‘magic’ we need to make

it possible to implement generic count more efficiently in λ→h than in λ→b . A curious

feature of effcount is that it works for all n-standard predicates without having to know

the value of n. This is because the generic point (λ_.do Branch ⟨⟩) informally serves as

a ‘superposition’ of all possible points.

We may now articulate the crucial correctness and efficiency properties of effcount.

Theorem 7.11. The following hold for any n ∈ N and any n-standard predicate P of

λ→h :

1. effcount correctly counts P.

2. The number of machine steps required to evaluate effcount P is(
∑

bs∈Addrn

steps(T (P))(bs)

)
+ O(2n)

Proof outline. Suppose bs ∈ Addrn, with |bs|= j. From the construction of T (P), one

may easily read off a configuration Cbs whose execution is expected to compute the

count for the subtree below node bs, and we can explicitly describe the form Cbs will

have. We write Hyp(bs) for the claim that Cbs correctly counts this subtree, and does so

within the following number of steps:(
∑

bs′∈Addrn, bs′⊐bs
steps(T (P))(bs′)

)
+ 9∗ (2n−j−1)+2∗2n−j

7.3. Predicates, decision trees, and generic count 197

The 9∗ (2n−j−1) expression is the number of machine steps contributed by the Branch-

case inside the handler, whilst the 2∗2n−j expression is the number of machine steps

contributed by the return-case. We prove Hyp(bs) by a laborious but routine down-

wards induction on the length of bs. The proof combines counting of explicit machine

steps with ‘oracular’ appeals to the assumed behaviour of P as modelled by T (P). Once

Hyp([]) is established, both halves of the theorem follow easily. The proof details and

development of the proof gadgets are in Appendix C.

The above formula can clearly be simplified for certain reasonable classes of pre-

dicates. For instance, suppose we fix some constant c ∈ N, and let Pn,c be the class of

all n-standard predicates P for which all the edge times steps(T (P))(bs) are bounded

by c. (Clearly, many reasonable predicates will belong to Pn,c for some modest value

of c.) Since the number of sequences bs in question is less than 2n+1, we may read off

from the above formula that for predicates in Pn,c, the runtime of effcount is O(c2n).

Alternatively, should we wish to use the finer-grained cost model that assigns an

O(log |γ|) runtime to each abstract machine step (see Section 7.2.3), we may note that

any environment γ arising in the computation contains at most n entries introduced by

the let-bindings in effcount, and (if P ∈ Pn,c) at most O(cn) entries introduced by P.

Thus, the time for each step in the computation remains O(logc+ logn), and the total

runtime for effcount is O(c2n(logc+ logn)).

One might also ask about the execution time for an implementation of λ→h that per-

forms genuine copying of continuations, as in systems such as MLton [96]. As MLton

copies the entire continuation (stack), whose size is O(n), at each of the 2n branches,

continuation copying alone takes time O(n2n) and the effectful implementation offers

no performance benefit (Tables 7.3 and 7.4). More refined implementations [78, 92]

that are able to take advantage of delimited control operators or sharing in copies of the

stack can bring the complexity of continuation copying back down to O(2n).

Finally, one might consider another dimension of cost, namely the space used by

effcount. Consider a class Qn,c,d of n-standard predicates P for which the edge times in

T (P) never exceed c and the sizes of pure continuations never exceed d. If we consider

any P ∈ Qn,c,d then the total number of environment entries is bounded by cn, taking

up space O(cn(logcn)). We must also account for the pure continuations. There are n

of these, each taking at most d space. Thus the total space is O(n(d+ c(logc+ logn))).

198 Chapter 7. Asymptotic speedup with effect handlers

7.4 Pure generic count: a lower bound

We have shown that there is an implementation of generic count in λ→h with a runtime

bound of O(2n) for certain well-behaved predicates. We now prove that no implement-

ation in λ→b can match this: in fact, we establish a lower bound of Ω(n2n) for the

runtime of any counting program on any n-standard predicate. This mathematically

rigorous characterisation of the efficiency gap between languages with and without

effect handlers is the objective of this chapter.

To get a feel for the issues that the proof must address, let us consider how one

might construct a counting program in λ→b . The naïve approach, of course, would be

simply to apply the given predicate P to all 2n possible n-points in turn, keeping a count

of those on which P yields true. It is a routine exercise to implement this approach in

λ→b , yielding (parametrically in n) a program

naivecountn : ((Natn→ Bool)→ Bool)→ Nat

Since the evaluation of an n-standard predicate on an individual n-point must clearly

take time Ω(n), we have that the evaluation of naivecountn on any n-standard predicate

P must take time Ω(n2n). If P is not n-standard, the Ω(n) lower bound need not apply,

but we may still say that the evaluation of naivecountn on any predicate P (at level n)

must take time Ω(2n).

One might at first suppose that these properties are inevitable for any implement-

ation of generic count within λ→b , or indeed any purely functional language: surely,

the only way to learn something about the behaviour of P on every possible n-point is

to apply P to each of these points in turn? It turns out, however, that the Ω(2n) lower

bound can sometimes be circumvented by implementations that cleverly exploit nesting

of calls to P. The germ of the idea may be illustrated within λ→b itself. Suppose that we

first construct some program

bestshotn : ((Natn→ Bool)→ Bool)→ (Natn→ Bool)

which, given a predicate P, returns some n-point Q such that P Q evaluates to true,

if such a point exists, and any point at all if no such point exists. (In other words,

bestshotn embodies Hilbert’s choice operator ε on predicates.) It is once again routine

to construct such a program by naïve means; and we may moreover assume that for

any P, the evaluation of bestshotn P takes only constant time, all the real work being

deferred until the argument of type Natn is supplied.

7.4. Pure generic count: a lower bound 199

Now consider the following program:

lazycountn
def
= λpred. if pred (bestshotn pred) then naivecountn pred else return 0

Here the term pred (bestshotn pred) serves to test whether there exists an n-point

satisfying pred: if there is not, our count program may return 0 straightaway. It is thus

clear that lazycountn is a correct implementation of generic count, and also that if pred

is the predicate λq.false then lazycountn pred returns 0 within O(1) time, thus violating

the Ω(2n) lower bound suggested above.

This might seem like a footling point, as lazycountn offers this efficiency gain only

on (certain implementations of) the constantly false predicate. However, it turns out

that by a recursive application of this nesting trick, we may arrive at a generic count

program that spectacularly defies the Ω(2n) lower bound for an interesting class of

(non-n-standard) predicates, and indeed proves quite viable for counting solutions to

‘n-queens’ and similar problems. We shall refer to this program as BergerCount, as it is

modelled largely on Berger’s PCF implementation of the so-called fan functional [19,

180]. This program is of interest in its own right and is briefly presented in Appendix D.

It actually requires a mild extension of λ→b with a ‘memoisation’ primitive to achieve

the effect of call-by-need evaluation; but such a language can still be seen as purely

‘functional’ in the same sense as Haskell.

In the meantime, however, the moral is that the use of nesting can lead to surprising

phenomena which sometimes defy intuition (Escardó [76] gives some striking further

examples). What we now wish to show is that for n-standard predicates, the naïve lower

bound of Ω(n2n) cannot in fact be circumvented. The example of BergerCount both

highlights the need for a rigorous proof of this and tells us that such a proof will need

to pay particular attention to the possibility of nesting.

We now proceed to the proof itself. We here present the argument in the basic

setting of λ→b ; later we will see how a more delicate argument applies to languages with

mutable state (Section 7.5.3).

As a first step, we note that where lower bounds are concerned, it will suffice to

work with the small-step operational semantics of λ→b rather than the more elaborate

abstract machine model employed in Section 7.2.1. This is because, as observed in

Section 7.2.1, there is a tight correspondence between these two execution models

such that for the evaluation of any closed term, the number of abstract machine steps

is always at least the number of small-step reductions. Thus, if we are able to show

that the number of small-step reductions for any generic program program in λ→b on

200 Chapter 7. Asymptotic speedup with effect handlers

any n-standard predicate is Ω(n2n), this will establish the desired lower bound on the

runtime.

Let us suppose, then, that K is a program of λ→b that correctly counts all n-standard

predicates of λ→b for some specific n. We now establish a key lemma, which vindicates

the naïve intuition that if P is n-standard, the only way for K to discover the correct

value for ♯JPK is to perform 2n separate applications P Q (allowing for the possibility

that these applications need not be performed ‘in turn’ but might be nested in some

complex way).

Lemma 7.12 (No shortcuts). Suppose K correctly counts all n-standard predicates of

λ→b . If P is an n-standard predicate, then K applies P to at least 2n distinct n-points.

More formally, for any of the 2n possible semantic n-points π : Nn→ B, there is a term

E [P Q] appearing in the small-step reduction of K P such that Q is an n-point and

JQK = π.

Proof. Suppose for a contradiction that π is some semantic n-point such that no ap-

plication P Q with JQK = π ever arises in the course of computing K P. Let τ be the

untimed decision tree for P. Let l be the maximal path through τ associated with π: that

is, the one we construct by responding to each query ?k with π(k). Then l is a leaf node

such that τ(l) = !(τ•π). We now let τ′ be the tree obtained from τ by simply negating

this answer value at l.

It is a simple matter to construct a λ→b n-standard predicate P′ whose decision tree

is τ′. This may be done just by mirroring the structure of τ′ by nested if statements; we

omit the easy details.

Since the numbers of true-leaves in τ and τ′ differ by 1, it is clear that if K indeed

correctly counts all n-standard predicates, then the values returned by K P and K P′

will have an absolute difference of 1. On the other hand, we shall argue that if the

computation of K P never actually ‘visits’ the leaf l in question, then K will be unable

to detect any difference between P and P′.

The situation is reminiscent of Milner’s context lemma [198], which (loosely) says

that essentially the only way to observe a difference between two programs is to apply

them to some argument on which they differ. Traditional proofs of the context lemma

reason by induction on length of reduction sequences, and our present proof is closely

modelled on these.

We shall make frequent use of term contexts M[−] with a hole of type Predicate

(which may appear zero, one or more times in M) in order to highlight particular occur-

7.4. Pure generic count: a lower bound 201

rences of P within a term. The following definition enables us to talk about computa-

tions that avoid the critical point π:

Definition 7.13 (Safe terms). If M[−] is such a context of ground type, let us say M[−]
is safe if

• M[P] is closed, and M[P]⇝∗ return W for some closed ground type value W;

• For any term E [P Q] appearing in the reduction of M[P], where the applicand P

in P Q is a residual of one of the abstracted occurrences in M[P], we have that

JQK ̸= π.

We may express this as ‘M[P] is safe’ when it is clear which occurrences of P we intend

to abstract.

For example, our current hypotheses imply that K P is safe (formally, K′[−] def
= K −

is safe). We may now prove the following:

Lemma 7.14.

(i) Suppose Q[−] : Point and k : Nat are values such that Q[P] k is safe, and suppose

Q[P] k⇝m return b where m ∈ N. Then also Q[P′] k⇝∗ return b.

(ii) Suppose P Q[P] is safe and P Q[P]⇝m return b. Then also P′ Q[P′]⇝∗ return b.

We prove these claims by simultaneous induction on the computation length m.

Both claims are vacuous when m = 0 as neither Q[P] k nor P Q[P] is a return term. We

therefore assume m > 0 where both claims hold for all m′ < m.

(i) Let p : Predicate be a distinguished free variable, and consider the behaviour

of Q[p] k. If this reduces to a value returnW, then also Q[P] k⇝∗ returnW, whence

W = b and also Q[P′] k⇝ return b as required. Otherwise, the reduction of Q[p] k will

get stuck at some term M0 = E0[p Q0[p],p]. Here the first hole in E0[−,−] is in the

evaluation position, and the second hole abstracts all remaining occurrences of p within

M0. We may also assume that Q0[−] abstracts all occurrences of p in Q0[p].

Correspondingly, the reduction of Q[P] k will reach E0[P Q0[P],P] and then proceed

with the embedded reduction of P Q0[P]. Note that P Q0[P] will be safe because Q[P] k

is. So let us suppose that P Q0[P]⇝∗ return b0, whence Q[P] k⇝∗ E0[return b0,P].

We may now investigate the subsequent reduction behaviour of Q[P] k by consider-

ing the reduction of E0[return b0,p]. Once again, this may reduce to a value return W,

in which case W = b and our computation is complete. Otherwise, the reduction of

202 Chapter 7. Asymptotic speedup with effect handlers

E0[return b0,p] will get stuck at some M1 = E1[p Q1[p],p], and we may again proceed

as above.

By continuing in this way, we may analyse the reduction of Q[P] k as follows.

Q[P] k⇝∗ E0[P Q0[P],P] ⇝∗ E0[return b0,P]⇝∗ E1[P Q1[P],P]

⇝∗ E1[return b1,P]⇝∗ . . .⇝∗ Er−1[P Qr−1[P],P]

⇝∗ Er−1[return br−1,P]⇝ return b

Here the terms P Qj[P] will be safe, and the reductions P Qj[P]⇝∗ return bj each

have length < m. We may therefore apply part (ii) of the induction hypothesis and

conclude that also P′ Qj[P′]⇝∗ return bj. Furthermore, the remaining segments of the

above computation are all obtained as instantiations of ‘generic’ reduction sequences

involving p, so these segments will remain valid if p is instantiated to P′. Reassembling

everything, we have a valid reduction sequence:

Q[P′] k⇝∗ E0[P′ Q0[P′],P′]⇝∗ E0[return b0,P′]⇝∗ E1[P′ Q1[P′],P′]

⇝∗ E1[return b1,P′]⇝∗ . . .⇝∗ Er−1[P′ Qr−1[P′],P′]

⇝∗ Er−1[return br−1,P′]⇝ return b

This establishes the induction step for part (i).

(ii) We may apply a similar analysis to the computation of P Q[P] to detect the places

where Q[P] is applied to an argument. We do this by considering the reduction behaviour

of P q, where q : Point is the distinguished variable that featured in Definition 7.6. In

this way we may analyse the computation of P Q[P] as:

P Q[P] ⇝∗ E0[Q[P] k0,Q[P]] ⇝∗ E0[return b0,Q[P]] ⇝∗ E1[Q[P] k1,Q[P]] ⇝∗ . . .

⇝∗ Er−1[Q[P] kr−1,Q[P]] ⇝∗ Er−1[return br−1,Q[P]] ⇝ return b

where for each j, the first hole in Ej[−,−] is in evaluation position, the term Q[P] kj

is safe, the reduction Q[P] kj⇝∗ return bj has length < m, and the remaining portions

of computation are instantiations of generic reductions involving q. By part (i) of the

induction hypothesis we may conclude that also Q[P′] kj⇝∗ return bj for each j, and

for the remaining segments of computation we may instantiate q to Q[P′]. We thus

obtain a computation exhibiting that P Q[P′]⇝∗ return b.

It remains to show that the applicand P may be replaced by P′ here without affecting

the result. The idea here is that the booleans b0, . . . ,br−1 trace out a path through the

decision tree for P; but since P Q[P] is safe, we have that JQ[P]K ̸= π, and so this path

does not lead to the critical leaf l. We now have everything we need to establish that

P′ Q[P′]⇝∗ return b as required.

7.4. Pure generic count: a lower bound 203

More formally, in view of the correspondence between small-step reduction and

abstract machine semantics, we may readily correlate the above computation of P Q[P]

with an exploration of the path bs = b0 . . .br−1 in τ = U(P), leading to a leaf with

label !b. Since P is n-standard, this correlation shows that r = n, that for each j we

have τ(b0 . . .bj−1) = ?kj, and that {k0, . . . ,kr−1} = {0, . . . ,n− 1}. Furthermore, we

have already ascertained that the values of Q[P] and Q[P′] at kj are both bj, whence

JQ[P]K = JQ[P′]K = π′ where π′(kj) = bj for all j. But P Q[P] is safe, so in particu-

lar π′ = JQ[P]K ̸= π. We therefore also have τ′(b0 . . .bj−1) = ?kj for each j ≤ r and

τ′(b0 . . .br−1) = b. Since τ′ = U(P′) and JQ[P′]K = π′, we may conclude by Proposi-

tion 7.8 that P′ Q[P′]⇝∗ return b. This completes the proof of Lemma 7.14.

To finish off the proof of Lemma 7.12, we apply the same analysis one last time to

the reduction of K P itself. This will have the form

K P ⇝∗ E0[P Q0[P],P] ⇝∗ E0[return b0,P] ⇝∗ . . .

⇝∗ Er−1[P Qr−1[P],P] ⇝∗ Er−1[return br−1,P] ⇝∗ return c

where, by hypothesis, each P Qj[P] is safe. Using Lemma 7.14 we may replace each

subcomputation P Qj[P]⇝∗ return bj with P′ Qj[P′]⇝∗ return bj, and so construct a

computation exhibiting that K P′⇝∗ return c.

This gives our contradiction, as the values of K P and K P′ are supposed to differ

by 1.

Corollary 7.15. Suppose K and P are as in Lemma 7.12. For any semantic n-point π

and any natural number k < n, the reduction sequence for K P contains a term F [Q k],

where F is an evaluation context and JQK = π.

Proof. Suppose π∈Bn. By Lemma 7.12, the computation of K P contains some E [P Q]

where JQK= π, and the above analysis of the computation of P Q shows that it contains

a term E ′[Q k] for each k < n. The corollary follows, taking F [−] def
= E [E ′[−]].

This gives our desired lower bound. Since our n-points Q are values, it is clearly

impossible that F [Q k] =F ′[Q′ k′] (where F ,F ′ are evaluation contexts) unless Q=Q′

and k = k′. We may therefore read off π from F [Q k] as JQK. There are thus at least n2n

distinct terms in the reduction sequence for K P, so the reduction has length ≥ n2n. We

have thus proved:

Theorem 7.16. If K is a λ→b program that correctly counts all n-standard λ→b predicates,

and P is any n-standard λ→b predicate, then the evaluation of K P must take time

Ω(n2n).

204 Chapter 7. Asymptotic speedup with effect handlers

Although we shall not go into details, it is not too hard to apply our proof strategy

with minor adjustments to certain richer languages: for instance, an extension of λ→b

with exceptions, or one containing the memoisation primitive required for BergerCount

(Appendix D). A deeper adaptation is required for languages with state: we will return

to this in Section 7.5.

It is worth noting where the above argument breaks down if applied to λ→h . In λ→b ,

in the course of computing K P, every Q to which P is applied will be a self-contained

closed term denoting some specific point π. This is intuitively why we may only learn

about one point at a time. In λ→h , this is not the case, because of the presence of operation

symbols. For instance, our effcount program from Section 7.3.4 will apply P to the

‘generic point’ λ_.do Branch ⟨⟩. Thus, for example, in our treatment of Lemma 7.14(i),

it need no longer be the case that the reduction of Q[p] k either yields a value or gets

stuck at some E0[p Q0[p],p]: a third possibility is that it gets stuck at some invocation

of ℓ, so that control will then pass to the effect handler.

7.5 Extensions and variations

Our complexity result is robust in that it continues to hold in more general settings. We

outline here how it generalises: beyond n-standard predicates, from generic count to

generic search, and from pure λ→b to stateful λ→s .

7.5.1 Beyond n-standard predicates

The n-standard restriction on predicates serves to make the efficiency phenomenon

stand out as clearly as possible. However, we can relax the restriction by tweaking

effcount to handle repeated queries and missing queries. The trade off is that the analysis

of effcount becomes more involved. The key to relaxing the n-standard restriction is the

use of state to keep track of which queries have been computed. We can give stateful

implementations of effcount without changing its type signature by using parameter-

passing [143, 232] to internalise state within a handler. Parameter-passing abstracts

every handler clause such that the current state is supplied before the evaluation of a

clause continues and the state is threaded through resumptions: a resumption becomes

a two-argument curried function r : B→ S→ D, where the first argument of type B is

the return type of the operation and the second argument is the updated state of type S.

7.5. Extensions and variations 205

Repeated queries We can generalise effcount to handle repeated queries by memoising

previous answers. First, we generalise the type of Branch such that it carries an index

of a query.

Branch : Nat→ Bool

We assume a family of natural number to boolean maps, Mapn with the following

interface.
emptyn : Mapn

addn : (Natn×Bool)→Mapn→Mapn

lookupn : Natn→Mapn→ (1+Bool)

Invoking lookup i map returns inl ⟨⟩ if i is not present in map, and inr ans if i is

associated by map with the value ans : Bool. Allowing ourselves a few extra constant-

time arithmetic operations, we can realise suitable maps in λ→b such that the time

complexity of addn and lookupn is O(logn) [210]. We can then use parameter-passing

to support repeated queries as follows.

effcount′n : ((Natn→ Bool)→ Bool)→ Nat

effcount′n pred def
= let h← handle pred (λi.do Branch i) with

return x 7→λs.if x then 1 else 0

⟨⟨Branch i↠ r⟩⟩7→λs.case lookupn i s {
inl⟨⟩ 7→ let xtrue← r true (addn ⟨i, true⟩s) in

let xfalse← r false (addn ⟨i, false⟩s) in
xtrue + xfalse;

inr x 7→ r x s }
in h emptyn

The state parameter s memoises query results, thus avoiding double-counting and en-

abling effcount′n to work correctly for predicates performing the same query multiple

times.

206 Chapter 7. Asymptotic speedup with effect handlers

Missing queries Similarly, we can use parameter-passing to support missing queries.

effcount′′n : ((Natn→ Bool)→ Bool)→ Nat

effcount′′n pred def
= let h← handle pred (λi.do Branch ⟨⟩) with

return x 7→ λd.let result← if x then 1 else 0 in
result×2n−d

⟨⟨Branch ⟨⟩↠ r⟩⟩ 7→ λd.let xtrue← r true (d+1) in
let xfalse← r false (d+1) in
(xtrue + xfalse)

in h 0

The parameter d tracks the depth and the returned result is scaled by 2n−d accounting for

the unexplored part of the current subtree. This enables effcount′′n to operate correctly

on predicates that inspect n points at most once. We leave it as an exercise for the reader

to combine effcount′n and effcount′′n in order to handle both repeated queries and missing

queries.

7.5.2 From generic count to generic search

We can generalise the problem of generic counting to generic searching. The main

operational difference is that a generic search procedure must materialise a list of

solutions, thus its type is

searchn : ((Natn→ Bool)→ Bool)→ ListNatn→Bool

where ListA is the type of cons-lists whose elements have type A. We modify effcount to

return a list of solutions rather than the number of solutions by lifting each result into a

singleton list and using list concatenation instead of addition to combine partial results

xstrue and xsfalse as follows.

effsearchn : ((Natn→ Bool)→ Bool)→ ListNatn→Bool

effsearchn pred def
= let f ← handle pred (λi.do Branch i) with

return x 7→ λq.ifx then singleton q else nil

⟨⟨Branch i↠ r⟩⟩7→
λq.let xstrue← r true (λj.if i = j then true else q j) in

let xsfalse← r false (λj.if i = j then false else q j) in
concat ⟨xstrue,xsfalse⟩

in toConsList (f (λj.⊥))

7.5. Extensions and variations 207

The Branch operation is now parameterised by an index i. The handler is now paramet-

erised by the current path as a point q, which is output at a leaf iff it is in the predicate. A

little care is required to ensure that effsearchn has runtime O(2n); naïve use of cons-list

concatenation would result in O(n2n) runtime, as cons-list concatenation is linear in its

first operand. In place of cons-lists we use Hughes lists [131], which admit constant

time concatenation: HListA
def
= ListA→ ListA. The empty Hughes list nil : HListA is defined

as the identity function: nil
def
= λxs.xs.

singletonA : A→ HListA

singletonA x def
= λxs.x :: xs

concatA : HListA×HListA→ HListA

concatA f g def
= λxs.g (f xs)

toConsListA : HList→ ListA

toConsListA f def
= f []

We use the function toConsList to convert the final Hughes list to a standard cons-list

at the end; this conversion has linear time complexity (it just conses all of the elements

of the list together).

7.5.3 From pure λ→b to stateful λ→s

Mutable state is a staple ingredient of many practical programming languages. We now

outline how our main lower bound result can be extended to a language with state. We

will not give full details, but merely point out the respects in which our earlier treatment

needs to be modified.

We have in mind an extension λ→s of λ→b with ML-style reference cells: we extend

our grammar for types with a reference type (Ref A), and that for computation terms with

forms for creating references (letref x = V in N), dereferencing (!x), and destructive

update (x := V), with the familiar typing rules. We also add a new kind of value, namely

locations lA, of type Ref A. We adopt a basic Scott-Strachey [1971] model of store:

a location is a natural number decorated with a type, and the execution of a stateful

program allocates locations in the order 0,1,2, . . ., assigning types to them as it does

so. A store s is a type-respecting mapping from some set of locations {0, . . . , l−1} to

values. For the purposes of small-step operational semantics, a configuration will be a

triple (M, l,s), where M is a computation, l is a ‘location counter’, and s is a store with

domain {0, . . . , l−1}. A reduction relation⇝ on configurations is defined in a familiar

way (again we omit the details).

Certain aspects of our setup require care in the presence of state. For instance, there

is in general no unique way to assign an (untimed) decision tree to a closed value P :

208 Chapter 7. Asymptotic speedup with effect handlers

Predicaten, since the behaviour of P on a value q : Pointn may depend both on the initial

state when P is invoked, and on the ways in which the associated computations q V⇝∗

return W modify the state. In this situation, there is not even a clear specification for

what an n-count program ought to do.

The simplest way to circumvent this difficulty is to restrict attention to predicates P

within the sublanguage λ→b . For such predicates, the notions of decision tree, counting

and n-standardness are unproblematic. Our result will establish a runtime lower bound

of Ω(n2n) for programs K ∈ λ→s that correctly count predicates P of this kind. On the

other hand, since K itself may be stateful, we cannot exclude the possibility that K P

will apply P to a term Q that is itself stateful. Such a Q will no longer unambiguously

denote a semantic point π, hence the proof of Section 7.4 must be adapted.

To adapt our proof to the setting of λ→s , some more machinery is needed. If K is an

n-count program and P an n-standard predicate, we expect that the evaluation of K P

will feature terms E [P Q] which are then reduced to some E [return b], via a reduction

sequence which, modulo E [−], has the following form:

PQ⇝∗ E0[Q k0]⇝∗ E0[returnb0]⇝∗ · · ·⇝∗ En−1[Q kn−1]

⇝∗ En−1[returnbn−1]⇝∗ return b

(For notational clarity, we suppress mention of the location and store components here.)

Informally we think of this as a dialogue in which control passes back and forth between

P and Q. We shall refer to the portions Ej[Q kj]⇝∗ Ej[return bj] of the above reduction

as Q-sections, and to the remaining portions (including the first and the last) as P-

sections. We refer to the totality of these P-sections and Q-sections as the thread arising

from the given occurrence of the application PQ. An important point to note is that

since Q may contain other occurrences of P, it is quite possible for the Q-sections above

to contain further threads corresponding to other applications P Q′.

Since P is n-standard, we know that each thread will consist of n+ 1 P-sections

separated by n Q-sections. Indeed, it is clear that this computation traces the path

b0 . . .bn−1 through the decision tree for P, with k0, . . . ,kn−1 the corresponding internal

node labels. We may now, ‘with hindsight’, construe this as a semantic point π :Nn→B
(where π(kj) = bj for each j), and call it the semantic point associated with (the thread

arising from) the application occurrence P p.

The following lemma now serves as a surrogate for Lemma 7.12:

Lemma 7.17. Let P be an n-standard predicate. For any semantic point π ∈ Bn, the

evaluation of K P involves an application occurrence P Q with which π is associated.

7.5. Extensions and variations 209

Queens
First solution All solutions

Parameter 20 24 28 8 10 12

Naïve − − − 217.74 − −
Berger 11.24 15.70 − 2.06 2.86 3.64

Pruned 2.13 2.54 2.91 1.04 1.24 1.39

Bespoke 0.12 0.12 0.12 0.13 0.13 0.12

Table 7.1: SML/NJ: n-Queens benchmark runtime relative to effectful implementation.

Integration
Id Squaring Logistic

Parameter 20 14 17 20 1 2 3 4 5

Naïve 12.89 45.04 57.80 69.86 − − − − −
Berger 5.18 20.62 22.37 23.46 22.51 28.97 30.14 29.30 27.94

Pruned 2.07 3.78 4.05 4.24 4.10 5.44 6.42 7.26 7.94

Table 7.2: SML/NJ: integration benchmark runtime relative to effectful implementation.

The proof of this lemma is not too different from that of Lemma 7.12: if π were a

point with no associated thread, there would be an unvisited leaf in the decision tree, and

we could manufacture an n-standard predicate P′ whose tree differed from that of P only

at this leaf. We can then show, by induction on length of reductions, that any portion

of the evaluation of K P can be suitably mimicked with P replaced by P′. Naturally,

this idea now needs to be formulated at the level of configurations rather than plain

terms: in the course of reducing (K P,0, []), we may encounter configurations (M, l,s)

in which residual occurrences of P have found their way into s as well as M, so in

order to replace P by P′ we must abstract on all these occurrences via an evident notion

of configuration context. With this adjustment, however, the argument of Lemma 7.12

goes through.

A further argument is then needed to show that any two threads are indeed ‘dis-

joint’ as regards their P-sections, so that there must be at least n2n steps in the overall

reduction sequence.

210 Chapter 7. Asymptotic speedup with effect handlers

Queens
First solution All solutions

Parameter 20 24 28 8 10 12

Naïve − − − 17.31 − −
Berger 0.52 0.66 − 0.19 0.22 0.20

Pruned 0.11 0.11 0.13 0.10 0.10 0.08

Bespoke 0.005 0.004 0.004 0.01 0.009 0.006

Table 7.3: MLton: n-Queens benchmark runtime relative to effectful implementation.

Integration
Id Squaring Logistic

Parameter 20 14 17 20 1 2 3 4 5

Naïve 1.45 4.51 5.13 5.82 − − − − −
Berger 0.43 2.02 1.95 1.92 2.17 3.59 4.24 4.34 4.28

Pruned 0.14 0.39 0.35 0.35 0.39 0.63 0.86 1.03 1.21

Table 7.4: MLton: integration benchmark runtime relative to effectful implementation.

Queens
First solution All solutions

Parameter 20 24 28 8 10 12

Naïve − − − 0.49 − −
Berger 0.62 0.64 − 0.73 0.65 0.68

Pruned 0.70 0.68 0.71 0.74 0.70 0.71

Effectful 12.87 13.99 14.90 8.00 8.60 12.19

Bespoke 0.56 0.56 0.56 0.69 0.63 0.59

Table 7.5: MLton: n-Queens benchmark runtime relative to SML/NJ.

7.6. Experiments 211

Integration
Id Squaring Logistic

Parameter 20 14 17 20 1 2 3 4 5

Naïve 0.55 0.35 0.35 0.35 − − − − −
Berger 0.41 0.35 0.34 0.34 0.37 0.37 0.37 0.37 0.37

Pruned 0.34 0.36 0.35 0.35 0.36 0.35 0.35 0.35 0.36

Effectful 4.93 3.53 3.95 4.20 3.80 3.00 2.62 2.46 2.37

Table 7.6: MLton: integration benchmarks runtime relative to SML/NJ.

7.6 Experiments

The theoretical efficiency gap between realisations of λ→b and λ→h manifests in practice.

We observe it empirically on instantiations of n-queens and exact real number integra-

tion, which can be cast as generic search. Tables 7.1 and 7.2 show the speedup of using

an effectful implementation of generic search over various pure implementations of the

n-Queens and integration benchmarks, respectively. We discuss the benchmarks and

results in further detail below.

Methodology We evaluated an effectful implementation of generic search against

three “pure” implementations which are realisable in λ→b extended with mutable state:

• Naïve: a simple, and rather naïve, functional implementation;

• Pruned: a generic search procedure with space pruning based on Longley’s tech-

nique [175] (uses local state);

• Berger: a lazy pure functional generic search procedure based on Berger’s al-

gorithm.

Each benchmark was run 11 times. The reported figure is the median runtime ra-

tio between the particular implementation and the baseline effectful implementation.

Benchmarks that failed to terminate within a threshold (1 minute for single solution,

8 minutes for enumerations), are reported as −. The experiments were conducted in

SML/NJ [9] v110.97 64-bit with factory settings on an Intel Xeon CPU E5-1620 v2

@ 3.70GHz powered workstation running Ubuntu 16.04. The effectful implementation

uses an encoding of delimited control akin to effect handlers based on top of SML/NJ’s

212 Chapter 7. Asymptotic speedup with effect handlers

call/cc. The complete source code for the benchmarks and instructions on how to run

them are available at:

https://dl.acm.org/do/10.1145/3410231/abs/

Queens We phrase the n-queens problem as a generic search problem. As a control

we include a bespoke implementation hand-optimised for the problem. We perform

two experiments: finding the first solution for n ∈ {20,24,28} and enumerating all

solutions for n ∈ {8,10,12}. The speedup over the naïve implementation is dramatic,

but less so over the Berger procedure. The pruned procedure is more competitive, but

still slower than the baseline. Unsurprisingly, the baseline is slower than the bespoke

implementation.

Exact real integration The integration benchmarks are adapted from Simpson [249].

We integrate three different functions with varying precision in the interval [0,1]. For

the identity function (Id) at precision 20 the speedup relative to Berger is 5.18×. For

the squaring function the speedups are larger at higher precisions: at precision 14 the

speedup is 3.78× over the pruned integrator, whilst it is 4.24× at precision 20. The

speedups are more extreme against the naïve and Berger integrators. We also integrate

the logistic map x 7→ 1−2x2 at a fixed precision of 15. We make the function harder to

compute by iterating it up to 5 times. Between the pruned and effectful integrator the

speedup ratio increases as the function becomes harder to compute.

MLton SML/NJ is compiled into CPS, thus providing a particularly efficient imple-

mentation of call/cc. MLton [96], a whole program compiler for SML, implements

call/cc by copying the stack. We repeated our experiments using MLton 20180207.

Tables 7.3 and 7.4 show the results. The effectful implementation performs much worse

under MLton than SML/NJ, being surpassed in nearly every case by the pruned search

procedure and in some cases by the Berger search procedure. Tables 7.5 and 7.6 sum-

marise the runtime of MLton relative to SML/NJ for both benchmarks. Berger, Pruned,

and Bespoke run between 1 and 3 times as fast with MLton compared to SML/NJ. How-

ever, the effectful implementation runs between 2 and 14 times as fast with SML/NJ

compared with MLton.

https://dl.acm.org/do/10.1145/3410231/abs/

7.7. Related work 213

7.7 Related work

There are relatively little work in the present literature on expressivity that has focused

on complexity difference. Pippenger [216] gives an example of an online operation on

infinite sequences of atomic symbols (essentially a function from streams to streams)

such that the first n output symbols can be produced within time O(n) if one is working

in an effectful version of Lisp (one which allows mutation of cons pairs) but with

a worst-case runtime no better than Ω(n logn) for any implementation in pure Lisp

(without such mutation). This example was reconsidered by Bird et al. [29] who showed

that the same speedup can be achieved in a pure language by using lazy evaluation.

Jones [136] explores the approach of manifesting expressivity and efficiency differences

between certain languages by artificially restricting attention to ‘cons-free’ programs;

in this setting, the classes of representable first-order functions for the various languages

are found to coincide with some well-known complexity classes.

The vast majority of work in this area has focused on computability differences.

One of the best known examples is the parallel if operation which is computable

in a language with parallel evaluation but not in a typical sequential programming

language [219]. It is also well known that the presence of control features or local state

enables observational distinctions that cannot be made in a purely functional setting: for

instance, there are programs involving call/cc that detect the order in which a (call-by-

name) ‘+’ operation evaluates its arguments [43]. Such operations are ‘non-functional’

in the sense that their output is not determined solely by the extension of their input

(seen as a mathematical function N⊥×N⊥→ N⊥); however, there are also programs

with ‘functional’ behaviour that can be implemented with control or local state but not

without them [175]. More recent results have exhibited differences lower down in the

language expressivity spectrum: for instance, in a purely functional setting à la Haskell,

the expressive power of recursion increases strictly with its type level [178], and there

are natural operations computable by low-order recursion but not by high-order iteration

[179]. Much of this territory, including the mathematical theory of some of the natural

notions of higher-order computability that arise in this way, is mapped out by Longley

and Normann [180].

Part IV

Conclusions

215

Chapter 8

Conclusions and future work

I will begin this chapter with a brief summary of this dissertation. The following sec-

tions each elaborates and spells out directions for future work.

In Part I I have presented the design of a ML-like programming language equipped

an effect-and-type system and a structural notion of effectful operations and effect

handlers. In this language I have demonstrated how to implement the essence of a

UNIX-like operating system by making, almost, zealous use of deep, shallow, and

parameterised effect handlers.

In Part II I have devised two canonical implementation strategies for the language,

one based an transformation into continuation passing style, and another based on

abstract machine semantics. Both strategies make key use of the notion of generalised

continuations, which provide a high-level model of segmented runtime stacks.

In Part III I have explored how effect handlers fit into the wider landscape of pro-

gramming abstractions. I have shown that deep, shallow, and parameterised effect hand-

lers are macro-expressible. Furthermore, I shown that effect handlers endow its host

language with additional computational power that provides an asymptotic improve-

ment in runtime performance for some class of programs.

8.1 Programming with effect handlers

Chapter 2 presents a case study of effect handler oriented programming, which re-

produces the essence of the UNIX operating system by making crucial use of effect

handlers. The case study demonstrates how effect handlers provide a high-degree of

modularity and flexibility that enable substantial behavioural changes to be retrofitted

onto programs without altering the existing the code. Thus effect handlers provide a

217

218 Chapter 8. Conclusions and future work

mechanism for building small task-oriented programs that later can be scaled to in-

teract with other programs in a larger context. The case study also demonstrates how

one might ascribe a handler semantics to a UNIX-like operating system. The result-

ing operating system Tiny UNIX captures the essential features of a true operating

system including support for managing multiple concurrent user environments simul-

taneously, process parallelism, file I/O. The case study also shows how each feature can

be implemented in terms of some standard effect.

Chapter 3 presents the design of a core calculus that forms the basis for Links, which

is a practical programming language with deep, shallow, and parameterised effect hand-

lers. A distinguishing feature of the core calculus is that it is based on a structural notion

of data and effects, whereas other literature predominantly consider nominal data and

effects. In the setting of structural effects the effect system play a pivotal role in ensur-

ing that the standard safety and soundness properties of statically typed programming

languages hold as the effect system is used to track type and presence information about

effectful operations. In a nominal setting an effect system is not necessary to ensure

soundness (e.g. Section 7.1.2 presents a sound core calculus with nominal effects, but

without an effect system). Irrespective of nominal or structural notions of effects, an

effect system is a valuable asset when programming with effect handlers as an effect

system enables modular reasoning about the composition of functions. The effect sys-

tem provides crucial information about the introduction and elimination of effects. In

the absence of an effect system programmers are essentially required to reason globally

their programs as for instance the composition of any two functions may introduce ar-

bitrary effects that need to be handled accordingly. Alternatively, a composition of any

two functions may inadvertently eliminate arbitrary effects, and as such, programming

with effect handlers without an effect system is prone to error. The UNIX case study in

Chapter 2 demonstrates how the effect system assists to ensure that effectful function

compositions are meaningful.

The particular effect system that I have used throughout this dissertation is based on

Rémy-style row polymorphism formalism [236]. Whilst Rémy-style row polymorphism

provides a suitable basis for structural records and variants, its suitability as a basis for

practical effect systems is questionable. From a practical point of view the problem with

this form of row polymorphism is that it leads to verbose type-and-effect signature due

to the presence and absence annotations. In many cases annotations are redundant, e.g.

in second-order functions like map for lists, where the effect signature of the function

is the same as the signature of its functional argument. From a theoretical point of

8.1. Programming with effect handlers 219

view this verbosity is not a concern. However, in practice verbosity may lead to ‘an

overload of unequivocal information’ by which I mean the programmer is presented

with too many trivial facts about the program. Too much information can hinder both

readability and writability of programs. For instance, in most mainstream programming

languages with System F-style type polymorphism programmers normally do not have

to annotate type variables with kinds, unless they happen to be doing something special.

Similarly, programmers do not have to write type variable quantifiers, unless they do

not appear in prenex position. In practice some defaults are implicitly understood and

it is only when programmers deviate from those defaults that programmers ought to

supply the compiler with explicit information. In Section 3.2.5 introduces some ad-hoc

syntactic sugar for effect signature that tames the verbosity of an effect system based

on Rémy-style row polymorphism to the degree that second-order functions like map

do not duplicate information. Rather than back-patching the effect system in hindsight,

a possibly better approach is to design the effect system for practical programming

from the ground up as Lindley et al. [174] did for the Frank programming language.

Nevertheless, the UNIX case study is indicative of the syntactic sugar being adequate

in practice to build larger effect-oriented applications.

8.1.1 Future work

Operating systems via effect handlers In the UNIX case study we explored the

paradigmatic reading of effect handlers as composable operating systems in practice

by composing a UNIX-like operating system out of several effects and handlers. Ob-

viously, the resulting system Tiny UNIX has been implemented in the combined core

calculus consisting of λh, λh† , and λh‡ calculi. There also exists an actual runnable

implementation of it in Links. It would be interesting to implement the system in other

programming languages with support for effect handlers as at the time of writing most

languages with effect handlers have some unique trait, e.g. lexical handlers, special

effect system, etc. Ultimately, re-implementing the case study can help collect more

data points about programming with effect handlers, which can potentially serve to

inform the design of future effect handler-oriented languages.

I have made no attempts at formally proving the correctness of Tiny UNIX with

respect to some specification. Although, I have consciously opted to implement Tiny

UNIX using standard effects with well-known equations. Furthermore, the effect hand-

lers have been implemented such that they ought to respect the equations of their effects.

220 Chapter 8. Conclusions and future work

Thus, perhaps it is possible to devise an equational specification for the operating sys-

tem and prove the implementation correct with respect to that specification.

One important feature that is arguably missing from Tiny UNIX is external signal

handling. Effect handlers as signal handlers is not a new idea. In a previous paper we

have outlined an idea for using effect handlers to handle POSIX signals [72]. Signal

handling is a delicate matter as signals introduce a form of preemption, thus some care

needs to be taken to ensure that the interpretation of a signal does not interrupted by

another signal instance. The essence of the idea is to have a mask primitive, which is a

form of critical section for signals that permits some block of code to suppress signal

interruptions. A potential starting point would be to combine Ahman and Pretnar’s

calculus of asynchronous effects with λh to explore this idea more formally [6].

Another interesting thought is to implement an actual operating system using effect

handlers. Although, it might be a daunting task, the idea is maybe not so far fetched.

With the advent of effect handlers in OCaml [252] it may be possible for MirageOS

project [188], which is a unikernel based operating system written in OCaml, to take

advantage of effect handlers to implement features such as concurrency.

Effect-based optimisations In this dissertation I have not considered any effect-

based optimisations. However if effect handler oriented programming is to succeed

in practice, then runtime performance will matter. Optimisation of program structure

is one way to improve runtime performance. At our disposal we have the effect system

and the algebraic structure of effects and handlers. Taking advantage of the information

provided by the effect system to optimise programs is an old idea that has been explored

previously in the literature [141, 142, 242]. Other work has attempted to exploit the

algebraic structure of (deep) effect handlers to fuse nested handlers [275]. An obvious

idea is to apply these lines of work to the handler calculi of Chapter 3. Moreover, I

hypothesise there is untapped potential in the combination of effect-dependent analysis

with respect to equational theories to optimise effectful programs. A potential starting

point for testing out this hypothesis is to take Lukšič and Pretnar’s a core calculus

where effects are equipped with equations [185] and combine it with techniques for

effect-dependent optimisations [142].

Multi handlers In this dissertation I have solely focused on so-called unary handlers,

which handle a single effectful computation. A natural generalisation is n-ary handlers,

which allow n effectful computations to be handled simultaneously. In the literature

8.2. Canonical implementation strategies for handlers 221

n-ary handlers are called multi handlers, and unary handlers are simply called handlers.

The ability to handle two or more computations simultaneously make for a straight-

forward way to implement synchronisation between two or more computations. For

example, the pipes example of Section 2.6 can be expressed using a single handler rather

than two dual handlers [174]. Shallow multi handlers are an ample feature of the Frank

programming language [174]. The design space of deep and parameterised notions of

multi handlers have yet to be explored as well as their applications domains. Thus an

interesting future direction of research would be to extend λh with multi handlers and

explore their practical programming applicability. Retrofitting the effect system of λh

to provide a good programmer experience for programming with multi handlers pose

an interesting design challenge as any quirks that occur with unary handlers only get

amplified in the setting of multi handlers.

Handling linear resources The implementation of effect handlers in Links makes

the language unsound, because the naïve combination of effect handlers and session

typing is unsound. The combined power of being able to discard some resumptions

and resume others multiple times can make for bad interactions with sessions. For

instance, suppose some channel supplies only one value, then it is possible to break

session fidelity by twice resuming some resumption that closes over a receive operation.

Similarly, it is possible to break type safety by using a combination of exceptions and

multi-shot resumptions, e.g. suppose some channel first expects an integer followed by

a boolean, then the running the program do Fork⟨⟩;send 42;absurd do Fail⟨⟩ under the

composition of the nondeterminism handler and default failure handler from Chapter 2

will cause the primitive send operation to supply two integers in succession, thus break-

ing the session protocol. Figuring out how to safely combine linear resources, such as

channels, and handlers with multi-shot resumptions is an interesting unsolved problem.

8.2 Canonical implementation strategies for handlers

Chapter 4 carries out a comprehensive study of CPS translations for deep, shallow, and

parameterised notions of effect handlers. We arrive at a higher-order CPS translation

through step-wise refinement of an initial standard first-order fine-grain call-by-value

CPS translation, which we extended to support deep effect handlers. Firstly, we refined

the first-order translation by uncurrying it in order to yield a properly tail-recursive

translation. Secondly, we adapted it to a higher-order one-pass translation that statically

222 Chapter 8. Conclusions and future work

eliminates administrative redexes. Thirdly, we solidified the structure of continuations

to arrive at the notion of generalised continuation, which provides the basis for imple-

menting shallow and parameterised handlers. The CPS translations have been proven

correct with respect to the contextual small-step semantics of λh, λh† , and λh‡ .

Generalised continuations are a succinct syntactic framework for modelling low-

level stack manipulations. The structure of generalised continuations closely mimics

the structure of Hieb et al. and Bruggeman et al.’s segmented stacks [41, 117], which

is a state-of-art technique for implementing first-class control [95]. Each generalised

continuation frame consists of a pure continuation and a handler definition. The pure

continuation represents an execution stack delimited by some handler. Thus chaining

together generalised continuation frames yields a sequence of segmented stacks.

The versatility of generalised continuations is illustrated in Chapter 5, where we

plugged the notion of generalised continuation into Felleisen and Friedman’s CEK ma-

chine to obtain an adequate execution runtime with simultaneous support for deep, shal-

low, and parameterised effect handlers [83]. The resulting abstract machine is proven

correct with respect to the reduction semantics of the combined calculus of λh, λh† , and

λh‡ . The abstract machine provides a blueprint for both high-level interpreter-based

implementations of effect handlers as well as low-level implementations based on stack

manipulations. The server-side implementation of effect handlers in the Links pro-

gramming language is a testimony to the former [119], whilst the Multicore OCaml

implementation of effect handlers is a testimony to the latter [252].

8.2.1 Future work

Functional correspondence The CPS translations and abstract machine have been

developed separately. Even though, the abstract machine is presented as an application

of generalised continuations in Chapter 5 it did appear before the CPS translations. The

idea of generalised continuation first solidified during the design of higher-order CPS

translation for shallow handlers [120], where we adapted the continuation structure of

our initial abstract machine design [119]. Thus it seems that there ought to be a formal

functional correspondence between higher-order CPS translation and the abstract ma-

chine, however, the existence of such a correspondence has yet to be established.

Abstracting continuations It is evident from the step-wise refinement of the CPS

translations in Chapter 4 that each translation has a certain structure to it. In fact, this is

8.2. Canonical implementation strategies for handlers 223

how the CPS translation for effect handlers in Links has been implemented. Concretely,

the translation is implemented as a functor, which is parameterised by a continuation

interface. The continuation interface has monoidal operation for continuation extension

and an application operation for applying the continuation to a value argument. Theoret-

ically, it would be interesting to pin down and understand the precise algebraic nature of

this nature would be interesting with respect to abstracting the notion of continuations.

Practically, it would keep the code base modular and pave the way for rapid compilation

of new control structures. Ideally one would simply have to implement a standard CPS

translation, which keeps the notion of continuation abstract such that any conforming

continuation can be plugged in.

Generalising generalised continuations The incarnation of generalised continu-

ations in this dissertation has been engineered for unary handlers. An obvious extension

to investigate is support for multi handlers. With multi handlers, handler definitions

enter a one-to-many relationship with pure continuations rather than an one-to-one

relationship with unary handlers. Thus at minimum the structure of generalised continu-

ation frames needs to be altered such that each handler definition is paired with a list

of pure continuations, where each pure continuation represents a distinct computation

running under the handler.

Ad-hoc generalised continuations The literature contains plenty of ad-hoc tech-

niques for realising continuations. For instance, Pettyjohn et al.’s technique for imple-

menting undelimited continuations via exception handlers and state [214], and James

and Sabry’s technique for implementing delimited control via generators and iterat-

ors [135]. Such techniques may be used to implement effect handlers in control hostile

environments by simulating the structure of generalised continuations. By using these

techniques to implement effect handlers we may be able to bring effect handler oriented

programming to programming languages that do not offer programmers much control.

Typed CPS for effect handlers The image of each translation developed in Chapter 4

is untyped. Typing the translations may provide additional insight into the semantic

content of the translations. Effect forwarding poses a challenge in typing the image.

In order to encode forwarding we need to be able to parametrically specify what a

default case does. The Appendix B of the paper by Hillerström et al. [121] outlines a

possible typing for the CPS translation for deep handlers. The extension we propose

224 Chapter 8. Conclusions and future work

to our row type system is to allow a row type to be given a shape (something akin to

Berthomieu and le Moniès de Sagazan’s tagged types [20]), which constrains the form

of the ordinary types it contains. A full formalisation of this idea remains to be done.

8.3 On the expressive power of effect handlers

In Chapter 6 we investigated the interdefinability of deep, shallow, and parameterised

handlers through the lens of typed macro expressiveness. We establish that every kind

of handler is interdefinable. Although, the handlers are interdefinable it may matter in

practice which kind of handler is being employed. For example, the encoding of shal-

low handlers using deep handlers is rather inefficient. The encoding suffers from space

leaks as demonstrated empirically in Appendix B.3 of Hillerström and Lindley [120].

Similarly, the runtime and memory performance of between native parameterised hand-

lers and encoding parameterised handlers as ordinary deep handlers may be observable

in practice as the latter introduce a new closure per operation invocation.

Chapter 7 explores the relative efficiency of a base language, λ→b , and its extension

with effect handlers, λ→h , through the lens of type-respecting expressivity. Concretely,

we used the example program of generic count to show that λ→h admits realisations

of this program whose asymptotic efficiency is better than any possible realisation in

λ→b . Concretely, we established that the lower bound of generic count on n-standard

predicates in λ→b is Ω(n2n), whilst the worst case upper bound in λ→h is O(2n). Hence

there is a strict efficiency gap between the two languages. We observed this efficiency

gap in practice on several benchmarks. The lower runtime bound also applies to a

language λ→s which extends λ→b with state. Although, I have not spelled out the details

here, in Hillerström et al. [123] we have verified that the lower bound also applies to a

language λ→e with Benton and Kennedy-style exceptions and handlers [18]. The lower

bound also applies to the combined language λ→se with both state and exceptions — this

seems to bring us close to the expressive power of real languages such as Standard ML,

Java, and Python, strongly suggesting that the speedup we have discussed is unattainable

in these languages.

The positive result for λ→h extends to other control operators by appeal to existing

results on interdefinability of handlers and other control operators [99, 217].

From a practical point of view one might be tempted to label the efficiency result

as merely of theoretical interest, since an Ω(2n) runtime is already infeasible. However,

what has been presented is an example of a much more pervasive phenomenon, and the

8.3. On the expressive power of effect handlers 225

generic count example serves merely as a convenient way to bring this phenomenon into

sharp formal focus. For example, suppose that our programming task was not to count

all solutions to P, but to find just one of them. It is informally clear that for many kinds

of predicates this would in practice be a feasible task, and also that we could still gain

our factor n speedup here by working in a language with first-class control. However,

such an observation appears less amenable to a clean mathematical formulation, as the

runtimes in question are highly sensitive to both the particular choice of predicate and

the search order employed.

8.3.1 Future work

Efficiency of handler encodings Although, I do not give a formal proof for the

efficiency of the shallow as deep encoding in Chapter 6 it seems intuitively clear that

the encoding is rather inefficient. In fact in Appendix B.2 and B.3 of Hillerström and

Lindley [120] we show empirically that the encoding is inefficient. An interesting

question is whether there exists an efficient encoding of shallow handlers using deep

handlers. Formally proving the absence of an efficient encoding would give a strong

indication of the relative computational expressive power between shallow and deep

handlers. Likewise discovering that an efficient encoding does exist would tell us that

it may not matter computationally whether a language incorporates shallow or deep

handlers.

Effect tracking breaks asymptotic improvement The result of Chapter 7 does not

immediately carry over to a language with an effect system as the implementation of

generic search in λ→h would introduce an effectful operation, which requires a change

of types. In order to state and prove the result in the presence of an effect system some

other refined, possibly new, notion of expressivity seems necessary.

Asymptotic improvement with affine handlers The result of Chapter 7 does not

immediately remain true in the presence of affine effect handlers (handlers which their

resumptions at most once) as they make it possible to encode coroutines. The present

proof method does not readily adapt to a situation with coroutines, because the proof

depend at various points on an orderly nesting of subcomputations which corouting

would break.

226 Chapter 8. Conclusions and future work

Efficiency hierarchy of control The definability hierarchy of various control con-

structs such as iteration, recursion, recursion with state, and first class control is fairly

well-understood [178–180]. However, the relative asymptotic efficiency between them

is less well-understood. It would be interesting to formally establish a hierarchy of rel-

ative asymptotic efficiency between various control constructs in the style of Chapter 7.

Part V

Appendices

227

Appendix A

Continuations

A continuation represents the control state of computation at a given point during eval-

uation. The control state contains the necessary operational information for evaluation

to continue. As such, continuations drive computation. Continuations are one of those

canonical ideas, that have been discovered multiple times and whose definition predates

their use [239]. The term ‘continuation’ first appeared in the literature in 1974, when

Strachey and Wadsworth [255] used continuations to give a denotational semantics to

programming languages with unrestricted jumps [256].

The inaugural use of continuations came well before Strachey and Wadsworth’s

definition. About a decade earlier continuation passing style had already been con-

ceived, if not in name then in spirit, as a compiler transformation for eliminating labels

and goto statements [239]. In the mid 1960s Landin [161] introduced the J operator as

a programmatic mechanism for manipulating continuations.

Landin’s J operator is an instance of a first-class control operator, which is a mechan-

ism that lets programmers reify continuations as first-class objects, that can be invoked,

discarded, or stored for later use. There exists a wide variety of control operators, which

expose continuations of varying extent and behaviour.

The purpose of this chapter is to examine control operators and their continuations

in programming. Section A.1 examines different notions of continuations by character-

ising their extent and behaviour operationally. Section A.2 contains a detailed overview

of various control operators that appear in programming languages and in the literat-

ure. Section A.3 summarises some applications of continuations, whilst Section A.4

contains a brief summary of ideas for constraining the power of continuations. Lastly,

Section A.5 outlines some implementation strategies for continuations.

229

230 Appendix A. Continuations

A.1 Classifying continuations

The term ‘continuation’ is really an umbrella term that covers several distinct notions

of continuations. It is common in the literature to find the word ‘continuation’ accom-

panied by a qualifier such as full, partial, abortive, escape, undelimited, delimited, com-

posable, or functional (in Chapter 4 I will extend this list by three new ones). Some of

these notions of continuations are synonymous, whereas others have distinct meanings.

Common to all notions of continuations is that they represent the control state. How-

ever, the extent and behaviour of continuations differ widely from notion to notion. The

essential notions of continuations are undelimited/delimited and abortive/composable.

To tell them apart, we will classify them according to their operational behaviour.

The extent and behaviour of a continuation in programming are determined by its

introduction and elimination forms, respectively. Programmatically, a continuation is

introduced via a control operator, which reifies the control state as a first-class object,

e.g. a function, that can be eliminated via some form of application.

A.1.1 Introduction of continuations

The extent of a continuation determines how much of the control state is contained with

the continuation. The extent can be either undelimited or delimited, and it is determined

at the point of capture by the control operator.

We need some notation for control operators in order to examine the introduction

of continuations operationally. We will use the syntax ctrl k.M to denote a control

operator, or control reifier, which that reifies the control state and binds it to k in the

computation M. Here the control state will simply be an evaluation context. We will

denote continuations by a special value contE , which is indexed by the reified evaluation

context E to make it notationally convenient to reflect the context again. To characterise

delimited continuations we also need a control delimiter. We will write del.M to denote

a syntactic marker that delimits some computation M.

Undelimited continuation The extent of an undelimited continuation is indefinite

as it ranges over the entire remainder of computation. In functional programming lan-

guages undelimted control operators most commonly expose the current continuation,

which is the precisely continuation following the control operator. The following is the

characteristic reduction for the introduction of the current continuation.

E [ctrl k.M]⇝ E [M[contE/k]]

A.1. Classifying continuations 231

The evaluation context E is the continuation of ctrl. The evaluation context on the left

hand side gets reified as a continuation object, which is accessible inside of M via k. On

the right hand side the entire context remains in place after reification. Thus, the current

continuation is evaluated regardless of whether the continuation object is invoked. This

is an instance of non-abortive undelimited control. Alternatively, the control operator

can abort the current continuation before proceeding as M, i.e.

E [ctrl k.M]⇝M[contE/k]

This is the characteristic reduction rule for abortive undelimited control. The rule is

nearly the same as the previous, except that on the right hand side the evaluation con-

text E is discarded after reification. Now, the programmer has control over the whole

continuation, since it is entirely up to the programmer whether E gets evaluated.

Imperative statement-oriented programming languages commonly expose the caller

continuation, typically via a return statement. The caller continuation is the continuation

of the invocation context of the control operator. Characterising undelimited caller

continuations is slightly more involved as we have to remember the continuation of

the invocation context. We will use a bold lambda λλλ as a syntactic runtime marker

to remember the continuation of an application. In addition we need three reduction

rules, where the first is purely administrative, the second is an extension of regular

application, and the third is the characteristic reduction rule for undelimited control

with caller continuations.

λλλ.V ⇝ V

(λx.N)V ⇝ λλλ.N[V/x]

E [λλλ.E ′[ctrl k.M]] ⇝ E [λλλ.E ′[M[contE/k]]], where E ′ contains no λλλ

The first rule accounts for the case where λλλ marks a value, in which case the marker is

eliminated. The second rule marks inserts a marker after an application such that this

position can be recalled later. The third rule is the interesting rule. Here an occurrence

of ctrl reifies E , the continuation of some application, rather than its current continu-

ation E ′. The side condition ensures that ctrl reifies the continuation of the inner most

application. This rule characterises a non-abortive control operator as both contexts,

E and E ′, are left in place after reification. It is straightforward to adapt this rule to

an abortive operator. Although, there is no abortive undelimited control operator that

captures the caller continuation in the literature.

It is worth noting that the two first rules can be understood locally, that is without

mentioning the enclosing context, whereas the third rule must be understood globally.

232 Appendix A. Continuations

In the literature an undelimited continuation is also known as a ‘full’ continuation.

Delimited continuation A delimited continuation is in some sense a refinement of

a undelimited continuation as its extent is definite. A delimited continuation ranges

over some designated part of computation. A delimited continuation is introduced by a

pair operators: a control delimiter and a control reifier. The control delimiter acts as a

barrier, which prevents the reifier from reaching beyond it, e.g.

del.V ⇝ V

del.E [ctrl k.M] ⇝ del.E [M[contE/k]]

The first rule applies whenever the control delimiter delimits a value, in which case

the delimiter is eliminated. The second rule is the characteristic reduction rule for a

non-abortive delimited control reifier. It reifies the context E up to the control delimiter,

and then continues as M under the control delimiter. Note that the continuation of del
is invisible to ctrl, and thus, the behaviour of ctrl can be understood locally. Most

commonly, the control reifier is abortive, i.e.

del.E [ctrl k.M] ⇝ del.M[contE/k].

The design space of delimited control is somewhat richer than that of undelimited con-

trol, as the control delimiter may remain in place after reification, as above, be discarded,

be included in the continuation, or a combination. Similarly, the control reifier may reify

the continuation up to and including the delimiter or, as above, without the delimiter.

Dybvig et al. [75] use a taxonomy for delimited abortive control reifiers, which classi-

fies them according to how they interact with their respective control delimiter. They

identify four variations.

+ctrl+ The control reifier includes a copy of the control delimiter in the reified context,

and leaves the original in place, i.e.

del.E [ctrl k.M]⇝ del.M[contdel.E/k]

+ctrl− The control delimiter remains in place after reification as the control reifier

reifies the context up to, but not including, the delimiter, i.e.

del.E [ctrl k.M]⇝ del.M[contE/k]

−ctrl+ The control reifier includes a copy of the control delimiter in the reified context,

but discards the original instance, i.e.

del.E [ctrl k.M]⇝M[contE/k]

A.1. Classifying continuations 233

−ctrl− The control reifier reifies the context up to, but not including, the delimiter and

subsequently discards the delimiter, i.e.

del.E [ctrl k.M]⇝M[contE/k]

In the literature a delimited continuation is also known as a ‘partial’ continuation.

A.1.2 Elimination of continuations

The purpose of continuation application is to reinstall the captured context. However,

a continuation application may affect the control state in various ways. The literature

features two distinct behaviours of continuation application: abortive and composable.

We need some notation for application of continuations in order to characterise abortive

and composable behaviours. We will write resume contE V to denote the application

of some continuation object cont to some value V .

Abortive continuation Upon invocation an abortive continuation discards the entire

evaluation context before reinstalling the captured context. In other words, an abortive

continuation replaces the current context with its captured context, i.e.

E [resume contE ′ V]⇝ E ′[V]

The current context E is discarded in favour of the captured context E ′ (whether the

two contexts coincide depends on the control operator). Abortive continuations are a

global phenomenon due to their effect on the current context. However, in conjunction

with a control delimiter the behaviour of an abortive continuation can be localised, i.e.

del.E [resume contE ′ V]⇝ E ′[V]

Here, the behaviour of continuation does not interfere with the context of del, and thus,

the behaviour can be understood and reasoned about locally with respect to del.
A key characteristic of an abortive continuation is that composition is meaningless.

For example, composing an abortive continuation with itself have no effect.

E [resume contE ′ (resume contE ′ V)]⇝ E ′[V]

The innermost application erases the outermost application term, consequently only the

first application of cont occurs during runtime. It is as if the first application occurred

in tail position.

234 Appendix A. Continuations

The continuations introduced by the early control operators were all abortive, since

they were motivated by modelling unrestricted jumps akin to goto in statement-oriented

programming languages.

An abortive continuation is also known as an ‘escape’ continuation in the literature.

Composable continuation A composable continuation splices its captured context

with the its invocation context, i.e.

resume contE V⇝ E [V]

The application of a composable continuation can be understood locally, because it has

no effect on its invocation context. A composable continuation behaves like a function

in the sense that it returns to its caller, and thus composition is well-defined, e.g.

resume contE (resume contE V)⇝ resume contE E [V]

The innermost application composes the captured context with the outermost applica-

tion. Thus, the outermost application occurs when E [V] has been reduced to a value.

In the literature, virtually every delimited control operator provides composable con-

tinuations. However, the notion of composable continuation is not intimately connected

to delimited control. It is perfect possible to conceive of a undelimited composable

continuation, just as a delimited abortive continuation is conceivable.

A composable continuation is also known as a ‘functional’ continuation in the

literature.

A.2 Controlling continuations

As suggested in the previous section, the design space for continuation is rich. This

richness is to an extent reflected by the large amount of control operators that appear

in the literature and in practice. The purpose of this section is to survey a considerable

subset of the first-class sequential control operators that occur in the literature and

in practice. Control operators for parallel programming will not be considered here.

Tables A.1 and A.2 provide classifications of some of the undelimited control operators

and delimited control operators, respectively, that appear in the literature.

Note that a first-class control operator is typically not itself a first-class citizen,

rather, the label ‘first-class’ means that the reified continuation is a first-class object.

Control operators that reify the current continuation can be made first-class by enclosing

A.2. Controlling continuations 235

Name Continuation behaviour Canonical reference

J Abortive Landin [161]

escape Abortive Reynolds [240]

catch Abortive Sussman and Steele [257]

callcc Abortive Clinger et al. [50]

F Composable Felleisen et al. [85]

C Abortive Felleisen and Friedman [83]

callcomp Composable Flatt and PLT [93]

Table A.1: Classification of first-class undelimited control operators (listed in chrono-

logical order).

Name Taxonomy Continuation behaviour Canonical reference

control/prompt +ctrl− Composable Felleisen [81]

shift/reset +ctrl+ Composable Danvy and Filinski [62]

spawn −ctrl+ Composable Hieb and Dybvig [116]

splitter −ctrl− Abortive, composable Queinnec and Serpette [234]

fcontrol −ctrl− Composable Sitaram [250]

cupto −ctrl− Composable Gunter et al. [111]

catchcont −ctrl− Composable Longley [177]

effect handlers −ctrl+ Composable Plotkin and Pretnar [228]

Table A.2: Classification of first-class delimited control operators (listed in chronolo-

gical order).

them in a λ-abstraction. Obviously, this trick does not work for operators that reify the

caller continuation.

To study the control operators we will make use of a small base language.

A small calculus for control To look at control we will use a simply typed fine-

grain call-by-value calculus. Although, we will sometimes have to discard the types,

as many of the control operators were invented and studied in a untyped setting. The

calculus is essentially the same as the one used in Chapter 7, except that here we

will have an explicit invocation form for continuations. Although, in practice most

systems disguise continuations as first-class functions, but for a theoretical examination

it is convenient to treat them specially such that continuation invocation is a separate

236 Appendix A. Continuations

Types A,B ∈ Type ::= 1 | A→ B | A×B | Cont⟨A;B⟩ | A+B

Values V,W ∈ Val ::= ⟨⟩ | λxA.M | ⟨V;W⟩ | contE | inl V | inr W | x
Computations M,N ∈ Comp ::= return V | let x←M in N | let ⟨x;y⟩= V in N

| V W | resume V W

Evaluation contexts E ∈ Ctx ::= [] | let x← E in N

Figure A.1: Types and term syntax

reduction rule from ordinary function application. Figure A.1 depicts the syntax of types

and terms in the calculus. The types are the standard simple types with the addition of

the continuation object type Cont⟨A;B⟩, which is parameterised by an argument type

and a result type, respectively. The static semantics is standard as well, except for the

continuation invocation primitive resume.

Γ ⊢ V : A Γ ⊢W : Cont⟨A;B⟩

Γ ⊢ resume W V : B

Although, it is convenient to treat continuation application specially for operational

inspection, it is rather cumbersome to do so when studying encodings of control oper-

ators. Therefore, to obtain the best of both worlds, the control operators will reify their

continuations as first-class functions, whose body is resume-expression. To save some

ink, we will use the following notation.

⌜contE⌝
def
= λx.resume contE x

We will permit ourselves various syntactic sugar to keep the examples relative concise,

e.g. we write the examples in ordinary call-by-value.

A.2.1 Undelimited control operators

The early inventions of undelimited control operators were driven by the desire to

provide a ‘functional’ equivalent of jumps as provided by the infamous goto in imper-

ative programming.

In 1965 Peter Landin unveiled the first first-class control operator: the J oper-

ator [159–161]. Later in 1972 influenced by Landin’s J operator John Reynolds de-

signed the escape operator [240]. Influenced by escape, Sussman and Steele designed,

A.2. Controlling continuations 237

implemented, and standardised the catch operator in Scheme in 1975. A while thereafter

the perhaps most famous undelimited control operator appeared: callcc. It was designed

in 1982 and standardised in 1985 as a core feature of Scheme. Following on from callcc

a wide range of different control operators was designed. A common characteristic of

the early control operators is that their capture mechanisms are abortive and their cap-

tured continuations are abortive, save for one, namely, Felleisen’s F operator. Though, it

is worth remarking that Flatt et al. [94] devised a non-abortive and composable variant

of callcc. Another common characteristic is that every operator, except for Landin’s J

operator, capture the current continuation.

Reynolds’ escape The escape operator was introduced by Reynolds in 1972 [240] to

make statement-oriented control mechanisms such as jumps and labels programmable

in an expression-oriented language. The operator introduces a new computation form.

M,N ∈ Comp ::= · · · | escape k in M

The variable k is called the escape variable and it is bound in M. The escape variable

exposes the current continuation of the escape-expression to the programmer. The

captured continuation is abortive, thus an invocation of the escape variable in the body

M has the effect of performing a non-local exit.

In terms of jumps and labels the escape-expression can be understood as corres-

ponding to a kind of label and an application of the escape variable k can be understood

as corresponding to a jump to the label.

Reynolds’ original treatise of escape was untyped, and as such, the escape variable

could escape its captor, e.g.

let k← (escape k in k) in N

Here the current continuation, N, gets bound to k in the escape-expression, which

returns k as-is, and thus becomes available for use within N. Reynolds recognised

the power of this idiom and noted that it could be used to implement coroutines and

backtracking [240]. Reynolds did not develop the static semantics for escape, however,

it is worth noting that this idiom require recursive types to type check. Even in a

language without recursive types, the continuation may propagate outside its binding

escape-expression if the language provides an escape hatch such as mutable references.

An invocation of the continuation discards the invocation context and plugs the

238 Appendix A. Continuations

argument into the captured context.

Capture E [escape k in M] ⇝ E [M[⌜contE⌝/k]]

Resume E [resume contE ′ V] ⇝ E ′[V]

The Capture rule leaves the context intact such that if the body M does not invoke k

then whatever value M reduces is plugged into the context. The Resume discards the

current context E and installs the captured context E ′ with the argument V plugged in.

Sussman and Steele’s catch In 1975 Sussman and Steele [257] designed and im-

plemented the catch operator in Scheme. It is a more powerful variant of the catch

operator in MacLisp [204]. The MacLisp catch operator had a companion throw op-

eration, which would unwind the evaluation stack until it was caught by an instance

of catch. Sussman and Steele’s catch operator dispenses with the throw operation and

instead provides the programmer with access to the current continuation. Their operator

is identical to Reynolds’ escape operator, save for the syntax.

M,N ∈ Comp ::= · · · | catch k.M

Although, their syntax differ, their dynamic semantics are the same.

Capture E [catch k.M] ⇝ E [M[⌜contE⌝/k]]

Resume E [resume contE ′ V] ⇝ E ′[V]

As an aside it is worth to mention that Cartwright and Felleisen [43] used a variation of

catch to show that control operators enable programs to observe the order of evaluation.

Call-with-current-continuation In 1982 the Scheme implementors observed that

they could dispense of the special syntax for catch in favour of a higher-order function

that would apply its argument to the current continuation, and thus callcc was born

(callcc is short for call-with-current-continuation) [50].

Unlike the previous operators, callcc augments the syntactic categories of values.

V,W ∈ Val ::= · · · | callcc

The value callcc is essentially a hard-wired function name. Being a value means that the

operator itself is a first-class entity which entails it can be passed to functions, returned

from functions, and stored in data structures. Operationally, callcc captures the current

continuation and aborts it before applying it on its argument.

A.2. Controlling continuations 239

Capture E [callcc V] ⇝ E [V ⌜contE⌝]

Resume E [resume contE ′ V] ⇝ E ′[V]

From the dynamic semantics it is evident that callcc is a syntax-free alternative to catch
(although, it is treated as a special value form here; in actual implementation it suffices

to recognise the object name of callcc). They are trivially macro-expressible.

Jcatch k.MK def
= callcc(λk.JMK)

JcallccK def
= λf .catch k.f k

Call-with-composable-continuation A variation of callcc is call-with-composable-

continuation, abbreviated callcomp. As the name suggests the captured continuation

is composable rather than abortive. It was introduced by Flatt et al. [94] in 2007, and

implemented in November 2006 according to the history log of Racket (Racket was

then known as MzScheme, version 360) [93]. The history log classifies it as a delimited

control operator. Truth to be told nowadays in Racket virtually all control operators

are delimited, even callcc, because they are parameterised by an optional prompt tag.

If the programmer does not supply a prompt tag at invocation time then the optional

parameter assume the actual value of the top-level prompt, effectively making the extent

of the captured continuation undelimited. In other words its default mode of operation

is undelimited, hence the justification for categorising it as such.

Like callcc this operator is a value.

V,W ∈ Val ::= · · · | callcomp

Unlike callcc, captured continuations behave as functions.

Capture E [callcomp V] ⇝ E [V ⌜contE⌝]

Resume resume contE V ⇝ E [V]

The capture rule for callcomp is identical to the rule for callcc, but the resume rule

is different. The effect of continuation invocation can be understood locally as it does

not erase the global evaluation context, but rather composes with it. To make this more

240 Appendix A. Continuations

tangible consider the following example reduction sequence.

1+ callcomp(λk.resume k (resume k 0))

⇝+ (Capture E = 1+[])

1+(resume contE (resume contE 0))

⇝+ (Resume with E [0])

1+(resume contE 1)

⇝+ (Resume with E [1])

1+2⇝ 3

The operator reifies the current evaluation context as a continuation object and passes it

to the function argument. The evaluation context is left in place. As a result an invoca-

tion of the continuation object has the effect of duplicating the context. In this particular

example the context has been duplicated twice to produce the result 3. Contrast this

result with the result obtained by using callcc.

1+ callcc(λk.absurd resume k (absurd resume k 0))

⇝+ (Capture E = 1+[])

1+(absurd resume contE (absurd resume contE 0))

⇝ (Resume with E [0])

1

The second invocation of contE never enters evaluation position, because the first in-

vocation discards the entire evaluation context. Our particular choice of syntax and

static semantics already makes it immediately obvious that callcc cannot be directly

substituted for callcomp, and vice versa, in a way that preserves operational behaviour.

An interesting question is whether callcc and callcomp are interdefinable. Presently,

the literature does not seem to answer to this question. I conjecture that the operators

exhibit essential differences, meaning they cannot encode each other. The intuition

behind this conjecture is that for any encoding of callcomp in terms of callcc must

be able to preserve the current evaluation context, e.g. using a state cell akin to how

Filinski [87] encodes composable continuations using abortive continuations and state.

The other way around also appears to be impossible, because neither the base calculus

nor callcomp has the ability to discard an evaluation context.

C and F The C operator is a variation of callcc that provides control over the whole

continuation as it aborts the current continuation after capture, whereas callcc implicitly

invokes the current continuation on the value of its argument. The C operator was

A.2. Controlling continuations 241

introduced by Felleisen et al. in two papers during 1986 [83, 84]. The following year,

Felleisen et al. [85] introduced the F operator which is a variation of C, whose captured

continuation is composable.

In our framework both operators are value forms.

V,W ∈ Val ::= · · · | C | F

The dynamic semantics of C and F are as follows.

C-Capture E [CV] ⇝ V ⌜contE⌝

C-Resume E [resume contE ′ V] ⇝ E ′[V]

F-Capture E [FV] ⇝ V ⌜contE⌝

F-Resume resume contE V ⇝ E [V]

Their capture rules are identical. Both operators abort the current continuation upon

capture. This is what sets F apart from the other composable control operator callcomp.

The resume rules of C and F show the difference between the two operators. The

C operator aborts the current continuation and reinstall the then-current continuation

just like callcc, whereas the resumption of a continuation captured by F composes the

current continuation with the then-current continuation.

Felleisen et al. [85] show that F can simulate C.

JCK def
= λm.F(λk.m(λv.F(λ_.k v)))

The first application of F has the effect of aborting the current continuation, whilst the

second application of F aborts the invocation context.

Felleisen et al. [85] also postulate that C cannot express F.

Landin’s J operator The J operator was introduced by Peter Landin in 1965 (mak-

ing it the world’s first first-class control operator) as a means for translating jumps

and labels in the statement-oriented language Algol 60 into an expression-oriented lan-

guage [159–161]. Landin used the J operator to account for the meaning of Algol 60

labels. The following example due to Danvy and Millikin [64] provides a flavour of the

correspondence between labels and J.

SJbegin s1; goto L; L : s2 endK

= λ⟨⟩.let L← JSJs2K in let ⟨⟩ ← SJs1K⟨⟩ in resume L⟨⟩

242 Appendix A. Continuations

Here SJ−K denotes the translation of statements. In the image, the label L manifests as

an application of J and the goto manifests as an application of continuation captured

by J. The operator extends the syntactic category of values with a new form.

V,W ∈ Val ::= · · · | J

The previous example hints at the fact that the J operator is quite different to the pre-

viously considered undelimited control operators in that the captured continuation

is not the current continuation, but rather, the continuation of statically enclosing λ-

abstraction. In other words, J provides access to the continuation of its the caller. To

this effect, the continuation object produced by an application of J may be thought of

as a first-class variation of the return statement commonly found in statement-oriented

languages. Since it is a first-class object it can be passed to another function, meaning

that any function can endow other functions with the ability to return from it, e.g.

f
def
= λg.let return← J(λx.x) in g return; true

If the function g does not invoke its argument, then f returns true, e.g.

f (λreturn.false)⇝+ true

However, if g does apply its argument, then the value provided to the application be-

comes the return value of f, e.g.

f (λreturn.resume return false)⇝+ false

The function argument gets post-composed with the continuation of the calling context.

The particular application J(λx.x) is so idiomatic that it has its own name: JI, where I
is the identity function.

Any meaningful applications of J must appear under a λ-abstraction, because the ap-

plication captures its caller’s continuation. In order to capture the caller’s continuation

we annotate the evaluation contexts for ordinary applications.

Annotate E [(λx.M)V] ⇝ Eλ[M[V/x]]

Capture Eλ[D[JW]] ⇝ Eλ[D[⌜cont⟨Eλ;W⟩⌝]]

Resume E [resume cont⟨E ′;W⟩V] ⇝ E ′[W V]

The Capture rule only applies if the application of J takes place inside an annotated

evaluation context. The continuation object produced by a J application encompasses

the caller’s continuation Eλ and the value argument W. This continuation object may be

A.2. Controlling continuations 243

invoked in any context. An invocation discards the current continuation E and installs

E ′ instead with the J-argument W applied to the value V .

Landin and Thielecke noticed that J can be recovered from the special form JI [261].

Taking JI to be a primitive, we can translate J to a language with JI as follows.

JJK def
= (λk.λf .λx.resume k (f x))(JI)

The term JI captures the caller continuation, which gets bound to k. The shape of

the residual term is as expected: when JJK is applied to a function, it returns another

function, which when applied ultimately invokes the captured continuation.

Let us end by remarking that the J operator is expressive enough to encode a familiar

control operator like callcc [260].

JcallccK def
= λf .f JI

Felleisen [80] has shown that the J operator can be syntactically embedded using callcc.

Jλx.MK def
= λx.callcc(λk.JMK[J 7→ λf .λy.k (f y)])

The key point here is that λ-abstractions are not translated homomorphically. The

occurrence of callcc immediately under the binder reifies the current continuation of

the function, which is the precisely the caller continuation in the body M. In M the

symbol J is substituted with a function that simulates J by post-composing the captured

continuation with the function argument provided to J.

A.2.2 Delimited control operators

The main problem with undelimited control is that it is the programmatic embodiment of

the proverb all or nothing in the sense that an undelimited continuation always represent

the entire residual program from its point of capture. In its basic form undelimited

control does not offer the flexibility to reify only some segments of the evaluation

context. Delimited control rectifies this problem by associating each control operator

with a control delimiter such that designated segments of the evaluation context can be

captured individually without interfering with the context beyond the delimiter. This

provides a powerful and modular programmatic tool that enables programmers to isolate

the control flow of specific parts of their programs, and thus enables local reasoning

about the behaviour of control infused program segments. One may argue that delimited

control to an extent is more first-class than undelimited control, because, in contrast to

undelimited control, it provides more fine-grain control over the evaluation context.

244 Appendix A. Continuations

In 1988 Felleisen introduced the first control delimiter known as ‘prompt’, as a com-

panion to the composable control operator F (alias control) [81]. Felleisen’s line of work

was driven by a dynamic interpretation of composable continuations in terms of algeb-

raic manipulation of control component of abstract machines. In the context of abstract

machines, a continuation is defined as a sequence of frames, whose end is denoted by a

prompt, and continuation composition is concatenation of their sequences [79, 83, 86].

The natural outcome of this interpretation is the control phenomenon known as dynamic

delimited control, where the control operator is dynamically bound by its delimiter. An

application of a control operator causes the machine to scour through control component

to locate the corresponding delimiter.

The following year, Danvy and Filinski [61] introduced an alternative pair of op-

erators known as ‘shift’ and ‘reset’, where ‘shift’ is the control operator and ‘reset’ is

the control delimiter. Their line of work were driven by a static interpretation of com-

posable continuations in terms of continuation passing style (CPS). In ordinary CPS a

continuation is represented as a function, however, there is no notion of composition,

because every function call must appear in tail position. The ‘shift’ operator enables

composition of continuation functions as it provides a means for abstracting over con-

trol contexts. Technically, this works by iterating the CPS transform twice on the source

program, where ‘shift’ provides access to continuations that arise from the second trans-

formation. The ‘reset’ operator acts as the identity for continuation functions, which

effectively delimits the extent of ‘shift’ as in terms of CPS the identity function denotes

the top-level continuation. This interpretation of composable continuations as functions

naturally leads to the control phenomenon known as static delimited control, where the

control operator is statically bound by its delimiter.

The machine interpretation and continuation passing style interpretation of compos-

able continuations were eventually connected through defunctionalisation and refunc-

tionalisation in a line of work by Danvy and collaborators [1, 3, 4, 58, 59, 65, 66].

Since control/prompt and shift/reset a whole variety of alternative delimited control

operators has appeared.

Felleisen’s control and prompt Control and prompt were introduced by Felleisen in

1988 [81]. The control operator ‘control’ is a rebranding of the F operator. Although,

the name ‘control’ was first introduced a little later by Sitaram and Felleisen [251]. A

prompt acts as a control-flow barrier that delimits different parts of a program, enabling

programmers to manipulate and reason about control locally in different parts of a

A.2. Controlling continuations 245

program. The name ‘prompt’ is intended to draw connections to shell prompts, and how

they act as barriers between the user and operating system.

In this presentation both control and prompt appear as computation forms.

M,W ∈ Comp ::= · · · | control k.M | # M

The control k.M expression reifies the context up to the nearest, dynamically determ-

ined, enclosing prompt and binds it to k inside of M. A prompt is written using the sharp

(#) symbol. The prompt remains in place after the reification, and thus any subsequent

application of control will be delimited by the same prompt. Presenting control as

a binding form may conceal the fact that it is same as F. However, the presentation

here is close to Sitaram and Felleisen’s presentation, which in turn is close to actual

implementations of control.
The static semantics of control and prompt were absent in Felleisen’s original treat-

ment. Later, Kameyama and Yonezawa [139] have given a polymorphic type system

with answer type modifications for control and prompt (we will discuss answer type

modification when discussing shift/reset). It is also worth mentioning that Dybvig et al.

[75] present a typed embedding of control and prompts in Haskell (actually, they present

an entire general monadic framework for implementing control operators based on the

idea of multi-prompts, which are a slight generalisation of prompts — we will revisit

multi-prompts when we discuss splitter and cupto).

The dynamic semantics for control and prompt consist of three rules: 1) handle

return through a prompt, 2) continuation capture, and 3) continuation invocation.

Value # V ⇝ V

Capture # E [control k.M] ⇝ # M[⌜contE⌝/k], where E contains no #

Resume resume contE V ⇝ E [V]

The Value rule accounts for the case when the computation constituent of # has been

reduced to a value, in which case the prompt is removed and the value is returned. The

Capture rule states that an application of control captures the current continuation up

to the nearest enclosing prompt. The current continuation (up to the nearest prompt)

is also aborted. If we erase # from the rule, then it is clear that control has the same

dynamic behaviour as F. It is evident from the Resume rule that control and prompt are

an instance of a dynamic control operator, because resuming the continuation object

produced by control does not install a new prompt.

246 Appendix A. Continuations

To illustrate # and control in action, let us consider a few simple examples.

1+# 2+(control k.3+ k 0)+(control k′.k′ 4)

⇝+ (Capture E = 2+[]+(control k′.k′ 4))

1+# 3+ resume contE 0

⇝ (Resume with 0)

1+# 3+(2+0)+(control k′.k′ 4)

⇝+ (Capture E ′ = 5+[])

1+# resume contE ′ 4

⇝+ (Resume with 4)

1+# 5+4

⇝+ (Value rule)

1+9⇝ 10

The continuation captured by the either application of control is oblivious to the con-

tinuation 1+[] of #. Since the captured continuation is composable it returns to its call

site. The invocation of the captured continuation k returns the value 0, but splices the

captured context into the context 3+ []. The second application of control captures

the new context up to the delimiter. The continuation is immediately applied to the

value 4, which causes the captured context to be reinstated with the value 4 plugged in.

Ultimately the delimited context reduces to the value 9, after which the prompt # gets

eliminated, and the continuation of the # is applied to the value 9, resulting in the final

result 10.

Let us consider a slight variation of the previous example.

1+# 2+(control k.3+ k 0)+(control k′.4)

⇝+ (Capture E = 2+[]+(control k′.4))

1+# 3+ resume contE 0

⇝ (Resume with 0)

1+# 3+(2+0)+(control k′.4)

⇝+ (Capture E ′ = 5+[])

1+# 4

⇝+ (Value rule)

1+4⇝ 5

Here the computation constituent of the second application of control drops the cap-

tured continuation, which has the effect of erasing the previous computation, ultimately

resulting in the value 5 rather than 10. The continuation captured by the first application

A.2. Controlling continuations 247

of control contains another application of control. The application of the continuation

immediate reinstates the captured context filling the hole left by the first instance of

control with the value 0. The second application of control captures the remainder

of the computation of to #. However, the captured context gets discarded, because the

continuation k′ is never invoked.

A slight variation on control and prompt is control0 and #0 [247]. The main differ-

ence is that control0 removes its corresponding prompt, i.e.

Capture0 #0 E [control0 k.M] ⇝ M[⌜contE⌝/k], where E contains no #0

Higher-order programming with control and prompt (and delimited control in general)

is fragile, because the body of a higher-order function may inadvertently trap instances

of control in its functional arguments. This observation led Sitaram and Felleisen [251]

to define an indexed family of control and prompt pairs such that instances of control

and prompt can be layered on top of one another. The idea is that the index on each pair

denotes their level i such that controli matches #i and may capture any other instances

of #j where j < i.

Danvy and Filinski’s shift and reset Shift and reset first appeared in a technical

report by Danvy and Filinski in 1989. Although, perhaps the most widely known ac-

count of shift and reset appeared in Danvy and Filinski’s seminal work on abstracting

control the following year [62]. Shift and reset differ from control and prompt in that

the contexts abstracted by shift are statically scoped by reset.

In our setting both shift and reset appear as computation forms.

M,N ∈ Comp ::= · · · | shift k.M | ⟨⟨⟨M⟩⟩⟩

The shift construct captures the continuation delimited by an enclosing ⟨⟨⟨−⟩⟩⟩ and binds

it to k in the computation M.

Danvy and Filinski’s original development of shift and reset stands out from the

previous developments of control operators, as they presented a type system for shift

and reset, whereas previous control operators were originally studied in untyped set-

tings. The standard inference-based approach to type checking [222, 223] is inadequate

for type checking shift and reset, because shift may alter the answer type of the expres-

sion (the terminology ‘answer type’ is adopted from typed continuation passing style

transforms, where the codomain of every function is transformed to yield the type of

whatever answer the entire program yields [196]). To capture the potent power of shift

248 Appendix A. Continuations

in the type system they introduced the notion of answer type modification [61]. The

addition of answer type modification changes type judgement to be a five place relation.

Γ;B ⊢M : A;B′

This would be read as: in a context Γ where the original result type was B, the type of

M is A, and modifies the result type to B′. In this system the typing rule for shift is as

follows.

Γ,k : A/C→ B/C;D ⊢M : D;B′

Γ;B ⊢ shift k.M : A;B′

Here the function type constructor −/−→−/− has been endowed with the domain

and codomain of the continuation. The left hand side of→ contains the domain type

of the function and the codomain of the continuation, respectively. The right hand side

contains the domain of the continuation and the codomain of the function, respectively.

Answer type modification is a powerful feature that can be used to type embedded

languages, an illustrious application of this is Danvy’s typed printf [57]. A polymorphic

extension of answer type modification has been investigated by Asai and Kameyama

[11], Kiselyov and Shan [148] developed a substructural type system with answer type

modification, whilst Kobori et al. [155] demonstrated how to translate from a source lan-

guage with answer type modification into a system without using typed multi-prompts.

Differences between shift/reset and control/prompt manifest in the dynamic se-

mantics as well.

Value ⟨⟨⟨V⟩⟩⟩ ⇝ V

Capture ⟨⟨⟨E [shift k.M]⟩⟩⟩ ⇝ ⟨⟨⟨M[⌜cont⟨⟨⟨E⟩⟩⟩⌝/k]⟩⟩⟩, where E contains no ⟨⟨⟨−⟩⟩⟩
Resume resume cont⟨⟨⟨E⟩⟩⟩ V ⇝ ⟨⟨⟨E [V]⟩⟩⟩

The key difference between Felleisen’s control/prompt and shift/reset is that the Capture

rule for the latter includes a copy of the delimiter in the reified continuation. This de-

limiter gets installed along with the captured context E when the continuation object is

resumed. The extra reset has ramifications for the operational behaviour of subsequent

occurrences of shift in E . To put this into perspective, let us revisit the second con-

A.2. Controlling continuations 249

trol/prompt example with shift/reset instead.

1+⟨⟨⟨2+(shift k.3+ k 0)+(shift k′.4)⟩⟩⟩
⇝+ (Capture E = 2+[]+(shift k.4))

1+⟨⟨⟨resume contE 0⟩⟩⟩
⇝ (Resume with 0)

1+⟨⟨⟨3+⟨⟨⟨2+0+(shift k′.4)⟩⟩⟩⟩⟩⟩
⇝+ (Capture E ′ = 2+[])

1+⟨⟨⟨3+⟨⟨⟨4⟩⟩⟩⟩⟩⟩
⇝+ (Value rule)

1+⟨⟨⟨7⟩⟩⟩⇝+ 8

Contrast this result with the result 5 obtained when using control/prompt. In essence

the insertion of a new reset after resumption has the effect of remembering the local

context of the previous continuation invocation.

This difference naturally raises the question whether shift/reset and control/prompt

are interdefinable or exhibit essential expressivity differences. Shan [247] answered this

question demonstrating that shift/reset and control/prompt are macro-expressible. The

translations are too intricate to be reproduced here, however, it is worth noting that Shan

were working in the untyped setting of Scheme and the translation of control/prompt

made use of recursive continuations. Biernacki et al. [25] typed and reimplemented this

translation in Standard ML New Jersey [9], using Filinski’s encoding of shift/reset in

terms of callcc and state [87].

As with control and prompt there exist various variation of shift and reset. Danvy

and Filinski [61] also considered shift0 and ⟨⟨⟨−⟩⟩⟩0. The operational difference between

shift0/⟨⟨⟨−⟩⟩⟩0 and shift/⟨⟨⟨−⟩⟩⟩ manifests in the capture rule.

Capture0 ⟨⟨⟨E [shift0 k.M]⟩⟩⟩0 ⇝ M[⌜cont⟨⟨⟨E⟩⟩⟩0⌝/k], where E contains no ⟨⟨⟨−⟩⟩⟩0

The control reifier captures the continuation up to and including its delimiter, however,

unlike shift, it removes the control delimiter from the current evaluation context. Thus

shift0/⟨⟨⟨ −⟩⟩⟩0 are ‘dynamic’ variations on shift/⟨⟨⟨ −⟩⟩⟩. Materzok and Biernacki [190]

introduced ⟨⟨⟨− | −⟩⟩⟩ (pronounced “dollar0”) as an alternative control delimiter for shift0.

Value$0 ⟨⟨⟨V | x.N⟩⟩⟩ ⇝ N[V/x]

Capture$0 ⟨⟨⟨E [shift0 k.M] | x.N⟩⟩⟩ ⇝ M[⌜cont(x.N $0E)⌝/k],

where E contains no ⟨⟨⟨− | −⟩⟩⟩
Resume$0 resume cont(⟨⟨⟨E |x.N⟩⟩⟩) V ⇝ ⟨⟨⟨E [V] | x.N⟩⟩⟩

250 Appendix A. Continuations

The intuition here is that ⟨⟨⟨M | x.N⟩⟩⟩ evaluates M to some value V in a fresh context, and

then continues as N with x bound to V . Thus it builds in a form of “success continuation”

that makes it possible to post-process the result of a reset0 term. In fact, reset0 is macro-

expressible in terms of dollar0 [190].

J⟨⟨⟨M⟩⟩⟩0K
def
= ⟨⟨⟨JMK | x.x⟩⟩⟩

By taking the success continuation to be the identity function dollar0 becomes oper-

ationally equivalent to reset0. As it turns out reset0 and shift0 (together) can macro-

express dollar0 [190].

J⟨⟨⟨M | x.N⟩⟩⟩K def
= (λk.⟨⟨⟨(λx.shift0 z.k x)JMK⟩⟩⟩0)(λx.JNK)

This translation is a little more involved. The basic idea is to first explicit pass in the

success continuation, then evaluate M under a reset to yield value which gets bound to

x, and then subsequently uninstall the reset by invoking shift0 and throwing away the

captured continuation, afterwards we invoke the success continuation with the value x.

Queinnec and Serpette’s splitter The ‘splitter’ control operator reconciles abortive

continuations and composable continuations. It was introduced by Queinnec and Ser-

pette [234] in 1991. The name ‘splitter’ is derived from it operational behaviour, as an

application of ‘splitter’ marks evaluation context in order for it to be split into two parts,

where the context outside the mark represents the rest of computation, and the context

inside the mark may be reified into a delimited continuation. The operator supports

two operations ‘abort’ and ‘calldc’ to control the splitting of evaluation contexts. The

former has the effect of escaping to the outer context, whilst the latter reifies the inner

context as a delimited continuation (the operation name is short for “call with delimited

continuation”).

Splitter and the two operations abort and calldc are value forms.

V,W ∈ Val ::= · · · | splitter | abort | calldc

In their treatment of splitter, Queinnec and Serpette gave three different presentations of

splitter. The presentation that I have opted for here is close to their second presentation,

which is in terms of multi-prompt continuations. This variation of splitter admits a

pleasant static semantics too. Thus, we further extend the syntactic categories with the

A.2. Controlling continuations 251

machinery for first-class prompts.

A,B ∈ Type ::= · · · | Prompt A

V,W ∈ Val ::= · · · | p
M,N ∈ Comp ::= · · · | #V M

The type Prompt A classifies prompts whose answer type is A. Prompt names are

first-class values and denoted by p. The computation #V M denotes a computation M

delimited by a parameterised prompt, whose value parameter V is supposed to be a

prompt name. The static semantics of splitter, abort, and calldc are as follows.

Γ ⊢ splitter : (Prompt A→ A)→ A Γ ⊢ abort : Prompt A× (1→ A)→ B

Γ ⊢ calldc : Prompt A× ((B→ A)→ B)→ B

In this presentation, the operator and the two operations all amount to special higher-

order function symbols. The argument to splitter is parameterised by a prompt name.

This name is injected by splitter upon application. The operations abort and calldc
both accept as their first argument the name of the delimiting prompt. The second

argument of abort is a thunk, whilst the second argument of calldc is a higher-order

function, which accepts a continuation as its argument.

For the sake of completeness the prompt primitives are typed as follows.

Γ,p : Prompt A ⊢ p : Prompt A

Γ ⊢ V : Prompt A Γ ⊢M : A

Γ ⊢ #V M : A

The dynamic semantics of this presentation require a bit of generativity in order to

generate fresh prompt names. Therefore the reduction relation is extended with an

additional component to keep track of which prompt names have already been allocated.

AppSplitter splitter V,ρ ⇝ #p V p,ρ⊎{p}
Value #p V,ρ ⇝ V,ρ

Abort #p E [abort⟨p;V⟩],ρ ⇝ V ⟨⟩,ρ
Capture #p E [calldc⟨p;V⟩] ⇝ V ⌜contE⌝,ρ

Resume resume contE V,ρ ⇝ E [V],ρ

We see by the AppSplitter rule that an application of splitter generates a fresh named

prompt, whose name is applied on the function argument. The Value rule is completely

252 Appendix A. Continuations

standard. The Abort rule show that an invocation of abort causes the current evaluation

context E up to and including the nearest enclosing prompt. The next rule Capture

show that calldc captures and aborts the context up to the nearest enclosing prompt.

The captured context is applied on the function argument of calldc. As part of the

operation the prompt is removed.

It is clear by the prompt semantics that an invocation of either abort and calldc is

only well-defined within the dynamic extent of splitter. Since the prompt is eliminated

after use of either operation subsequent operation invocations must be guarded by a

new instance of splitter.

Let us consider an example using both calldc and abort.

2+ splitter(λp.2+ splitter(λp′.3+ calldc⟨p;λk.k 0+abort⟨p′;λ⟨⟩.k 1⟩⟩)), /0

⇝ (AppSplitter)

2+#p 2+ splitter(λp′.3+ calldc⟨p;λk.k 0+abort⟨p′;λ⟨⟩.k 1⟩⟩),{p}
⇝ (AppSplitter)

2+#p 2+#p′ 3+ calldc⟨p;λk.k 0+abort⟨p′;λ⟨⟩.k 1⟩⟩,{p,p′}
⇝ (Capture E = 2+#p′ 3+[])

2+ k 0+abort⟨p′;λ⟨⟩.k 1⟩,{p,p′}
⇝ (Resume E with 0)

2+2+#p′ 3+abort⟨p′;λ⟨⟩.⌜contE⌝1⟩,{p,p′}
⇝+ (Abort)

4+⌜contE⌝1,{p,p′}
⇝ (Resume E with 1)

4+2+#p′ 3+1,{p,p′}
⇝+ (Value)

6+4,{p,p′}⇝ 10,{p,p′}

The important thing to observe here is that the application of calldc skips over the inner

prompt and reifies it as part of the continuation. This behaviour stands differ from the

original formulations of control/prompt, shift/reset. The first application of k restores

the context with the prompt. The abort application erases the evaluation context up

to this prompt, however, the body of the functional argument to abort reinvokes the

continuation k which restores the prompt context once again.

Moreau and Queinnec [205] proposed a variation of splitter called marker, which

is also built on top of multi-prompt semantics. The key difference is that the control

reifier strips the reified context of all prompts.

A.2. Controlling continuations 253

Spawn The spawn control operator appeared in a paper published by Hieb and Dybvig

[116] in 1990. It is designed for using continuations to program tree-based concurrency.

Syntactically, spawn is just a function symbol (like callcc), whose operational beha-

viour establishes the root of a process tree, and passes the controller for the tree to its

argument. As we will see shortly a controller is a higher-order function, which grants

its argument access to the continuation of a process.

We add spawn as a value form.

V,W ∈ Val ::= spawn

Hieb and Dybvig [116] do not give a static semantics for spawn. Their dynamic se-

mantics depend on an extension reminiscent of multi-prompts.

ℓ ∈ L
M,N ∈ Comp ::= ℓ : M | V ↑ℓ

The set L is some countably set of labels. The expression (ℓ : M) is called a labelled

expression. It essentially plays the role of prompt. The expression (V ↑ℓ) is called a

control expression. The operator ↑ is a control reifier which captures the continuation

up to the label ℓ and supplies this continuation to V .

AppSpawn spawn V,ρ ⇝ ℓ : V (λf .f ↑ℓ),{ℓ}⊎ρ

Value ℓ : V,ρ ⇝ V,ρ

Capture ℓ : E [V ↑ℓ],ρ ⇝ V ⌜contℓ:E⌝,ρ
Resume resume contℓ:E V,ρ ⇝ ℓ : E [V],ρ

The AppSpawn rule generates a fresh ℓ and applies the functional value V the con-

troller for process tree. By the Capture rule, an invocation of the controller causes the

evaluation context up to the matching label ℓ to be reified as a continuation. This con-

tinuation gets passed to the functional value of the control expression. The captured

continuation contains the label ℓ, and as specified by the Resume rule an invocation of

the continuation causes this label to be reinstalled.

The following example usage of spawn is a slight variation on an example due to

Hieb et al. [118].

1 :: (spawn(λc.2 :: (c(λk.3 :: k (k []))))), /0

⇝ (AppSpawn)

1 :: (ℓ : (λc.2 :: (c(λk.3 :: k (k []))))(λf .f↑ℓ)),{ℓ}
⇝ (β-reduction)

1 :: (ℓ : 2 :: ((λf .f↑ℓ)(λk.3 :: k (k [])))),{ℓ}

254 Appendix A. Continuations

⇝ (β-reduction)

1 :: (ℓ : 2 :: ((λk.3 :: k (k []))↑ℓ)),{ℓ}
⇝ (Capture E = 2 :: [])

1 :: 3 :: ⌜contE⌝(⌜contE⌝ []),{ℓ}
⇝ (Resume E with [])

1 :: 3 :: ⌜contE⌝(ℓ : 2 :: []),{ℓ}
⇝+ (Value)

1 :: 3 :: ⌜contE⌝ [2],{ℓ}
⇝+ (Resume E with [2])

1 :: 3 :: (ℓ : 2 :: [2]),{ℓ}
⇝+ (Value)

1 :: 3 :: [2,2],{ℓ}⇝+ [1,3,2,2],{ℓ}
When the controller c is invoked the current continuation is 1 :: (ℓ : 2 :: []). The control

expression reifies the ℓ : 2 :: [] portion of the continuation and binds it to k. The first

invocation of k reinstates the reified portion and computes the singleton list [2] which

is used as argument to the second invocation of k.

Both Hieb and Dybvig [116] and Hieb et al. [118] give several concurrent program-

ming examples with spawn. They show how parallel-or [219] can be codified as a

macro using spawn (and a parallel invocation primitive pcall).

Sitaram’s fcontrol The control operator ‘fcontrol’ was introduced by Sitaram [250]

in 1993. It is a refinement of control0/prompt0, and thus, it is a dynamic delimited

control operator. The main novelty of fcontrol is that it shifts the handling of continu-

ations from control capture operator to the control delimiter. The prompt interface for

fcontrol lets the programmer attach a handler to it. This handler is activated whenever

a continuation captured. Sitaram’s observation was that with previous control operators

the handling of control happens at continuation capture point, meaning that the control

handling logic gets intertwined with application logic. The inspiration for the interface

of fcontrol and its associated prompt came from exception handlers, where the handling

of exceptions is separate from the invocation site of exceptions [250].

The operator fcontrol is a value and prompt with handler is a computation.

V,W ∈ Val ::= · · · | fcontrol
M,N ∈ Comp ::= · · · |% V.M

As with callcc, the value fcontrol may be regarded as a special unary function symbol.

The syntax % denotes a prompt (in Sitaram’s terminology it is called run). The value

A.2. Controlling continuations 255

constituent of % is the control handler. It is a binary function, that gets applied to the

argument of fcontrol and the continuation up to the prompt. The dynamic semantics

elucidate this behaviour formally.

Value % V.W ⇝ W

Capture % V.E [fcontrol W] ⇝ V W ⌜contE⌝, where E contains no %

Resume resume contE V ⇝ E [V]

The Value is similar to the previous Value rules. The interesting rule is the Capture.

When fcontrol is applied to some value W the enclosing context E gets reified and

aborted up to the nearest enclosing prompt, which invokes the handler V with the

argument W and the continuation.

Consider the following, slightly involved, example.

2+%(λy k′.1+ k′ y).%(λx k.x+ k (fcontrol k)).3+ fcontrol 1

⇝ (Capture E = 3+[])

2+%(λy k′.1+ k′ y).(λx k.x+ k (fcontrol k))1⌜contE⌝

⇝+ (Capture E ′ = 1+⌜contE⌝ [])

2+(λk k′.k′ (k 1))⌜contE⌝⌜contE ′⌝

⇝+ (Resume E with 1)

2+⌜contE ′⌝(3+1)

⇝+ (Resume E ′ with 4)

2+1+⌜contE⌝4

⇝+ (Resume E with 4)

3+3+4⇝+ 10

This example makes use of nontrivial control manipulation as it passes a captured

continuation around. However, the point is that the separation of the handling of con-

tinuations from their capture makes it considerably easier to implement complicated

control idioms, because the handling code is compartmentalised.

Cupto The control operator cupto is a variation of control0/prompt0 designed to fit

into the typed ML-family of languages. It was introduced by Gunter et al. [111] in

1995. The name cupto is an abbreviation for “control up to” [111]. The control operator

comes with a set of companion constructs, and thus, augments the syntactic categories

256 Appendix A. Continuations

of types, values, and computations.

A,B ∈ Type ::= · · · | Prompt A

V,W ∈ Val ::= · · · | p | newPrompt
M,N ∈ Comp ::= · · · | set V in N | cupto V k.M

The type Prompt A is the type of prompts. It is parameterised by an answer type A

for the prompt context. Prompts are first-class values, which we denote by p. The con-

struct newPrompt is a special function symbol, which returns a fresh prompt. The

computation form set V in N activates the prompt V to delimit the dynamic extent of

continuations captured inside N. The cupto V k.M computation binds k to the continu-

ation up to (the first instance of) the active prompt V in the computation M.

Gunter et al. [111] gave a Hindley-Milner type system [128, 199] for cupto, since

they were working in the context of ML languages. I do not reproduce the full system

here, only the essential rules for the cupto constructs.

Γ,p : Prompt A ⊢ p : Prompt A Γ ⊢ newPrompt : 1→ Prompt A

Γ ⊢ V : Prompt A Γ ⊢ N : A

Γ ⊢ set V in N : A

Γ ⊢ V : Prompt B Γ,k : A→ B ⊢M : B

Γ ⊢ cupto V k.M : A

The typing rule for set uses the type embedded in the prompt to fix the type of the

whole computation N. Similarly, the typing rule for cupto uses the prompt type of its

value argument to fix the answer type for the continuation k.

The dynamic semantics is generative to accommodate generation of fresh prompts.

Formally, the reduction relation is augmented with a store ρ that tracks which prompt

names have already been allocated.

Value set p in V,ρ ⇝ V,ρ

NewPrompt newPrompt ⟨⟩,ρ ⇝ p,ρ⊎{p}
Capture set p in E [cupto p k.M],ρ ⇝ M[⌜contE⌝/k],ρ,

where p is not active in E
Resume resume contE V,ρ ⇝ E [V],ρ

The Value rule is akin to value rules of shift/reset and control/prompt. The rule NewPrompt

allocates a fresh prompt name p and adds it to the store ρ. The Capture rule reifies and

aborts the evaluation context up to the nearest enclosing active prompt p. After reifica-

tion the prompt is removed and evaluation continues as M. The Resume rule reinstalls

the captured context E with the argument V plugged in.

A.2. Controlling continuations 257

Gunter et al.’s cupto provides similar behaviour to Queinnec and Serpette’s splitter

in regards to being able to ‘jump over prompt’. However, the separation of prompt

creation from the control reifier coupled with the ability to set prompts manually provide

a considerable amount of flexibility. For instance, consider the following example which

illustrates how control reifier cupto may escape a matching control delimiter. Let us

assume that two distinct prompts p and p′ have already been created.

2+ set p in 3+ set p′ in (set p in λ⟨⟩.cupto p k.k (k 1))⟨⟩,{p,p′}
⇝ (Value)

2+ set p in 3+ set p′ in (λ⟨⟩.cupto p k.k (k 1))⟨⟩,{p,p′}
⇝+ (Capture E = 3+ set p′ in [])

2+⌜contE⌝(⌜contE⌝1),{p,p′}
⇝ (Resume E with 1)

2+⌜contE⌝(3+ set p′ in 1),{p,p′}
⇝+ (Value)

2+⌜contE⌝4,{p,p′}
⇝ (Resume E with 4)

2+ set p′ In 4,{p,p′}
⇝ (Value)

2+4,{p,p′}⇝ 6,{p,p′}

The prompt p is used twice, and the dynamic scoping of cupto means when it is eval-

uated it reifies the continuation up to the nearest enclosing usage of the prompt p.

Contrast this with the morally equivalent example using splitter, which would get stuck

on the application of the control reifier, because it has escaped the dynamic extent of

its matching delimiter.

Plotkin and Pretnar’s effect handlers In 2009, Plotkin and Pretnar [227] introduced

handlers for Plotkin and Power’s algebraic effects [224, 226, 228]. In contrast to the

previous control operators, the mathematical foundations of handlers were not an after-

thought, rather, their origin is deeply rooted in mathematics. Nevertheless, they turn out

to provide a pragmatic interface for programming with control. Operationally, effect

handlers can be viewed as a small extension to exception handlers, where exceptions

are resumable. Effect handlers are similar to fcontrol in that handling of control happens

at the delimiter and not at the point of control capture. Unlike fcontrol, the interface

of effect handlers provide a mechanism for handling the return value of a computation

similar to Benton and Kennedy’s exception handlers with success continuations [18].

258 Appendix A. Continuations

Effect handler definitions occupy their own syntactic category.

A,B ∈ VType ::= · · · | A⇒ B

H ∈ HDef ::= {return x 7→M} | {⟨⟨ℓ p↠ k⟩⟩ 7→ N}⊎H

An effect handler consists of a return-clause and zero or more operation clauses. Each

operation clause binds the payload of the matching operation ℓ to p and the continuation

of the operation invocation to k in N.

Effect handlers introduces a new syntactic category of signatures, and extends the

value types with operation types. Operation and handler application both appear as

computation forms.

Σ ∈ Sig ::= /0 | {ℓ : A↠ B}⊎Σ

A,B,C,D ∈ VType ::= · · · | A↠ B

M,N ∈ Comp ::= · · · | do ℓV | handle M with H

A signature is a collection of labels with operation types. An operation type A↠ B

is similar to the function type in that A denotes the domain (type of the argument) of

the operation, and B denotes the codomain (return type). For simplicity, we will just

assume a global fixed signature. The form do ℓV is the application form for operations.

It applies an operation ℓ with payload V . The construct handle M with H handles a

computation M with handler H.

{ℓi : Ai↠ Bi}i ∈ Σ

H = {return x 7→M}⊎{⟨⟨ℓi pi↠ ki⟩⟩ 7→ Ni}i

Γ,x : C;Σ ⊢M : D

[Γ,pi : Ai,ki : Bi→ D;Σ ⊢ Ni : D]i

Γ;Σ ⊢ H : C⇒ D

{ℓ : A↠ B} ∈ Σ Γ;Σ ⊢ V : A

Γ;Σ ⊢ do ℓV : B

Γ ⊢M : C Γ ⊢ H : C⇒ D

Γ;Σ ⊢ handle M with H : D

The first typing rule checks that the operation label of each operation clause is declared

in the signature Σ. The signature provides the necessary information to construct the

type of the payload parameters pi and the continuations ki. Note that the domain of

each continuation ki is compatible with the codomain of ℓi, and the codomain of ki is

compatible with the codomain of the handler. The second and third typing rules are

application of operations and handlers, respectively. The rule for operation application

A.2. Controlling continuations 259

simply inspects the signature to check that the operation is declared, and that the type

of the payload is compatible with the declared type.

This particular presentation is nominal, because operations are declared up front.

Nominal typing is the only sound option in the absence of an effect system (unless

we restrict operations to work over a fixed type, say, an integer). Chapter 3 provides a

different presentation based on structural typing.

The dynamic semantics of effect handlers are similar to that of fcontrol, though,

the Value rule is more interesting.

Value handle V with H ⇝ M[V/x], where {return x 7→M} ∈ H

Capture handle E [do ℓ V] with H ⇝ M[V/p,⌜cont⟨E ;H⟩⌝/k],

where ℓ is not handled in E
and {⟨⟨ℓ p↠ k⟩⟩ 7→M} ∈ H

Resume resume cont⟨E ;H⟩ V ⇝ handle E [V] with H

The Value rule differs from previous operators as it is not just the identity. Instead the

return-clause of the handler definition is applied to the return value of the computation.

The Capture rule handles operation invocation by checking whether the handler H

handles the operation ℓ, otherwise the operation implicitly passes through the term

to the context outside the handler. This behaviour is similar to how exceptions pass

through the context until a suitable handler has been found. If H handles ℓ, then the

context E from the operation invocation up to and including the handler H are reified

as a continuation object, which gets bound in the corresponding clause for ℓ in H

along with the payload of ℓ. This form of effect handlers is known as deep handlers.

They are deep in the sense that they embody a structural recursion scheme akin to fold

over computation trees induced by effectful operations. The recursion is evident from

Resume rule, as continuation invocation causes the same handler to be reinstalled along

with the captured context.

A classic example of handlers in action is handling of nondeterminism. Let us fix a

signature with two operations.

Σ
def
= {Fail : 1↠ 0;Choose : 1↠ Bool}

The Fail operation is essentially an exception as its codomain is the empty type, meaning

that its continuation can never be invoked. The Choose operation returns a boolean.

260 Appendix A. Continuations

We will define a handler for each operation.

HA
f : A⇒ Option A

Hf
def
= {return x 7→ Some x; ⟨⟨Fail ⟨⟩↠ k⟩⟩ 7→ None}

HB
c : B⇒ List B

Hc
def
= {return x 7→ [x]; ⟨⟨Choose ⟨⟩↠ k⟩⟩ 7→ k true++ k false}

The handler Hf handles an invocation of Fail by dropping the continuation and simply

returning None (due to the lack polymorphism, the definitions are parameterised by

types A and B respectively. We may consider them as universal type variables). The

return-case of Hf tags its argument with Some. The Hc definition handles an invocation

of Choose by first invoking the continuation k with true and subsequently with false.

The two results are ultimately concatenated. The return-case lifts its argument into a

singleton list. Now, let us define a simple nondeterministic coin tossing computation

with failure (by convention let us interpret true as heads and false as tails).

toss : 1→ Bool

toss ⟨⟩ def
= if do Choose ⟨⟩

then do Choose ⟨⟩
else absurd do Fail ⟨⟩

The computation toss first performs Choose in order to branch. If it returns true then a

second instance of Choose is performed. Otherwise, it raises the Fail exception. If we

apply toss outside of Hc and Hf then the computation gets stuck as either Choose or

Fail, or both, would be unhandled. Thus, we have to run the computation in the context

of both handlers. However, we have a choice to make as we can compose the handlers

in either order. Let us first explore the composition, where Hc is the outermost handler.

Thus we instantiate Hc at type Option Bool and Hf at type Bool.

handle (handle toss ⟨⟩ with Hf) with Hc

⇝ (β-reduction, E = if [] then · · ·)
handle (handle E [do Choose ⟨⟩] with Hf) with Hc

⇝ (Capture, {⟨⟨Choose ⟨⟩↠ k⟩⟩ 7→ · · ·} ∈ Hc, E ′ = (handle E · · ·))
k true++ k false, where k = ⌜cont⟨E ′;Hc⟩⌝

⇝+ (Resume with true)

(handle (handle E [true] with Hf) with Hc)++ k false

⇝ (β-reduction)

(handle (handle do Choose ⟨⟩ with Hf) with Hc)++ k false

A.2. Controlling continuations 261

⇝ (Capture, {⟨⟨Choose ⟨⟩↠ k′⟩⟩ 7→ · · ·} ∈ Hc, E ′′ = (handle [] · · ·))
(k′ true++ k′ false)++ k false, where k′ = ⌜cont⟨E ′′;Hc⟩⌝

⇝ (Resume with true)

((handle (handle true with Hf) with Hc)++ k′ false)++ k false

⇝ (Value, {return x 7→ · · ·} ∈ Hf)

((handle Some true with Hc)++ k′ false)++ k false

⇝ (Value, {return x 7→ · · ·} ∈ Hc)

([Some true]++ k′ false)++ k false

⇝+ (Resume with false, Value, Value)

[Some true]++[Some false]++ k false

⇝+ (Resume with false)

[Some true,Some false]++(handle (handle absurd do Fail⟨⟩ with Hf) with Hc)

⇝ (Capture, {⟨⟨Fail ⟨⟩↠ k⟩⟩ 7→ · · ·} ∈ Hf)

[Some true,Some false]++(handle None with Hc)

⇝ (Value, {return x 7→ · · ·} ∈ Hc)

[Some true,Some false]++[None]⇝ [Some true,Some false,None]

Note how the invocation of Choose passes through Hf , because Hf does not handle

the operation. This is a key characteristic of handlers, and it is called effect forwarding.

Any handler will implicitly forward every operation that it does not handle.

Suppose we were to swap the order of Hc and Hf , then the computation would yield

None, because the invocation of Fail would transfer control to Hf , which is the now the

outermost handler, and it would drop the continuation and simply return None.

The alternative to deep handlers is known as shallow handlers. They do not embody

a particular recursion scheme, rather, they correspond to case splits to over computation

trees. To distinguish between applications of deep and shallow handlers, we will mark

the latter with a dagger superscript, i.e. handle† − with −. Syntactically deep and

shallow handler definitions are identical, however, their typing differ.

{ℓi : Ai↠ Bi}i ∈ Σ

H = {return x 7→M}⊎{⟨⟨ℓi pi↠ ki⟩⟩ 7→ Ni}i

Γ,x : C;Σ ⊢M : D

[Γ,pi : Ai,ki : Bi→ C;Σ ⊢ Ni : D]i

Γ;Σ ⊢ H : C⇒ D

The difference is in the typing of the continuation ki. The codomains of continuations

must now be compatible with the return type C of the handled computation. The typing

262 Appendix A. Continuations

suggests that an invocation of ki does not reinstall the handler. The dynamic semantics

reveal that a shallow handler does not reify its own definition.

Capture handle† E [do ℓ V] with H ⇝ M[V/p,⌜contE⌝/k],

where ℓ is not handled in E
and {ℓ p k 7→M} ∈ H

Resume resume contE V ⇝ E [V]

The Capture reifies the continuation up to the handler, and thus the Resume rule can

only reinstate the captured continuation without the handler.

Chapter 2 contains further examples of deep and shallow handlers in action.

Longley’s catch-with-continue The control operator catch-with-continue (abbrevi-

ated catchcont) is a delimited extension of the catch operator. It was designed by

Longley [177] in 2008 [181]. Its origin is in game semantics, in which program evalu-

ation is viewed as an interactive dialogue with the ambient environment [134] — this

view aligns neatly with the view of effect handler oriented programming. Curiously,

we can view catchcont and effect handlers as “siblings” in the sense that Longley and

Plotkin and Pretnar them respectively, during the same time, whilst working in the

same department. However, the relationship is presently just ‘spiritual’ as no formal

connections have been drawn between the two operators.

The catchcont operator appears as a computation form in our calculus.

M,N ∈ Comp ::= · · · | catchcont f .M

Unlike other delimited control operators, catchcont does not introduce separate explicit

syntactic constructs for the control delimiter and control reifier. Instead it leverages the

higher-order facilities of λ-calculus: the syntactic construct catchcont play the role

of control delimiter and the name f of function type is the name of the control reifier.

Longley and Wolverson [181] describe f as a ‘dummy variable’.

The typing rule for catchcont is as follows.

Γ, f : A→ B ⊢M : C×D ground C

Γ ⊢ catchcont f .M : C× ((A→ B)→ D)+(A× (B→ (A→ B)→ C×D))

The computation handled by catchcont must return a pair, where the first component

must be a ground value. This restriction ensures that the value is not a λ-abstraction,

which means that the value cannot contain any further occurrence of the control reifier f .

A.2. Controlling continuations 263

The second component is unrestricted, and thus, it may contain further occurrences of

f . If M fully reduces then catchcont returns a pair consisting of a ground value (i.e. an

answer from M) and a continuation function which allow M to yield further ‘answers’.

Alternatively, if M invokes the control reifier f , then catchcont returns a pair consisting

of the argument supplied to f and the current continuation of the invocation of f .

The operational rules for catchcont are as follows.

Value catchcont f .⟨V;W⟩ ⇝ inl ⟨V;λ f .W⟩
Capture catchcont f .E [f V] ⇝ inr ⟨V;λx.λf .resume contE x⟩
Resume resume contE V ⇝ E [V]

The Value makes sure to bind any lingering instances of f in W before escaping the

delimiter. The Capture rule reifies and aborts the current evaluation up to, but no in-

cluding, the delimiter, which gets uninstalled. The reified evaluation context gets stored

in the second component of the returned pair. Importantly, the second λ-abstraction

makes sure to bind any instances of f in the captured evaluation context once it has

been reinstated by the Resume rule.

Let us consider an example use of catchcont to compute a tree representing the

interaction between a second-order function and its first-order parameter.

odd : (Int→ Bool)→ Bool×1

odd f def
= ⟨xor(f 0)(f 1);⟨⟩⟩

The function odd expects its environment to provide it with an implementation of a

single operation of type Int→ Bool. The body of odd invokes, or queries, this operation

twice with arguments 0 and 1, respectively. The results are tested using exclusive-or.

Now, let us implement the environment for odd.

Dialogue
def
= [! : Int; ? : ⟨Bool,Dialogue,Dialogue⟩]

env : ((Int→ Bool)→ Bool×1)→ Dialogue

env m def
= case catchcont f .m f {inl ⟨ans;⟨⟩⟩ 7→ !ans;

inr ⟨q;k⟩ 7→ ?q(env k true)(env k false)}

Type Dialogue represents the dialogue between odd and its parameter. The data structure

is a standard binary tree with two constructors: ! constructs a leaf holding a value

of type Int and ? constructs an interior node holding a value of type Bool and two

subtrees. The function env implements the environment that odd will be run in. This

function evaluates its parameter m under catchcont which injects the operation f . If

264 Appendix A. Continuations

?0

?1

!false !true

?1

!true !false

Figure A.2: Visualisation of the result obtained by env odd.

m returns, then the left component gets tagged with !, otherwise the argument to the

operation q gets tagged with a ? along with the subtrees constructed by the two recursive

applications of env.

The following derivation gives the high-level details of how evaluation proceeds.

env odd

⇝+ (β-reduction)

case catchcont f . ⟨xor(f 0)(f 1);⟨⟩⟩{· · ·}
⇝ (Capture E = ⟨xor [] (f 1),⟨⟩⟩)

case inr⟨0;λx.λf .⌜contE⌝x⟩ {· · ·}
⇝+ (Resume E with true)

?0(case catchcont f . ⟨xor true(f 1);⟨⟩⟩{· · ·})(env ⌜contE⌝ false)

⇝+ (Capture E ′ = ⟨xor true [],⟨⟩⟩)
?0(?1(env ⌜contE ′⌝ true)(env ⌜contE ′⌝ false))(env ⌜contE⌝ false)

⇝+ (Resume E ′ with true)

?0(?1(case catchcont f .⟨xor true true;⟨⟩⟩ {· · ·})(env ⌜contE ′⌝ false))

(env ⌜contE⌝ false)

⇝+ (Value)

?0(?1(case inl ⟨false;⟨⟩⟩ {· · ·})(env ⌜contE ′⌝ false))

(env ⌜contE⌝ false)

⇝ (β-reduction)

?0(?1!false(env ⌜contE ′⌝ false))(env ⌜contE⌝ false)

⇝+ (Same reasoning)

?0(?1!false !true)(?1!true !false)

Figure A.2 visualises this result as a binary tree. The example here does not make

use of the ‘continuation component’, the interested reader may consult Longley and

Wolverson [181] for an example usage.

A.3. Programming continuations 265

A.3 Programming continuations

Amongst the first uses of continuations were modelling of unrestricted jumps, such as

Landin’s modelling of Algol 60 labels and gotos using the J operator [159–161, 239].

Backtracking is another early and prominent use of continuations. For example,

Burstall [42] used the J operator to implement a heuristic-driven search procedure with

continuation-backed backtracking for tree-based search. Somewhat related to backtrack-

ing, Friedman et al. [104] posed the devils and angels problem as an example that has

no direct solution in a programming language without first-class control. Any solution

to the devils and angels problem involves extensive manipulation of control to jump

both backwards and forwards to resume computation.

If the reader ever find themselves in a quiz show asked to single out a canonical

example of continuation use, then implementation of concurrency would be a qualified

guess. Cooperative concurrency in terms of various forms of coroutines as continu-

ations occur so frequently in the literature and in the wild that they have become routine.

Haynes et al. [115] published one of the first implementations of coroutines using first-

class control. Preemptive concurrency in the form of engines were implemented by

Dybvig and Hieb [74]. An engine is a control abstraction that runs computations with

an allotted time budget [113]. They used continuations to represent strands of com-

putation and timer interrupts to suspend continuations. Kiselyov and Shan [149] used

delimited continuations to explain various phenomena of operating systems, includ-

ing multi-tasking and file systems. On the web, Queinnec [233] used continuations to

model the client-server interactions. This model was adapted by Cooper et al. [53] in

Links with support for an Erlang-style concurrency model [10]. Leijen [166] and Dolan

et al. [72] gave two different ways of implementing the asynchronous programming op-

erator async/await as a user-definable library. In the setting of distributed programming,

Bracevac et al. [33] describe a modular event correlation system that makes crucial

use of effect handlers. Bracevac’s PhD dissertation explicates the theory, design, and

implementation of event correlation by way of effect handlers [32].

Continuations have also been used in meta-programming to speed up partial evalu-

ation and multi-staging [140, 162, 208, 274, 279]. Let insertion is a canonical example

of use of continuations in multi-staging [279].

Probabilistic programming is yet another application domain of continuations. Kiselyov

and Shan [150] used delimited continuations to speed up probabilistic programs. Gorinova

et al. [110] used continuations to achieve modularise probabilistic programs and to

266 Appendix A. Continuations

provide a simple and efficient mechanism for reparameterisation of inference algorithms.

In the subject of differentiable programming Wang et al. [273] explained reverse-mode

automatic differentiation operators in terms of delimited continuations.

The aforementioned applications of continuations are by no means exhaustive,

though, the diverse application spectrum underlines the versatility of continuations.

A.4 Constraining continuations

Friedman and Haynes [102] advocated for constraining the power of (undelimited)

continuations [114]. Even though, they were concerned with callcc and undelimited

continuations some of their arguments are applicable to other control operators and

delimited continuations. For example, they argued in favour of restricting continuations

to be one-shot, which means continuations may only be invoked once. Firstly, because

one-shot continuations admit particularly efficient implementations. Secondly, many

applications involve only single use of continuations. Thirdly, one-shot continuations

interact more robustly with resources, such as file handles, than general multi-shot

continuations, because multiple use of a continuation may accidentally interact with a

resource after it has been released.

One-shot continuations by themselves are no saving grace for avoiding resource

leakage as they may be dropped or used to perform premature exits from a block

with resources. For example, Racket provides the programmer with a facility known

as dynamic-wind to protect a context with resources such that non-local exits properly

release whatever resources the context has acquired [93]. An alternative approach is

taken by Multicore OCaml, whose implementation of effect handlers with one-shot

continuations provides both a continue primitive for continuing a given continuation

and a discontinue primitive for aborting a given continuation [71, 72]. The latter throws

an exception at the operation invocation site to which can be caught by local exception

handlers to release resources properly. This approach is also used by Fowler [100], who

uses a substructural type system to statically enforce the use of continuations, either by

means of a continue or a discontinue.

A.5 Implementing continuations

There are numerous strategies for implementing continuations. There is no best im-

plementation strategy. Each strategy has different trade-offs, and as such, there is no

A.5. Implementing continuations 267

Language Control operators Implementation strategies

Eff Effect handlers Virtual machine, interpreter

Effekt Lexical effect handlers CPS

Frank N-ary effect handlers CEK machine

Helium Effect handlers CEK machine

Koka Effect handlers Continuation monad

Links Effect handlers, escape CEK machine, CPS

MLton callcc Stack copying

Multicore OCaml Affine effect handlers Segmented stacks

OchaCaml shift/reset Virtual machine

Racket callcc, callcomp, cupto,

fcontrol, control/prompt,

shift/reset, splitter, spawn

Segmented stacks

Scala shift/reset CPS

SML/NJ callcc CPS

Wasm/k control/prompt Virtual machine

Table A.3: Some languages and their implementation strategies for continuations.

“best” strategy. In this section, I will briefly outline the gist of some implementation

strategies and their trade-offs. For an in depth analysis the interested reader may consult

the respective work of Clinger et al. [49] and Farvardin and Reppy [78], which contain

thorough studies of implementation strategies for first-class continuations. Table A.3

lists some programming languages with support for first-class control operators and

their implementation strategies.

The control stack provides a adequate runtime representation of continuations as the

contiguous sequence of activation records quite literally represent what to do next. Thus

continuation capture can be implemented by making a copy of the current stack (pos-

sibly up to some delimiter), and continuation invocation as reinstatement of the stack.

This implementation strategy works well if continuations are captured infrequently. The

MLton implementation of Standard ML utilises this strategy [96]. A slight variation is

to defer the first copy action until the continuation is invoked, which requires marking

the stack to remember which sequence of activation records to copy.

Obviously, frequent continuation use on top of a stack copying implementation can

be expensive time wise as well as space wise, because with undelimited continuations

268 Appendix A. Continuations

multiple copies of the stack may be alive simultaneously. Typically the prefix of copies

will be identical, which suggests they ought to be shared. One way to achieve optimal

sharing is to move from a contiguous stack to a non-contiguous stack representation,

e.g. representing the stack as a heap allocated linked list of activation records [56]. With

such a representation copying is a constant time and space operation, because there is

no need to actually copy anything as the continuation is just a pointer into the stack.

The disadvantage of this strategy is that it turns every operation into an indirection.

Segmented stacks provide a middle ground between contiguous stack and non-

contiguous stack representations. With this representation the control stack is represen-

ted as a linked list of contiguous stacks which makes it possible to only copy a segment

of the stack. The stacks grown and shrink dynamically as needed. This representation

is due to Hieb et al. [117]. It is used by Chez Scheme, which is the runtime that powers

Racket [92]. For undelimited continuations the basic idea is to create a pointer to the

current stack upon continuation capture, and then allocate a new stack where subsequent

computation happens. For delimited continuations the control delimiter identify when

a new stack should be allocated. A potential problem with this representation is stack

thrashing, which is a phenomenon that occurs when a stack is being continuously res-

ized. This problem was addressed by Bruggeman et al. [41], who designed a slight

variation of segmented stacks optimised for one-shot continuations, which has been

adapted by Multicore OCaml [72].

Full stack copying and segmented stacks both depend on being able to manipulate

the stack directly. This is seldom possible if the language implementer do not have

control over the target runtime, e.g. compilation to JavaScript. However, it is possible to

emulate stack copying and segmented stacks in lieu of direct stack access. For example,

Pettyjohn et al. [214] describe a technique that emulates stack copying by piggybacking

on the facile stack inception facility provided by exception handlers in order to lazily

reify the control stack. Kumar et al. [157] emulated segmented stacks via threads. Each

thread has its own local stack, and as such, a collection of threads effectively models

segmented stacks. To actually implement continuations as threads Kumar et al. also

made use of standard synchronisation primitives. The advantage of these techniques is

that they are generally applicable and portable. The disadvantage is the performance

overhead induced by emulation.

Abstract and virtual machines are a form of full machine emulation. An abstract

machine is an idealised machine. Abstract machines, such as the CEK machine [83],

are attractive because they provide a suitably high-level framework for defining lan-

A.5. Implementing continuations 269

guage semantics in terms of control string manipulations, whilst admitting a direct

implementation. We will discuss abstract machines in more detail in Chapter 5. The

term virtual machine typically connotes an abstract machine that works on a byte code

representation of programs, whereas the default connotation of abstract machine is a

machine that works on a rich abstract syntax tree representation of programs. The dis-

advantage of abstract machines is their interpretative overhead, although, techniques

such as just-in-time compilation can be utilised to reduce this overhead.

Continuation passing style (CPS) is a canonical implementation strategy for con-

tinuations — the word ‘continuation’ even features in its name. CPS is a particular

idiomatic notation for programs, where every function takes an additional argument,

the current continuation, as input and every function call appears in tail position. Con-

sequently, every aspect of control flow is made explicit, which makes CPS a good fit

for implementing control abstraction. In classic CPS the continuation argument is typ-

ically represented as a heap allocated closure [8], however, as we shall see in Chapter 4

richer representations of continuations are possible. At first thought it may seem that

CPS will not work well in environments that lack proper tail calls such as JavaScript.

However, the contrary is true, because the stackless nature of CPS means it can readily

be implemented with a trampoline [105]. Alas, at the cost of the indirection induced by

the trampoline.

Appendix B

Get get is redundant

The global state effect is often presented with following four equations.

Get-get x← get;y← get;M = x← get;M[x/y]

Get-put x← get;put x;M = M

Put-get put V;x← get;M = put V;M[V/x]

Put-put put V;put W;M = put W;M

However, the first equation is derivable from the second and third equations. I first

learned this from Paul-André Melliès during Shonan Seminar No.103 Semantics of

Effects, Resources, and Applications. I have been unable to find a proof of this fact in

the literature, though, Melliès does have a published paper, which states only the three

necessary equations [195]. Therefore I include a proof of this fact here (thanks to Sam

Lindley for helping me relearning this fact from first principles).

Theorem B.1. Get-put and Put-get implies Get-get

Proof.
x← get;y← get;M

= (Get-put right-to-left; z /∈ FV(M))

z← get;put z;x← get;y← get;M

= (Put-get)

z← get;put z;y← get;M[z/x]

= (Put-get)

z← get;put z;M[z/x,z/y]

= (composition of substitution)

z← get;put z;(M[x/y])[z/x]

271

272 Appendix B. Get get is redundant

= (Put-get right-to-left)

z← get;put z;x← get;M[x/y]

= (Get-put)

x← get;M[x/y]

Appendix C

Proof details for the complexity of
effectful generic count

In this appendix I give the proof details and artefacts for Theorem 7.11.

Relation to prior work This appendix is imported from Appendix C of Hillerström

et al. [124].

Throughout this section we let Hcount denote the handler definition of count, that is

Hcount
def
=


return x 7→ if x then return 1 else return 0

Branch ⟨⟩ r 7→ let xtrue← r true in
let xfalse← r false in
xtrue + xfalse


The timed decision tree model embeds timing information. For the proof we must also

know the abstract machine environment and the pure continuation. Thus we decorate

timed decision trees with this information.

Definition C.1 (decorated timed decision trees). A decorated timed decision tree is a

partial function τ : Addr⇀ (Lab×Nat)×Confq such that its first projection bs 7→ τ(bs).1

is a timed decision tree.

We extend the projections labs and steps in the obvious way to work over dec-

orated timed decision trees. We define three further projections. The first comp(τ)
def
=

bs 7→ τ(bs).2.1 projects the computation component of the configuration, the second

env(τ)
def
= bs 7→ τ(bs).2.2 projects the environment, and finally the third pure(τ)

def
= bs 7→

head(t(bs).2.3).1 projects the pure continuation.

273

274 Appendix C. Proof details for the complexity of effectful generic count

The following definition gives a procedure for constructing a decorated timed de-

cision tree. The construction is analogous to that of Definition 7.6.

Definition C.2. (i) Define D : Confq ⇀ Addr ⇀ (Lab×Nat)×Confq to be the minimal

family of partial functions satisfying the following equations:

D(⟨return W | γ | []⟩) [] = ((!b,0),⟨return W | γ | []⟩), if JWKγ = b

D(⟨zV | γ | κ⟩) [] = ((?JVKγ,0),⟨zV | γ | κ⟩), if γ(z) = q

D(⟨zV | γ | κ⟩)(b :: bs) ≃ D(⟨return b | γ | κ⟩)bs, if γ(z) = q

D(⟨M | γ | κ⟩)bs ≃ inc(D(⟨M′ | γ′ | κ′⟩)bs), if ⟨M | γ | κ⟩ −→ ⟨M′ | γ′ | κ′⟩

Here inc((ℓ,s),C) = ((ℓ,s+1),C), and in all of the above equations γ(q) = γ′(q) = q.

Clearly D(C) is a decorated timed decision tree for any C ∈ Confq.

(ii) The decorated timed decision tree of a computation term is obtained by placing

it in the initial configuration: D(M)
def
= D(⟨M, /0[q 7→ q],κ0⟩).

(iii) The decorated timed decision tree of a closed value P : Predicate is D(Pq).

Since q plays the role of a dummy argument, we will usually omit it and write D(P)

for D(Pq).

We define some functions, that given a list of booleans and a n-standard predicate,

compute configurations of the effectful abstract machine at particular points of interest

during evaluation of the given predicate. Let χcount(V)
def
= (/0[pred 7→ JVK /0],Hcount) de-

note the handler closure of Hcount.

Notation. For an n-standard predicate P we write |P|= n for the size of the predicate.

Furthermore, we define χid for the identity handler closure (/0,{return x 7→ x}).

Definition C.3 (computing machine configurations). For any n-standard predicate P

and a list of booleans bs, such that |bs| ≤ n, we can compute machine configurations at

points of interest during evaluation of count P.

To make the notation slightly simpler we use the following conventions whenever

n, τ, and c appear free: n = |P|, τ = D(P), and c(bs) = ♯(bs′ 7→ JPK (bs++bs′)). The

definitions are presented in a top-down manner.

• The function arrive either computes the configuration at a query node, if |bs|< n,

275

or the configuration at an answer node.

arrive : Addr×Val ⇀ Conf

arrive(bs,P) def
= ⟨z V | γ | (σ,χcount(P)) :: residual(bs,P)⟩, if |bs|< n

where z V = comp(τ)(bs),γ = env(τ)(bs),γ(z) = (env⊥(P),λ_.do Branch ⟨⟩)
?k = labs(τ)(bs),JVKγ = k, and σ = pure(τ)(bs)

arrive(bs,P) def
= ⟨return W | γ | ([],χcount(P)) :: residual(bs,P)⟩, if |bs|= n

where return W = comp(τ)(bs),γ = env(τ)(bs), !b = labs(τ)(bs), and JWKγ = b

• Correspondingly, the depart function computes the configuration either after the

completion of a query or handling of an answer.

depart : Addr×Val ⇀ Conf

depart(bs,P) def
= ⟨return m | γ | residual(bs,P)⟩, if |bs|< n

where γ = env↑false(bs,P) and m = c(bs)

depart(bs,P) def
= ⟨return m | γ | residual(bs,P)⟩, if |bs|= n

where m = c(bs),b =

true if m = 1

false if m = 0
, and γ = env⊥(P)[x 7→ b]

The two clauses of depart yield slightly different configurations. The first clause

computes a configuration inside the operation clause of Hcount. The configuration

is exactly tail-configuration after summing up the two respective values returned

by the two invocations of resumption. Whilst the second clause computes the

tail-configuration inside of the success clause of Hcount after handling a return

value of the predicate.

• The residual function computes the residual continuation structure which contains

the bits of computations to perform after handling a complete path in a decision

tree.
residual : Addr×Val ⇀ Cont

residual(bs,P) def
= [(purecont(bs,P),χid)]

276 Appendix C. Proof details for the complexity of effectful generic count

• The function purecont computes the pure continuation.

purecont : Addr×Val ⇀ PureCont

purecont([],P) def
= []

purecont(bs++[true],P) def
= (γ,xtrue, let xfalse← r false in xtrue + xfalse)

:: purecont(bs,P),

where γ = env↓true(bs++[true],P)

purecont(bs++[false],P) def
= (γ,xfalse,xtrue + xfalse)

:: purecont(bs,P),

where γ = env↓false(bs++[false],P)

• The function env⊥ computes the initial environment of the handler. The family of

functions env↓b∈B contains two functions, one for each instantiation of b, which

describe how to compute the environment prior descending down a branch as

the result of invoking a resumption with b. Analogously, the functions in the

family env↑b∈B describe how to compute the environment after ascending from

the resumptive exploration of a branch.

env⊥ : Val→ Env

env⊥(P) def
= /0[pred 7→ JPK /0]

env↓true : Addr×Val ⇀ Env

env↓true(bs,P) def
= env⊥(P)[r 7→ (σ,χcount(P))],

where σ = pure(τ)(bs)

env↑true : Addr×Val ⇀ Env

env↑true(bs,P) def
= γ[xtrue 7→ i],

where γ = env↓true(bs,P)

and i = c(bs++[true])

env↓false : Addr×Val ⇀ Env

env↓false(bs,P) def
= env↑true

env↑false : Addr×Val ⇀ Env

env↑false(bs,P) def
= γ[xfalse 7→ j],

where γ = env↓false(bs,P)

and j = c(bs++[false])

The proof of Theorem 7.11 works by alternating between two different modes of

reasoning: intensional and extensional. The former is used to reason directly about

the steps taken by effcount program and the latter is used to reason about steps taken

by the provided predicate. The number of steps taken by an n-standard predicate is

readily available by constructing its corresponding decorated timed decision tree model.

The model is constructed using a distinguished free variable q to denote a point. The

following lemma lets us reason about the number of steps taken by a predicate between

277

its initial application and its first query, between subsequent queries, and between final

query and answer when q is instantiated to λ_.do Branch ⟨⟩.

Lemma C.4. Suppose P is an n-standard predicate, bs ∈ Addr is a list of booleans,

and for all χ ∈ HClo and κ ∈ Cont. Let q denote the distinguished free variable used to

construct the decorated timed decision tree τ of P.

1. If |bs|= 0 then

⟨pred q | env⊥(P)[q 7→ q] | ([],χ) :: κ⟩
−→ steps(τ)([])

⟨z V | γ[q 7→ q] | (σ,χ) :: κ⟩

where z V = comp(τ)([]), γ= env(τ)([]), ?k = labs(τ)([]), JVKγ= k, γ(z) = q, and

σ = pure(τ)([]); implies

⟨pred (λ_.do Branch ⟨⟩) | env⊥(P) | ([],χ) :: κ⟩
−→ steps(τ)([])

⟨z V | γ[z 7→ (env⊥(P),λ_.do Branch ⟨⟩)] | (σ,χ) :: κ⟩

2. If |bs|< n−1 then for all b ∈ B and W ∈ Val

⟨return W | env↓b(bs,P) | (σ,χ) :: κ⟩
−→ steps(τ)(bs++[b])

⟨z V | γ[q 7→ q] | (σ′,χ) :: κ⟩

where JWK(env↓b(bs,P)) = b, σ = pure(τ)(bs), z V = comp(τ)(bs++ [b]), γ =

env(τ)(bs++[b]), γ(z)= q, ?k= labs(τ)(bs++[b]), JVKγ= k, and σ′= pure(τ)(bs++

[b]); implies

⟨return W | env↓b(bs,P) | (σ,χ) :: κ⟩
−→ steps(τ)(bs++[b])

⟨z V | γ[z 7→ (env⊥(P),λ_.do Branch ⟨⟩)] | (σ′,χ) :: κ⟩

3. If |bs|= n−1 then for all b ∈ B and W ∈ Val

⟨return W | env↓b(bs,P) | (σ,χ) :: κ⟩
−→ steps(τ)(bs++[b])

⟨return W ′ | γ[q 7→ q] | ([],χ) :: κ⟩

278 Appendix C. Proof details for the complexity of effectful generic count

where JWK(env↓b(bs,P)) = b, σ = pure(τ)(bs), return W ′ = comp(τ)(bs++[b]),

γ = env(τ)(bs++[b]), !b′ = labs(τ)(bs++[b]), and JW ′Kγ = b′; implies

⟨return W | env↓b(bs,P) | (σ,χ) :: κ⟩
−→ steps(τ)(bs++[b])

⟨return W ′ | γ | ([],χ) :: κ⟩

Proof. By unfolding Definition C.2.

Let control : Conf ⇀ Val denote a partial function that hoists a value out of a given

machine configuration, that is

control(⟨M | γ | κ⟩) def
=

JVKγ if M = return V

⊥ otherwise

Notation For a given predicate P we write χcount(P)return to mean χcount(P)return =

(/0[pred 7→ JPK /0],Hcount)
return = Hreturn

count , that is the projection of the success clause of

Hcount.

The following lemma performs most of the heavy lifting for the proof of The-

orem 7.11.

Lemma C.5. Suppose P is an n-standard predicate, then for any list of booleans bs ∈
Addr such that |bs| ≤ n

arrive(bs,P)⇝T(bs,n) depart(bs,P),

and control(depart(bs,P))≤ 2n−|bs| with the function T defined as

T(bs,n)=

9∗ (2n−|bs|−1)+2n−|bs|+1 +∑
1≤|bs′|≤n−|bs|
bs′∈Addr steps(τ)(bs++bs′) if |bs|< n

2 if |bs|= n

Proof. By downward induction on bs.

Base step We have that |bs|= n. Since the predicate is n-standard we further have that

n≥ 1. We proceed by direct calculation.

arrive(bs,P)

= (definition of arrive when n = |bs|)
⟨return W | γ | ([],χcount(P)) :: residual(bs,P)⟩

where return W = comp(τ)(bs),γ = env(τ)(bs), !b = labs(τ)(bs), and JWKγ = b

−→ (M-RetHandler, χcount(P)return = {return x 7→ · · ·})
⟨if x then return 1 else return 0 | γ′[x 7→ JbKγ′] | residual(bs,P)⟩

where γ′ = χcount(P).1

279

The value b can assume either of two values. We consider first the case b = true.

= (assumption b = true, definition of J−K (2 value steps))

⟨if x then return 1 else return 0 | γ′[x 7→ true] | residual(bs,P)⟩
−→ (M-Case− inl (and log |γ′[x 7→ true]|= 1 environment operations))

⟨return 1 | γ′[x 7→ true] | residual(bs,P)⟩
= (definition of depart when n = |bs|)

depart(bs,P)

We have that control(depart(bs,P)) = 1 ≤ 20 = 2n−|bs|. Next, we consider the

case when b = false.

= (assumption b = false, definition of J−K (2 value steps))

⟨if x then return 1 else return 0 | γ′[x 7→ false] | residual(bs,P)⟩
−→ (M-Case− Inl (and log |γ′[x 7→ false]|= 1 environment operations))

⟨return 0 | γ′[x 7→ false] | residual(bs,P)⟩
= (definition of depart when n = |bs|)

depart(bs,P)

Again, we have that control(depart(bs,P)) = 0≤ 20 = 2n−|bs|.

Step analysis In either case, the machine uses exactly 2 transitions. Thus we

get that

2 = T(bs,n), when |bs|= n

Inductive step The induction hypothesis states that for all b ∈ B and |bs|< n

arrive(bs++[b],P)⇝T(bs++[b],n) depart(bs++[b],P),

such that control(depart(bs++[b],P)) ≤ 2n−|bs++[b]|. We proceed by direct cal-

culation.

arrive(bs,P)

= (definition of arrive when n < |bs|)
⟨z V | γ | (σ,χcount(P)) :: residual(bs,P)⟩

where z V = comp(τ)(bs),γ = env(τ)(bs)[z 7→ (env⊥(P),λ_.do Branch ⟨⟩)],
?k = labs(τ)(bs),JVKγ = k, and σ = pure(τ)(bs)

−→ (M-App)

⟨do Branch ⟨⟩ | γ′[_ 7→ k] | (σ,χcount(P)) :: residual(bs,P)⟩
where γ′ = env⊥(P)

280 Appendix C. Proof details for the complexity of effectful generic count

−→ (M-Handle−Op, χcount(P)Branch = {Branch ⟨⟩ r 7→ · · ·})〈let xtrue← r true in
let xfalse← r false in
xtrue + xfalse

| γ[r 7→ J(σ,χcount(P))Kγ] | residual(bs,P)

〉

where γ = env⊥(P)

= (definition of J−K (1 value step))〈let xtrue← r true in
let xfalse← r false in
xtrue + xfalse

| γ′ | residual(bs,P)

〉

where γ′ = γ[r 7→ (σ,χcount(P))]

−→ (M-Let, definition of residual)

⟨r true | γ′ | residual(bs++[true]bs,P)⟩
−→ (M-Resume, JrKγ′ = (σ,χcount(P)))

⟨return true | γ′ | (σ,χcount(P)) :: residual(bs++[true],P)⟩

We now use Lemma C.4 to reason about the progress of the predicate computation

σ. There are two cases consider, either 1+ |bs|< n or 1+ |bs|= n.

Case 1+ |bs|< n. We obtain the following internal node configuration.

−→ steps(τ)(bs++[true]) (by Lemma C.4)

⟨z V | γ′′ | (σ′,χcount(P)) :: residual(bs++[true],P)⟩
where z V = comp(τ)(bs),

γ′′ = env(τ)(bs++[true])[z 7→ (env⊥(P),λ_.do Branch ⟨⟩)],
?k = labs(τ)(bs++[true]),JVKγ′′ = k, and σ′ = pure(τ)(bs++[true])

= (definition of arrive when 1+ |bs|< n)

arrive(bs++[true],P)

−→ T(bs++[true],n) (induction hypothesis)

depart(bs++[true],P)

= (definition of depart when 1+ |bs|< n)

⟨return i | γ | residual(bs++[true],P)⟩
where i = c(bs++[true]++[true])+ c(bs++[true]++[false])

and γ = env↑false(bs++[true],P)

= (definition of residual and purecont)

⟨return i | γ | [((γ′,xtrue, let xfalse← r false in xtrue + xfalse)

:: purecont(bs,P),χid)]⟩
where γ′ = env↓true(bs,P)

281

−→ (M-RetCont)

⟨let xfalse← r false in xtrue + xfalse | γ′′ | [(purecont(bs,P),χid)]⟩
where γ′′ = γ′[xtrue 7→ JiKγ′]

−→ (M-Let)

⟨r false | γ′′ | [((γ′′,xfalse,xtrue + xfalse) :: purecont(bs,P),χid)]⟩
= (definition of purecont and residual)

⟨r false | γ′′ | residual(bs++[false],P)⟩
−→ (M-Resume)

⟨return false | γ′′ | (σ,χcount(P)) :: residual(bs++[false],P)⟩
where σ = pure(τ)(bs)

−→ steps(τ)(bs++[false]) (by Lemma C.4)

⟨z V | γ | (σ,χcount(P)) :: residual(bs++[false],P)⟩
where z V = comp(τ)(bs),

γ = env(τ)(bs++[false])[q 7→ (env⊥(P),λ_.do Branch ⟨⟩)],
?k = labs(τ)(bs++[false]),JVKγ = k, and σ = pure(τ)(bs++[false])

= (definition of arrive when 1+ |bs|< n)

arrive(bs++[false],P)

−→ T(bs++[false],n) (induction hypothesis)

depart(bs++[false],P)

= (definition of depart when 1+ |bs|< n)

⟨return j | γ | residual(bs++[false],P)⟩
where j = c(bs++[false]++[true])+ c(bs++[false]++[false])

and γ = env↑false(bs++[false],P)

= (definition of residual and purecont)

⟨return j | γ | [((γ′′,xfalse,xtrue + xfalse) :: purecont(bs,P),χid)]⟩
−→ (M-RetCont)

⟨xtrue + xfalse | γ′′[xfalse 7→ JjKγ′′] | residual(bs,P)⟩
−→ (M-Plus)

⟨return m | γ′′[xfalse 7→ JjKγ′′] | residual(bs,P)⟩
where m = c(bs++[true]++[true])+ c(bs++[true]++[false])

+c(bs++[false]++[true])+ c(bs++[false]++[false])

= c(bs++[true])+ c(bs++[false]) = c(bs)≤ 2n−|bs|

= (definition of depart when |bs|< n)

depart(bs,P)

282 Appendix C. Proof details for the complexity of effectful generic count

Step analysis The total number of machine steps is given by

9+steps(τ)(bs++[true])+T(bs++[true],n)

+steps(τ)(bs++[false])+T(bs++[false],n)

= (reorder)

9+T(bs++[true],n)+ steps(τ)(bs++[false])

+steps(τ)(bs++[true])+ steps(τ)(bs++[false])

= (definition of T)

9+9∗ (2n−|bs++[true]|−1)+9∗ (2n−|bs++[false]|−1)

+2n−|bs++[true]|+1 +2n−|bs++[false]|+1

+
1≤|bs′|≤n−|bs++[true]|

∑
bs′∈Addr

steps(τ)(bs++[true]++bs′)

+
1≤|bs′|≤n−|bs++[false]|

∑
bs′∈Addr

steps(τ)(bs++[false]++bs′)

+steps(τ)(bs++[true])+ steps(τ)(bs++[false])

= (simplify)

9+9∗ (2n−|bs++[true]|−1)+9∗ (2n−|bs++[false]|−1)+2n−|bs|+1

+
1≤|bs′|≤n−|bs++[true]|

∑
bs′∈Addr

steps(τ)(bs++[true]++bs′)

+
1≤|bs′|≤n−|bs++[false]|

∑
bs′∈Addr

steps(τ)(bs++[false]++bs′)

+steps(τ)(bs++[true])+ steps(τ)(bs++[false])

= (merge sums)

9+9∗ (2n−|bs++[true]|−1)+9∗ (2n−|bs++[false]|−1)+2n−|bs|+1

+

(
2≤|bs′|≤n−|bs|

∑
bs′∈Addr

steps(τ)(bs++bs′)

)
+steps(τ)(bs++[true])+ steps(τ)(bs++[false])

= (rewrite binary sum)

9+9∗ (2n−|bs++[true]|−1)+9∗ (2n−|bs++[false]|−1)+2n−|bs|+1

+
2≤|bs′|≤n−|bs|

∑
bs′∈Addr

steps(τ)(bs++bs′)+
1≤|bs′|≤1

∑
bs′∈Addr

steps(τ)(bs++bs′)

= (merge sums)

9+9∗ (2n−|bs++[true]|−1)+9∗ (2n−|bs++[true]|−1)+2n−|bs|+1

+
1≤|bs′|≤n−|bs|

∑
bs′∈Addr

steps(τ)(bs++bs′)

283

= (factoring)

9+2∗9∗ (2n−|bs|−1−1)+2n−|bs|+1 +
1≤|bs′|≤n−|bs|

∑
bs′∈Addr

steps(τ)(bs++bs′)

= (distribute)

9+9∗ (2n−|bs|−2)+2n−|bs|+1 +
1≤|bs′|≤n−|bs|

∑
bs′∈Addr

steps(τ)(bs++bs′)

= (distribute)

9+9∗2n−|bs|−18+2n−|bs|+1 +
1≤|bs′|≤n−|bs|

∑
bs′∈Addr

steps(τ)(bs++bs′)

= (simplify)

9∗2n−|bs|−9+2n−|bs|+1 +
1≤|bs′|≤n−|bs|

∑
bs′∈Addr

steps(τ)(bs++bs′)

= (factoring)

9∗ (2n−|bs|−1)+2n−|bs|+1 +
1≤|bs′|≤n−|bs|

∑
bs′∈Addr

steps(τ)(bs++bs′)

= (definition of T)

T(bs,n)

Case 1+ |bs|= n. We obtain the following configuration.

−→ steps(τ)(bs++[true]) (by Lemma C.4)

⟨return W | γ′′ | ([],χcount(P)) :: residual(bs++[true],P)⟩
where return W = comp(τ)(s++[true]), !b = labs(τ)(bs++[true]),

γ′′ = env(τ)(bs++[true]), and JWKγ′′ = b

= (definition of arrive when 1+ |bs|= n)

arrive(bs++[true],P)

−→ T(bs++[true],n) (induction hypothesis)

depart(bs++[true],P)

= (definition of depart when 1+ |bs|= n)

⟨return i | γ | residual(bs++[true],P)⟩
where i = c(bs++[true])≤ 2n−|bs++[true]| = 1 and γ = env⊥(P)

= (definition of residual and purecont)

⟨return i | γ | [((γ′,xtrue, let xfalse← r false in xtrue + xfalse)

:: purecont(bs,P),χid)]⟩

284 Appendix C. Proof details for the complexity of effectful generic count

−→ (M-RetCont)

⟨let xfalse← r false in xtrue + xfalse | γ′[xtrue 7→ JiKγ′] | [(purecont(bs,P),χid)]⟩
= (definition of J−K (1 value step))

⟨let xfalse← r false in xtrue + xfalse | γ′′ | [(purecont(bs,P),χid)]⟩
where γ′′ = γ′[xtrue 7→ i]

−→ (M-Let, definition of residual)

⟨r false | γ′′ | residual(bs++[false],P)⟩
−→ (M-Resume)

⟨return false | γ′′ | (σ,χcount(P)) :: residual(bs++[false],P)⟩
where σ = pure(τ)(bs)

−→ steps(τ)(bs++[false]) (by Lemma C.4)

⟨return W | γ | ([],χcount(P)) :: residual(bs++[false],P)⟩
where return W = comp(τ)(bs++[false]), !b = labs(τ)(bs++[false]),

γ = env(τ)(bs++[false]), and JWKγ = b

= (definition of arrive when 1+ |bs|= n)

arrive(bs++[false],P)

−→ T(bs++[false],n) (induction hypothesis)

depart(bs++[false],P)

= (definition of depart when 1+ |bs|= n)

⟨return j | γ | residual(bs++[false],P)⟩
where j = c(bs++[false])≤ 2n−|bs++[false]| = 1 and γ = env⊥(P)

= (definition of residual and purecont)

⟨return j | γ | [((γ′,xfalse,xtrue + xfalse) :: purecont(bs,P),χid)]⟩
where γ′ = env↓false(bs,P)

−→ (M-RetCont)

⟨xtrue + xfalse | γ′′ | [(purecont(bs,P),χid)]⟩
where γ′′ = γ′[xfalse 7→ JjKγ′] = γ′[xfalse 7→ j]

−→ (M-Plus)

⟨return m | γ′′ | [(purecont(bs,P),χid)]⟩
where m = c(bs++[true])+ c(bs++[false])≤ 2n−|bs|

= (definition of residual and depart when |bs|< n)

depart(bs,P)

285

Step analysis The total number of machine steps is given by

9+steps(τ)(bs++[true])+T(bs++[true],n)

+steps(τ)(bs++[false])+T(bs++[false],n)

= (reorder)

9+T(bs++[true],n)+T(bs++[false],n)

+steps(τ)(bs++[true])+ steps(τ)(bs++[false])

= (definition of T when |bs|+1 = n)

9+2+2+ steps(τ)(bs++[true])+ steps(τ)(bs++[false])

= (simplify)

9+22 + steps(τ)(bs++[true])+ steps(τ)(bs++[false])

= (rewrite 2 = n−|bs|+1)

9+2n−|bs|+1 + steps(τ)(bs++[true])+ steps(τ)(bs++[false])

= (multiply by 1)

9∗ (2n−|bs|−1)+2n−|bs|+1+steps(τ)(bs++[true])

+steps(τ)(bs++[false])

= (rewrite binary sum)

9∗ (2n−|bs|−1)+2n−|bs|+
1≤|bs′|≤n−|bs|

∑
bs′∈Addr

steps(τ)(bs++bs′)

= (definition of T)

T(bs,n)

The following theorem is a copy of Theorem 7.11.

Theorem C.6. For all n > 0 and any n-standard predicate P it holds that

1. The program effcount is a generic count program

2. The runtime complexity of effcount P is given by the following formula:

|bs|≤n

∑
bs∈Addr

steps(T (P))(bs)+O(2n)

286 Appendix C. Proof details for the complexity of effectful generic count

Proof. The proof begins by direct calculation.

⟨effcountP | /0 | [([],χid)]⟩
= (definition of residual)

⟨effcountP | /0 | residual([],P)⟩
−→ (M-App, JeffcountK /0 = (/0,λpred. · · ·))
⟨handle pred (λ_.do Branch ⟨⟩) with Hcount | γ | residual([],P)⟩

where γ = env⊥(P)

−→ (M-Handle)

⟨pred (λ_.do Branch ⟨⟩) | γ | ([],(γ,Hcount)) :: residual([],P)⟩
= (definition of χcount)

⟨pred (λ_.do Branch ⟨⟩) | γ | ([],χcount(P)) :: residual([],P)⟩
−→ steps(τ)([]) (by Lemma C.4)

⟨z V | γ′ | (σ,χcount(P)) :: residual([],P)⟩
where z V = comp(τ)(bs),γ′ = env(τ)([])[q 7→ (env⊥(P),λ_.do Branch ⟨⟩)],

?k = labs(τ)([]),JVKγ′ = k, and σ = pure(τ)([])

= (definition of arrive)

arrive([],P)

−→ T([],n) (by Lemma C.5)

depart([],P)

= (definition of depart)

⟨return m | γ | residual([],P)⟩
where γ = env⊥(P) and m = c([])≤ 2n−|bs| = 2n

= (definition of residual)

⟨return m | γ | [([],χid)]⟩
−→ (M-Handle−Ret, Hval

id = {return x 7→ return x})
⟨return x | /0[x 7→ m] | []⟩

Analysis The machine yields the value m. By Lemma C.5 it follows that m≤ 2n−|bs|=

2n−|[]| = 2n. Furthermore, the total number of transitions used were

3+ steps(τ)([])+T([],n)

= (definition of T)

3+ steps(τ)([])+9∗2n +2n+1 +
1≤|bs′|≤n

∑
bs′∈B∗

steps(τ)(bs′)

287

= (simplify)

3+ steps(τ)([])+9∗2n +2n+1 +
1≤|bs′|≤n

∑
bs′∈B∗

steps(τ)(bs′)

= (reorder)

3+

(
1≤|bs′|≤n

∑
bs′∈B∗

steps(τ)(bs′)

)
+ steps(τ)([])+9∗2n +2n+1

= (rewrite as unary sum)

3+

(
1≤|bs′|≤n

∑
bs′∈B∗

steps(τ)(bs′)+
0≤|bs′|≤0

∑
bs′∈Addr

steps(τ)(bs′)

)
+9∗2n +2n+1

= (merge sums)

3+

(
0≤|bs′|≤n

∑
bs′∈B∗

steps(τ)(bs′)

)
+9∗2n +2n+1

= (definition of O)(
0≤|bs′|≤n

∑
bs′∈B∗

steps(τ)(bs′)

)
+O(2n)

Appendix D

Berger count

In this appendix I will give a brief presentation of the BergerCount program alluded

to in Section 7.4, in order to fill out our overall picture of the relationship between

language expressivity and potential program efficiency.

Relation to prior work This appendix is imported from Appendix D of Hillerström

et al. [124]. The code snippets in this appendix are based on an implementation of

Berger count in SML/NJ written by John Longley. I have transcribed the code snippets,

and in certain places tweaked it for presentation.

Berger’s original program [19] introduced a remarkable search operator for predic-

ates on infinite streams of booleans, and has played an important role in higher-order

computability theory [180]. What we wish to highlight here is that if one applies the al-

gorithm to predicates on finite boolean vectors, the resulting program, though no longer

interesting from a computability perspective, still holds some interest from a complex-

ity standpoint: indeed, it yields what seems to be the best available implementation of

generic count within a PCF-style ‘functional’ language (provided one accepts the use

of a primitive for call-by-need evaluation).

Let us consider an adaptation of Berger’s search algorithm on finite spaces.

bestshotn : Predicaten→ Pointn

bestshotn pred def
= bestshot′n pred []

bestshot′n : Predicaten→ ListBool→ Pointn

bestshot′n pred start def
= let f ←memoise (λ⟨⟩.bestshot′′n pred start) in

return (λi.if i < |start| then start.i else (f ⟨⟩).i)

289

290 Appendix D. Berger count

bestshot′′n : Predicaten→ ListBool→ ListBool

bestshot′′n pred start def
= if |start|= n then return start

else let f ← bestshot′n pred (append start [true]) in
if pred f then return [f 0, . . . , f (n−1)]

else bestshot′′n pred (append start [false])

Given any n-standard predicate P the function bestshotn returns a point satisfying P

if one exists, or dummy point λi.false if not. It is implemented by via two mutually

recursive auxiliary functions whose workings are admittedly hard to elucidate in a

few words. The function bestshot′n is a generalisation of bestshotn that makes a best

shot at finding a point π satisfying given predicate and matching some specified list

start in some initial segment of its components [π(0), . . . ,π(i− 1)]. It works ‘lazily’,

drawing its values from start wherever possible, and performing an actual search only

when required. This actual search is undertaken by bestshot′′n , which proceeds by first

searching for a solution that extends the specified list with true; but if no such solution

is forthcoming, it settles for false as the next component of the point being constructed.

The whole procedure relies on a subtle combination of laziness, recursion and implicit

nesting of calls to the provided predicate which means that the search is self-pruning

in regions of the binary tree where the predicate only demands some initial segment

q 0,. . . ,q (i−1) of its argument q.

The above program makes use of an operation

memoise : (1→ List Bool)→ (1→ List Bool)

which transforms a given thunk into an equivalent ‘memoised’ version, i.e. one that

caches its value after its first invocation and immediately returns this value on all

subsequent invocations. Such an operation may readily be implemented in λs, or altern-

atively may simply be added as a primitive in its own right. The latter has the advantage

that it preserves the purely ‘functional’ character of the language, in the sense that

every program is observationally equivalent to a λb program, namely the one obtained

by replacing memoise by the identity.

We now show how the above idea may be exploited to yield a generic count program

(this development appears to be new).

BergerCountn : Predicaten→ Nat

BergerCountn pred def
= count′n pred [] 0

291

count′n : Predicaten→ ListBool→ Nat→ Nat

count′n pred start acc def
= if |start|= n then acc+(if pred (λi.start.i) then return 1

else return 0)

else let f ← bestshot′n pred start in
if pred f then count′′n start [f 0, . . . , f (n−1)] acc

else return acc

count′′n : Predicaten→ ListBool→ ListBool→ Nat→ Nat

count′′n pred start leftmost acc def
= if |start|= n then acc+1

else let b← leftmost.|start| in
let acc′← count′′n pred (append start [b])

leftmost acc in
if b then count′n pred (append start [false]) acc′

else return acc′

Again, BergerCountn is implemented by means of two mutually recursive auxiliary

functions. The function count′n counts the solutions to the provided predicate pred that

start with the specified list of booleans, adding their number to a previously accumulated

total given by acc. The function count′′n does the same thing, but exploiting the know-

ledge that a best shot at the ‘leftmost’ solution to P within this subtree has already been

computed. (We are visualising n-points as forming a binary tree with true to the left of

false at each fork.) Thus, count′′n will not re-examine the portion of the subtree to the

left of this candidate solution, but rather will start at this solution and work rightward.

This gives rise to an n-count program that can work efficiently on predicates that

tend to ‘fail fast’: more specifically, predicates P that inspect the components of their

argument q in order q 0, q 1, q 2, . . . , and which are frequently able to return false after

inspecting just a small number of these components. Generalising our program from

binary to k-ary branching trees, we see that the n-queens problem provides a typical

example: most points in the space can be seen not to be solutions by inspecting just the

first few components. Our experimental results in Section 7.6 attest to the viability of

this approach and its overwhelming superiority over the naïve functional method.

By contrast, the above program is not able to exploit parts of the tree where our

predicate ‘succeeds fast’, i.e. returns true after seeing just a few components. Unlike

the effectful count program of Section 7.3.4, which may sometimes add 2n−d to the

count in a single step, the Berger approach can only count solutions one at a time.

Thus, supposing P is an n-standard predicate the evaluation of countn P that returns

a natural number c must take time Ω(c). These observations informally indicate the

292 Appendix D. Berger count

likely extent of the efficiency gap between effectful and purely functional computation

when it comes to non-n-standard predicates.

Bibliography

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A func-
tional correspondence between evaluators and abstract machines. In PPDP,
pages 8–19. ACM, 2003.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. From
interpreter to compiler and virtual machine: A functional derivation. BRICS
Report Series, 10(14), 2003.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Inf. Process. Lett.,
90(5):223–232, 2004.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages with computa-
tional effects. Theor. Comput. Sci., 342(1):149–172, 2005.

[5] Danel Ahman. Fibred Computational Effects. PhD thesis, The University of
Edinburgh, Scotland, UK, 2017.

[6] Danel Ahman and Matija Pretnar. Asynchronous effects. Proc. ACM Program.
Lang., 5(POPL):1–28, 2021.

[7] Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg. Scalable
Handling of Effects (Dagstuhl Seminar 21292). Dagstuhl Reports, 11(6):54–81,
2021.

[8] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

[9] Andrew W. Appel and David B. MacQueen. Standard ML of new jersey. In
PLILP, volume 528 of LNCS, pages 1–13. Springer, 1991.

[10] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent programming
in ERLANG. Prentice Hall, 1993.

[11] Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations.
In APLAS, volume 4807 of LNCS, pages 239–254. Springer, 2007.

[12] John W. Backus, Robert J. Beeber, Sheldon Best, Richard Goldberg, Lois M.
Haibt, Harlan L. Herrick, Robert A. Nelson, David Sayre, Peter B. Sheridan,
H. Stern, Irving Ziller, Robert A. Hughes, and R. Nutt. The FORTRAN automatic

293

294 Bibliography

coding system. In IRE-AIEE-ACM Computer Conference (Western), pages 188–
198. ACM, 1957.

[13] John W. Backus, Friedrich L. Bauer, Julien Green, C. Katz, John Mc-
Carthy, Alan J. Perlis, Heinz Rutishauser, Klaus Samelson, Bernard Vauquois,
Joseph Henry Wegstein, Adriaan van Wijngaarden, and Michael Woodger. Re-
port on the algorithmic language ALGOL 60. Commun. ACM, 3(5):299–314,
1960.

[14] Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and
handlers. Log. Methods Comput. Sci., 10(4), 2014.

[15] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and hand-
lers. J. Log. Algebr. Meth. Program., 84(1):108–123, 2015.

[16] Jordan Bell and Brett Stevens. A survey of known results and research areas for
n-queens. Discret. Math., 309(1):1–31, 2009.

[17] Nick Benton and Andrew Kennedy. Monads, effects and transformations. Elec-
tron. Notes Theor. Comput. Sci., 26:3–20, 1999.

[18] Nick Benton and Andrew Kennedy. Exceptional syntax journal of functional
programming. J. Funct. Program., 11(4):395–410, 2001.

[19] Ulrich Berger. Totale Objekte und Mengen in der Bereichstheorie. PhD thesis,
Ludwig Maximillians-Universtität, Munich, 1990.

[20] Bernard Berthomieu and Camille le Moniès de Sagazan. A calculus of tagged
types, with applications to process languages. In Workshop on Types for Program
Analysis, 1995.

[21] Gavin M. Bierman, Martín Abadi, and Mads Torgersen. Understanding
typescript. In ECOOP, volume 8586 of LNCS, pages 257–281. Springer, 2014.

[22] Malgorzata Biernacka and Olivier Danvy. A concrete framework for environment
machines. ACM Trans. Comput. Log., 9(1):6, 2007.

[23] Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational
foundation for delimited continuations. BRICS Report Series, 10(41), 2003.

[24] Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational
foundation for delimited continuations in the CPS hierarchy. Log. Methods
Comput. Sci., 1(2), 2005.

[25] Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On the dynamic extent
of delimited continuations. Inf. Process. Lett., 96(1):7–17, 2005.

[26] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Handle
with care: relational interpretation of algebraic effects and handlers. Proc. ACM
Program. Lang., 2(POPL):8:1–8:30, 2018.

Bibliography 295

[27] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Abstract-
ing algebraic effects. Proc. ACM Program. Lang., 3(POPL):6:1–6:28, 2019.

[28] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Binders
by day, labels by night: effect instances via lexically scoped handlers. Proc. ACM
Program. Lang., 4(POPL):48:1–48:29, 2020.

[29] Richard Bird, Geraint Jones, and Oege de Moor. More haste less speed: lazy
versus eager evaluation. J. Funct. Program., 7(5):541–547, 1997.

[30] Richard S. Bird. Functional pearl: A program to solve sudoku. J. Funct. Pro-
gram., 16(6):671–679, 2006.

[31] Francis Borceux. Handbook of Categorical Algebra, volume 1 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 1994.

[32] Oliver Bracevac. Event Correlation with Algebraic Effects - Theory, Design and
Implementation. PhD thesis, Technische Universität Damstadt, Germany, 2019.

[33] Oliver Bracevac, Nada Amin, Guido Salvaneschi, Sebastian Erdweg, Patrick Eug-
ster, and Mira Mezini. Versatile event correlation with algebraic effects. Proc.
ACM Program. Lang., 2(ICFP):67:1–67:31, 2018.

[34] Jonathan Immanuel Brachthäuser. Design and Implementation of Effect Hand-
lers for Object-Oriented Programming Languages. PhD thesis, University of
Tübingen, Germany, 2020.

[35] Jonathan Immanuel Brachthäuser and Philipp Schuster. Effekt: extensible algeb-
raic effects in scala (short paper). In SCALA@SPLASH, pages 67–72. ACM,
2017.

[36] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effect
handlers for the masses. Proc. ACM Program. Lang., 2(OOPSLA):111:1–111:27,
2018.

[37] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Ef-
fekt: Capability-passing style for type- and effect-safe, extensible effect handlers
in scala. J. Funct. Program., 30:e8, 2020.

[38] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Ef-
fekt: Capability-passing style for type- and effect-safe, extensible effect handlers
in scala. J. Funct. Program., 30:e8, 2020.

[39] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Ef-
fects as capabilities: effect handlers and lightweight effect polymorphism. Proc.
ACM Program. Lang., 4(OOPSLA):126:1–126:30, 2020.

[40] Edwin Brady. Programming and reasoning with algebraic effects and dependent
types. In ICFP, pages 133–144. ACM, 2013.

296 Bibliography

[41] Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. Representing control in
the presence of one-shot continuations. In PLDI, pages 99–107. ACM, 1996.

[42] Rod M. Burstall. Writing search algorithms in functional form. In Machine
Intelligence, volume 3, pages 373–385. Edinburgh University Press, 1968.

[43] Robert Cartwright and Matthias Felleisen. Observable sequentiality and full
abstraction. In POPL, pages 328–342. ACM Press, 1992.

[44] Paul Chiusano et al. Unison language reference, 2020. Revision cb9a198.

[45] Alonzo Church. A set of postulates for the foundation of logic. In Annals of
Mathematics, volume 33, pages 346–366, 1932.

[46] Alonzo Church. The Calculi of Lambda Conversion. (AM-6) (Annals of Math-
ematics Studies). Princeton University Press, USA, 1941.

[47] Koen Claessen. A poor man’s concurrency monad. J. Funct. Program., 9(3):
313–323, 1999.

[48] William D. Clinger. Proper tail recursion and space efficiency. In PLDI, pages
174–185. ACM, 1998.

[49] William D. Clinger, Anne Hartheimer, and Eric Ost. Implementation strategies
for continuations. In LISP and Functional Programming, pages 124–131. ACM,
1988.

[50] William D. Clinger et al. The revised revised report on Scheme or an UnCommon
Lisp. Technical Report AIM-848, MIT, August 1985.

[51] Lukas Convent. Enhancing a modular effectful programming language. Master’s
thesis, School of Informatics, The University of Edinburgh, Scotland, UK, 2017.

[52] Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. Doo bee
doo bee doo. J. Funct. Program., 30:e9, 2020.

[53] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web pro-
gramming without tiers. In FMCO, volume 4709 of LNCS, pages 266–296.
Springer, 2006.

[54] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. MIT Press, 3rd edition, 2009.

[55] Robbie Daniels. Efficient generic searches and programming language expressiv-
ity. Master’s thesis, School of Informatics, the University of Edinburgh, Scotland,
August 2016.

[56] Olivier Danvy. Memory allocation and higher-order functions. In PLDI, pages
241–252. ACM, 1987.

[57] Olivier Danvy. Functional unparsing. J. Funct. Program., 8(6):621–625, 1998.

https://github.com/unisonweb/unisonweb-org/tree/cb9a1988731451311eeb372f69e9b9f576aa02d3/src/data/docs/language-reference

Bibliography 297

[58] Olivier Danvy. A rational deconstruction of landin’s SECD machine. In IFL,
volume 3474 of LNCS, pages 52–71. Springer, 2004.

[59] Olivier Danvy. On evaluation contexts, continuations, and the rest of computation.
In CW, number CSR-04-1, Birmingham B15 2TT, United Kingdom, 2004.

[60] Olivier Danvy. An Analytical Approach to Programs as Data Objects. DSc
thesis, Aarhus University, Aarhus, Denmark, 2006.

[61] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts.
Technical Report 89/12, DIKU, Computer Science Department, University of
Copenhagen, Copenhagen, Denmark, July 1989.

[62] Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and Functional
Programming, pages 151–160, 1990.

[63] Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391,
1992.

[64] Olivier Danvy and Kevin Millikin. A rational deconstruction of landin’s SECD
machine with the J operator. Log. Methods Comput. Sci., 4(4), 2008.

[65] Olivier Danvy and Kevin Millikin. Refunctionalization at work. Sci. Comput.
Program., 74(8):534–549, 2009.

[66] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In PPDP,
pages 162–174. ACM, 2001.

[67] Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS transformation.
Theor. Comput. Sci., 308(1-3):239–257, 2003.

[68] Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes. Inf.
Process. Lett., 94(5):217–224, 2005.

[69] Ana Lúcia de Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM
Trans. Program. Lang. Syst., 31(2):6:1–6:31, 2009.

[70] Stephen Dolan, Leo White, and Anil Madhavapeddy. Multicore OCaml. OCaml
Workshop, 2014.

[71] Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil
Madhavapeddy. Effective concurrency through algebraic effects. OCaml Work-
shop, 2015.

[72] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, K. C.
Sivaramakrishnan, and Leo White. Concurrent system programming with effect
handlers. In TFP, volume 10788 of LNCS, pages 98–117. Springer, 2017.

[73] Rémi Douence and Pascal Fradet. The next 700 krivine machines. High. Order
Symb. Comput., 20(3):237–255, 2007.

298 Bibliography

[74] R. Kent Dybvig and Robert Hieb. Engines from continuations. Comput. Lang.,
14(2):109–123, 1989.

[75] R. Kent Dybvig, Simon L. Peyton Jones, and Amr Sabry. A monadic framework
for delimited continuations. J. Funct. Program., 17(6):687–730, 2007.

[76] Martín Hötzel Escardó. Infinite sets that admit fast exhaustive search. In LICS,
pages 443–452. IEEE Computer Society, 2007.

[77] David A. Espinosa. Semantic Lego. PhD thesis, Columbia University, New York,
USA, 1995.

[78] Kavon Farvardin and John H. Reppy. From folklore to fact: comparing imple-
mentations of stacks and continuations. In PLDI, pages 75–90. ACM, 2020.

[79] Matthias Felleisen. The Calculi of Lambda-nu-cs Conversion: A Syntactic The-
ory of Control and State in Imperative Higher-order Programming Languages.
PhD thesis, Indianapolis, IN, USA, 1987. AAI8727494.

[80] Matthias Felleisen. Reflections on landins’s j-operator: A partly historical note.
Comput. Lang., 12(3/4):197–207, 1987.

[81] Matthias Felleisen. The theory and practice of first-class prompts. In POPL,
pages 180–190. ACM Press, 1988.

[82] Matthias Felleisen. On the expressive power of programming languages. Sci.
Comput. Program., 17(1-3):35–75, 1991. Revised version.

[83] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-
machine, and the λ-calculus. In Formal Description of Programming Concepts
III, pages 193–217, 1987.

[84] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F.
Duba. Reasoning with continuations. In LICS, pages 131–141. IEEE Computer
Society, 1986.

[85] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond
continuations. Technical Report 216, Computer Science Department, Indiana
University, Bloomington, Indiana 47405, USA, February 1987.

[86] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Ab-
stract continuations: A mathematical semantics for handling full jumps. In LISP
and Functional Programming, pages 52–62. ACM, 1988.

[87] Andrzej Filinski. Representing monads. In POPL, pages 446–457. ACM Press,
1994.

[88] Andrzej Filinski. Controlling Effects. PhD thesis, Carnegie Mellon University,
1996.

[89] Andrzej Filinski. Representing layered monads. In POPL, pages 175–188. ACM,
1999.

Bibliography 299

[90] Andrzej Filinski. Monads in action. In POPL, pages 483–494. ACM, 2010.

[91] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In PLDI, pages 237–247. ACM, 1993.

[92] Matthew Flatt and R. Kent Dybvig. Compiler and runtime support for continu-
ation marks. In PLDI, pages 45–58. ACM, 2020.

[93] Matthew Flatt and PLT. The Racket reference (version 7.9), November 2020.

[94] Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen. Adding
delimited and composable control to a production programming environment. In
ICFP, pages 165–176. ACM, 2007.

[95] Matthew Flatt, Caner Derici, R. Kent Dybvig, Andrew W. Keep, Gustavo E.
Massaccesi, Sarah Spall, Sam Tobin-Hochstadt, and Jon Zeppieri. Rebuilding
racket on chez scheme (experience report). Proc. ACM Program. Lang., 3(ICFP):
78:1–78:15, 2019.

[96] Matthew Fluet et al. MLton documentation, January 2014.

[97] Maarten M. Fokkinga. Tupling and mutumorphisms. The Squiggolist, 1(4):
81–82, 1990.

[98] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the express-
ive power of user-defined effects: Effect handlers, monadic reflection, delimited
control. PACMPL, 1(ICFP), September 2017.

[99] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the express-
ive power of user-defined effects: Effect handlers, monadic reflection, delimited
control. J. Funct. Program., 29:e15, 2019.

[100] Simon Fowler. Typed concurrent functional programming with channels, actors
and sessions. PhD thesis, The University of Edinburgh, Scotland, UK, 2019.

[101] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional
asynchronous session types: session types without tiers. Proc. ACM Program.
Lang., 3(POPL):28:1–28:29, 2019.

[102] Daniel P. Friedman and Christopher T. Haynes. Constraining control. In POPL,
pages 245–254. ACM Press, 1985.

[103] Daniel P. Friedman and Amr Sabry. Recursion is a computational effect. Tech-
nical report 546, Computer Science Department, Indiana University, Blooming-
ton, Indiana 47405, USA, 200.

[104] Daniel P. Friedman, Christopher T Haynes, and Eugene Kohlbecker. Program-
ming with continuations. In Peter Pepper, editor, Program Transformation and
Programming Environments, pages 263–274, Berlin, Heidelberg, 1984. Springer
Berlin Heidelberg. ISBN 978-3-642-46490-4.

300 Bibliography

[105] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In
ICFP, pages 18–27. ACM, 1999.

[106] Bram Geron. Defined Algebraic Operations. PhD thesis, University of Birming-
ham, England, UK, 2019.

[107] Jeremy Gibbons. Unifying theories of programming with monads. In UTP,
volume 7681 of LNCS, pages 23–67. Springer, 2012.

[108] Jeremy Gibbons and Ralf Hinze. Just do it: simple monadic equational reasoning.
In ICFP, pages 2–14. ACM, 2011.

[109] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris 7, France, 1972.

[110] Maria I. Gorinova, Dave Moore, and Matthew D. Hoffman. Automatic repara-
meterisation of probabilistic programs. In ICML, volume 119, pages 3648–3657.
PMLR, 2020.

[111] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions
and control in ml-like languages. In FPCA, pages 12–23. ACM, 1995.

[112] William L. Harrison. The essence of multitasking. In AMAST, volume 4019 of
LNCS, pages 158–172. Springer, 2006.

[113] Christopher T. Haynes and Daniel P. Friedman. Engines build process abstrac-
tions. In LISP and Functional Programming, pages 18–24. ACM, 1984.

[114] Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in
procedural objects. ACM Trans. Program. Lang. Syst., 9(4):582–598, 1987.

[115] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Obtaining
coroutines with continuations. Comput. Lang., 11(3/4):143–153, 1986.

[116] Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In PPOPP,
pages 128–136. ACM, 1990.

[117] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the
presence of first-class continuations. In PLDI, pages 66–77. ACM, 1990.

[118] Robert Hieb, R. Kent Dybvig, and Claude W. Anderson III. Subcontinuations.
LISP Symb. Comput., 7(1):83–110, 1994.

[119] Daniel Hillerström and Sam Lindley. Liberating effects with rows and handlers.
In TyDe@ICFP, pages 15–27. ACM, 2016.

[120] Daniel Hillerström and Sam Lindley. Shallow effect handlers. In APLAS, volume
11275 of LNCS, pages 415–435. Springer, 2018.

[121] Daniel Hillerström, Sam Lindley, Robert Atkey, and KC Sivaramakrishnan. Con-
tinuation passing style for effect handlers. In FSCD, volume 84 of LIPIcs, pages
18:1–18:19, 2017.

Bibliography 301

[122] Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via general-
ised continuations. J. Funct. Program., 30:e5, 2020.

[123] Daniel Hillerström, Sam Lindley, and John Longley. Effects for efficiency:
Asymptotic speedup with first-class control. Proc. ACM Program. Lang., 4
(ICFP):100:1–100:29, 2020.

[124] Daniel Hillerström, Sam Lindley, and John Longley. Effects for efficiency:
Asymptotic speedup with first-class control. CoRR, abs/2007.00605, 2020.

[125] Daniel Hillerström. Handlers for algebraic effects in Links. Master’s thesis,
School of Informatics, The University of Edinburgh, Scotland, UK, August 2015.

[126] Daniel Hillerström. Compilation of effect handlers and their applications in
concurrency. MSc(R) thesis, School of Informatics, The University of Edinburgh,
Scotland, UK, 2016.

[127] Daniel Hillerström. Composing UNIX with Effect Handlers: A Case Study in
Effect Handler Oriented Programming (extended abstract). ML Workshop, 2021.

[128] Roger Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the AMS, 146:29–60, 1969.

[129] William A. Howard. The formulae-as-types notion of construction. In Haskell
Curry, Hindley B., Seldin J. Roger, and P. Jonathan, editors, To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic
Press, 1980.

[130] Gérard P. Huet. The zipper. J. Funct. Program., 7(5):549–554, 1997.

[131] John Hughes. A novel representation of lists and its application to the function
"reverse". Inf. Process. Lett., 22(3):141–144, 1986.

[132] John Hughes. Why functional programming matters. Comput. J., 32(2):98–107,
1989.

[133] Graham Hutton and Joel J. Wright. Calculating an exceptional machine. In
Trends in Functional Programming, volume 5 of Trends in Functional Program-
ming, pages 49–64. Intellect, 2004.

[134] Martin Hyland. Game Semantics, pages 131–184. Cambridge University Press,
1997.

[135] Roshan P James and Amr Sabry. Yield: Mainstream delimited continuations. In
TPDC, 2011.

[136] Neil Jones. The expressive power of higher-order types, or, life without CONS.
J. Funct. Program., 11:5–94, 2001.

[137] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In POPL, pages 71–84. ACM Press, 1993.

302 Bibliography

[138] Simon Peyton Jones, Lennart Augustsson, Dave Barton, Brian Boutel, Warren
Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hudak, John Hughes,
Thomas Johnsson, Mark Jones, John Launchbury, Erik Meijer, John Peterson,
Alastair Reid, Colin Runciman, and Philip Wadler. Haskell 98: A non-strict,
purely functional language, 1999.

[139] Yukiyoshi Kameyama and Takuo Yonezawa. Typed dynamic control operators
for delimited continuations. In FLOPS, volume 4989 of LNCS, pages 239–254.
Springer, 2008.

[140] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Shifting the stage
- staging with delimited control. J. Funct. Program., 21(6):617–662, 2011.

[141] Ohad Kammar. Algebraic theory of type-and-effect systems. PhD thesis, The
University of Edinburgh, Scotland, UK, 2014.

[142] Ohad Kammar and Gordon D. Plotkin. Algebraic foundations for effect-
dependent optimisations. In POPL, pages 349–360. ACM, 2012.

[143] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In ICFP,
pages 145–158. ACM, 2013.

[144] Andrew Kennedy. Compiling with continuations, continued. In ICFP, pages
177–190. ACM, 2007.

[145] David J. King and Philip Wadler. Combining monads. In Functional Program-
ming, Workshops in Computing, pages 134–143. Springer, 1992.

[146] Oleg Kiselyov. Delimited control in OCaml, abstractly and concretely. Theor.
Comput. Sci., 435:56–76, 2012.

[147] Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. In
Haskell, pages 94–105. ACM, 2015.

[148] Oleg Kiselyov and Chung-chieh Shan. A substructural type system for delimited
continuations. In TLCA, volume 4583 of LNCS, pages 223–239. Springer, 2007.

[149] Oleg Kiselyov and Chung-chieh Shan. Delimited continuations in operating
systems. In CONTEXT, volume 4635 of LNCS, pages 291–302. Springer, 2007.

[150] Oleg Kiselyov and Chung-chieh Shan. Embedded probabilistic programming.
In DSL, volume 5658 of LNCS, pages 360–384. Springer, 2009.

[151] Oleg Kiselyov and KC Sivaramakrishnan. Eff directly in OCaml. ML Workshop,
2016.

[152] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. Back-
tracking, interleaving, and terminating monad transformers: (functional pearl).
pages 192–203, 2005.

[153] Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. Delimited dynamic binding.
In ICFP, pages 26–37. ACM, 2006.

Bibliography 303

[154] Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an altern-
ative to monad transformers. In Haskell, pages 59–70. ACM, 2013.

[155] Ikuo Kobori, Yukiyoshi Kameyama, and Oleg Kiselyov. Answer-type modifica-
tion without tears: Prompt-passing style translation for typed delimited-control
operators. In WoC, volume 212 of EPTCS, pages 36–52, 2015.

[156] Jean-Louis Krivine. A call-by-name lambda-calculus machine. High. Order
Symb. Comput., 20(3):199–207, 2007.

[157] Sanjeev Kumar, Carl Bruggeman, and R. Kent Dybvig. Threads yield continu-
ations. LISP Symb. Comput., 10(3):223–236, 1998.

[158] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 01 1964. ISSN 0010-4620.

[159] Peter J. Landin. Correspondence between ALGOL 60 and Church’s Lambda-
notation: part I. Commun. ACM, 8(2):89–101, 1965.

[160] Peter J. Landin. A correspondence between ALGOL 60 and Church’s Lambda-
notations: Part II. Commun. ACM, 8(3):158–167, 1965.

[161] Peter J. Landin. A generalization of jumps and labels. Higher-Order and Sym-
bolic Computation, 11(2):125–143, 1998. Reprint of UNIVAC Systems Pro-
gramming Research report (August 1965).

[162] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In
LISP and Functional Programming, pages 227–238. ACM, 1994.

[163] Daan Leijen. Extensible records with scoped labels. In Trends in Functional
Programming, volume 6 of Trends in Functional Programming, pages 179–194.
Intellect, 2005.

[164] Daan Leijen. Koka: Programming with row polymorphic effect types. In MSFP,
volume 153 of EPTCS, pages 100–126, 2014.

[165] Daan Leijen. Type directed compilation of row-typed algebraic effects. In POPL,
pages 486–499. ACM, 2017.

[166] Daan Leijen. Structured asynchrony with algebraic effects. In TyDe@ICFP,
pages 16–29. ACM, 2017.

[167] Daan Leijen. Implementing algebraic effects in C - "monads for free in C". In
APLAS, volume 10695 of Lecture Notes in Computer Science, pages 339–363.
Springer, 2017.

[168] Xavier Leroy. The ZINC experiment: an economical implementation of the ML
language. Technical report 117, INRIA, 1990.

[169] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The OCaml System Release 4.11: Documentation and
user’s manual. INRIA, August 2020.

304 Bibliography

[170] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in
call-by-value programming languages. Inf. Comput., 185(2):182–210, 2003.

[171] Bil Lewis, Dan LaLiberte, Richard Stallman, the GNU Manual Group, and et al.
GNU Emacs Lisp Reference Manual. Free Software Foundation, Boston, MA,
USA, 2020. ISBN 1882114744. For Emacs version 27.1.

[172] Peng Li and Steve Zdancewic. Combining events and threads for scalable net-
work services implementation and evaluation of monadic, application-level con-
currency primitives. In PLDI, pages 189–199. ACM, 2007.

[173] Sam Lindley and James Cheney. Row-based effect types for database integration.
In TLDI, pages 91–102. ACM, 2012.

[174] Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. In POPL,
pages 500–514. ACM, 2017.

[175] John Longley. When is a functional program not a functional program? In ICFP,
pages 1–7. ACM, 1999.

[176] John Longley. Universal types and what they are good for. In Domain Theory,
Logic and Computation, pages 25–63. Springer Netherlands, 2003.

[177] John Longley. Some programming languages suggested by game models (exten-
ded abstract). In MFPS, volume 249, pages 117–134. Elsevier, 2009.

[178] John Longley. The recursion hierarchy for PCF is strict. Logical Methods in
Comput. Sci., 14(3:8):1–51, 2018.

[179] John Longley. Bar recursion is not computable via iteration. Computability, 8
(2):119–153, 2019.

[180] John Longley and Dag Normann. Higher-Order Computability. Theory and
Applications of Computability. Springer, 2015.

[181] John Longley and Nicholas Wolverson. Eriskay: a programming language based
on game semantics. Presented at GaLoP III, April 2008.

[182] John M. Lucassen. Types and Effects — Towards the Integration of Functional
and Imperative Programming. PhD thesis, MIT, USA, 1987.

[183] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In POPL,
pages 47–57. ACM Press, 1988.

[184] Žiga Lukšič. Applications of algebraic effect theories. PhD thesis, University of
Ljubljana, Slovenia, 2020.

[185] Žiga Lukšič and Matija Pretnar. Local algebraic effect theories. J. Funct. Pro-
gram., 30:e13, 2020.

[186] David MacKenzie et al. GNU Coreutils. Free Software Foundation, February
2020. For version 8.32.

Bibliography 305

[187] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts
in Mathematics, Vol. 5. Springer-Verlag, New York, 1971.

[188] Anil Madhavapeddy and David J. Scott. Unikernels: the rise of the virtual library
operating system. Commun. ACM, 57(1):61–69, 2014.

[189] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in proof theory.
Bibliopolis, 1984.

[190] Marek Materzok and Dariusz Biernacki. A dynamic interpretation of the CPS
hierarchy. In APLAS, volume 7705 of LNCS, pages 296–311. Springer, 2012.

[191] Conor McBride and Ross Paterson. Applicative programming with effects. J.
Funct. Program., 18(1):1–13, 2008.

[192] John McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine, part I. Commun. ACM, 3(4):184–195, 1960.

[193] Craig McLaughlin. Relational Reasoning for Effects and Handlers. PhD thesis,
The University of Edinburgh, Scotland, UK, 2020.

[194] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In FPCA, volume 523 of LNCS,
pages 124–144. Springer, 1991.

[195] Paul-André Melliès. Local states in string diagrams. In RTA-TLCA, volume
8560 of LNCS, pages 334–348. Springer, 2014.

[196] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-
calculi (summary). In Logic of Programs, volume 193 of LNCS, pages 219–224.
Springer, 1985.

[197] Robin Milner. Processes: A mathematical model of computing agents. In Studies
in Logic and the Foundations of Mathematics, pages 157–173. Elsevier, 1975.

[198] Robin Milner. Fully abstract models of typed λ-calculi. Theor. Comput. Sci., 4
(1):1–22, 1977.

[199] Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst.
Sci., 17(3):348–375, 1978.

[200] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Definition
of Standard ML. MIT Press, Cambridge, MA, USA, 1997. ISBN 0262631814.

[201] Eugenio Moggi. Computational lambda-calculus and monads. In LICS, pages
14–23. IEEE Computer Society, 1989.

[202] Eugenio Moggi. An abstract view of programming languages. Technical Report
ECS-LFCS-90-113, LFCS, The University of Edinburgh, Scotland, UK, 1990.

[203] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):
55–92, 1991.

306 Bibliography

[204] David A. Moon. MACLISP reference manual (revision 0). Project MAC – MIT,
April 1974.

[205] Luc Moreau and Christian Queinnec. Partial continuations as the difference of
continuations - A duumvirate of control operators. In PLILP, volume 844 of
LNCS, pages 182–197. Springer, 1994.

[206] J. Garrett Morris and James McKinna. Abstracting extensible data types: or,
rows by any other name. Proc. ACM Program. Lang., 3(POPL):12:1–12:28,
2019.

[207] Flemming Nielson and Hanne Riis Nielson. Type and effect systems. In Correct
System Design, volume 1710 of Lecture Notes in Computer Science, pages 114–
136. Springer, 1999.

[208] Junpei Oishi and Yukiyoshi Kameyama. Staging with control: type-safe multi-
stage programming with control operators. In GPCE, pages 29–40. ACM, 2017.

[209] Chris Okasaki. Functional pearl: Even higher-order functions for parsing. J.
Funct. Program., 8(2):195–199, 1998.

[210] Chris Okasaki. Purely functional data structures. Cambridge University Press,
1999.

[211] Nikolaos S. Papspyrou. A resumption monad transformer and its applications
in the semantics of concurrency. In Proceedings of the 3rd Panhellenic Logic
Symposium, Anogia, Greece.

[212] David Lorge Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, 1972.

[213] Koen Pauwels, Tom Schrijvers, and Shin-Cheng Mu. Handling local state with
global state. In MPC, volume 11825 of LNCS, pages 18–44. Springer, 2019.

[214] Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and Mat-
thias Felleisen. Continuations from generalized stack inspection. In ICFP, pages
216–227. ACM, 2005.

[215] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

[216] Nicholas Pippenger. Pure versus impure lisp. In POPL, pages 104–109. ACM,
1996.

[217] Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Typed equivalence of effect
handlers and delimited control. In FSCD, volume 131 of LIPIcs, pages 30:1–
30:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[218] Ken Pizzini, Paolo Bonzini, Jim Meyering, and Assaf Gordon. GNU sed, a
stream editor. Free Software Foundation, January 2020. For version 4.8.

[219] Gordon Plotkin. LCF considered as a programming language. Theor. Comput.
Sci., 5(3):223–255, 1977.

Bibliography 307

[220] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor.
Comput. Sci., 1(2):125–159, 1975.

[221] Gordon D. Plotkin. A powerdomain construction. SIAM J. Comput., 5(3):452–
487, 1976.

[222] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report FN-19, Aarhus, Denmark, September 1981.

[223] Gordon D. Plotkin. A structural approach to operational semantics. J. Log.
Algebr. Program., 60-61:17–139, 2004.

[224] Gordon D. Plotkin and John Power. Adequacy for algebraic effects. In FoSSaCS,
volume 2030 of LNCS, pages 1–24. Springer, 2001.

[225] Gordon D. Plotkin and John Power. Notions of computation determine monads.
In FoSSaCS, volume 2303 of Lecture Notes in Computer Science, pages 342–356.
Springer, 2002.

[226] Gordon D. Plotkin and John Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69–94, 2003.

[227] Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In ESOP,
volume 5502 of LNCS, pages 80–94. Springer, 2009.

[228] Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4), 2013.

[229] Leo Poulson. Asynchronous effect handling. Master’s thesis, School of Inform-
atics, The University of Edinburgh, Scotland, UK, 2020.

[230] Matija Pretnar. Logic and handling of algebraic effects. PhD thesis, The Univer-
sity of Edinburgh, Scotland, UK, 2010.

[231] Matija Pretnar. Inferring algebraic effects. Log. Methods Comput. Sci., 10(3),
2014.

[232] Matija Pretnar. An introduction to algebraic effects and handlers. Electr. Notes
Theor. Comput. Sci., 319:19–35, 2015. Invited tutorial paper.

[233] Christian Queinnec. Continuations and web servers. High. Order Symb. Comput.,
17(4):277–295, 2004.

[234] Christian Queinnec and Bernard P. Serpette. A dynamic extent control operator
for partial continuations. In POPL, pages 174–184. ACM Press, 1991.

[235] Eric Steven Raymond. The Art of UNIX Programming. Pearson Education, 2003.
ISBN 0131429019.

[236] Didier Rémy. Syntactic theories and the algebra of record terms. Technical
Report RR-1869, INRIA, 1993.

308 Bibliography

[237] Didier Rémy. Type Inference for Records in Natural Extension of ML, pages
67–95. MIT Press, Cambridge, MA, USA, 1994.

[238] John C. Reynolds. Towards a theory of type structure. In Symposium on Pro-
gramming, volume 19 of LNCS, pages 408–423. Springer, 1974.

[239] John C. Reynolds. The discoveries of continuations. LISP Symb. Comput., 6
(3-4):233–248, 1993.

[240] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. High. Order Symb. Comput., 11(4):363–397, 1998. This paper originally
appeared in the Proceedings of the ACM National Conference, volume 2, August,
1972, pages 717–740.

[241] Dennis Ritchie and Ken Thompson. The UNIX time-sharing system. Commun.
ACM, 17(7):365–375, 1974.

[242] Amr Hany Saleh. Efficient Algebraic Effect Handlers. PhD thesis, KU Leuven,
Belgium, 2019.

[243] Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. Com-
piling effect handlers in capability-passing style. Proc. ACM Program. Lang., 4
(ICFP):93:1–93:28, 2020.

[244] Dana Scott. A system of functional abstraction. Lectures delivered at University
of California, Berkeley, California, USA, 1962/63.

[245] Dana Scott and Christopher Strachey. Proceedings of the Symposium on Com-
puters and Automata, 21, 1971.

[246] William Shakespeare. The Tragedy of Hamlet, Prince of Denmark, 1564-1616.

[247] Chung-chieh Shan. Shift to control. ACM SIGPLAN Scheme Workshop, 2004.

[248] Chung-chieh Shan. A static simulation of dynamic delimited control. High.
Order Symb. Comput., 20(4):371–401, 2007.

[249] Alex K. Simpson. Lazy functional algorithms for exact real functionals. In
MFCS, volume 1450 of LNCS, pages 456–464. Springer, 1998.

[250] Dorai Sitaram. Handling control. In PLDI, pages 147–155. ACM, 1993.

[251] Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierarchies.
LISP Symb. Comput., 3(1):67–99, 1990.

[252] KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer,
and Anil Madhavapeddy. Retrofitting effect handlers onto OCaml. CoRR,
abs/2104.00250, 2021.

[253] Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten,
Robert Bruce Findler, and Jacob Matthews. Revised6 Report on the Algorithmic
Language Scheme. Cambridge University Press, 2010.

Bibliography 309

[254] Guy L. Steele. RABBIT: A compiler for SCHEME (a study in compiler optim-
ization). Technical Report TR-474, MIT, Cambridge, Massachusetts, USA, May
1978.

[255] Christopher Strachey and Christopher P. Wadsworth. Continuations: A math-
ematical semantics for handling full jumps. Technical Monograph PRG-11,
Programming Research Group, University of Oxford, January 1974.

[256] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathem-
atical semantics for handling full jumps. High. Order Symb. Comput., 13(1/2):
135–152, 2000.

[257] Gerald J. Sussman and Guy L. Steele. Scheme: An interpreter for extended
lambda calculus. Technical Report AI Memo No. 349, MIT, December 1975.

[258] Wouter Swierstra. From mathematics to abstract machine: A formal derivation of
an executable krivine machine. In MSFP, volume 76 of EPTCS, pages 163–177,
2012.

[259] Don Syme, Tomas Petricek, and Dmitry Lomov. The f# asynchronous program-
ming model. In PADL, volume 6539 of LNCS, pages 175–189. Springer, 2011.

[260] Hayo Thielecke. An introduction to Landin’s “a generalization of jumps and
labels”. High. Order Symb. Comput., 11(2):117–123, 1998.

[261] Hayo Thielecke. Comparing control constructs by double-barrelled CPS. High.
Order Symb. Comput., 15(2-3):141–160, 2002.

[262] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value
lambda-calculus using a stack of regions. In POPL, pages 188–201. ACM Press,
1994.

[263] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Inf.
Comput., 132(2):109–176, 1997.

[264] John Ronald Reuel Tolkien. The lord of the rings: Part 1: The fellowship of the
ring. Allen and Unwin, 1954.

[265] Niki Vazou and Daan Leijen. From monads to effects and back. In PADL,
volume 9585 of LNCS, pages 169–186. Springer, 2016.

[266] Philip Wadler. Theorems for free! In FPCA, pages 347–359. ACM, 1989.

[267] Philip Wadler. The essence of functional programming. In POPL, pages 1–14.
ACM, 1992.

[268] Philip Wadler. Comprehending monads. Math. Struct. Comput. Sci., 2(4):461–
493, 1992.

[269] Philip Wadler. Monads for functional programming. In Advanced Functional
Programming, volume 925 of LNCS, pages 24–52. Springer, 1995.

310 Bibliography

[270] Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM
Trans. Comput. Log., 4(1):1–32, 2003.

[271] Mitchell Wand. Continuation-based multiprocessing. In LISP Conference, pages
19–28. ACM, 1980.

[272] Mitchell Wand. Complete type inference for simple objects. In LICS, pages
37–44. IEEE Computer Society, 1987.

[273] Fei Wang, Daniel Zheng, James M. Decker, Xilun Wu, Grégory M. Essertel,
and Tiark Rompf. Demystifying differentiable programming: shift/reset the
penultimate backpropagator. Proc. ACM Program. Lang., 3(ICFP):96:1–96:31,
2019.

[274] Guannan Wei, Oliver Bracevac, Shangyin Tan, and Tiark Rompf. Compiling
symbolic execution with staging and algebraic effects. Proc. ACM Program.
Lang., 4(OOPSLA):164:1–164:33, 2020.

[275] Nicolas Wu and Tom Schrijvers. Fusion for free - efficient algebraic effect
handlers. In MPC, volume 9129 of LNCS, pages 302–322. Springer, 2015.

[276] Ningning Xie and Daan Leijen. Effect handlers in Haskell, evidently. In
Haskell@ICFP, pages 95–108. ACM, 2020.

[277] Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp
Schuster, and Daan Leijen. Effect handlers, evidently. Proc. ACM Program.
Lang., 4(ICFP):99:1–99:29, 2020.

[278] Jeremy Yallop. Abstraction for web programming. PhD thesis, The University
of Edinburgh, UK, 2010.

[279] Jeremy Yallop. Staged generic programming. PACMPL, 1(ICFP):29:1–29:29,
2017.

	Introduction
	Why first-class control matters
	State of effectful programming
	Scope
	Contributions
	Structure of this dissertation

	I Programming
	Composing UNIX with effect handlers
	Basic i/o
	Exceptions: process termination
	Dynamic binding: user-specific environments
	Nondeterminism: time sharing
	State: file i/o
	UNIX-style pipes
	Process synchronisation
	Related work

	Calculi for effect handler oriented programming
	A language based on rows
	Deep handling of effects
	Shallow effect handling
	Parameterised effect handling
	Related work

	II Implementation
	Continuation-passing style
	Initial target calculus
	Transforming fine-grain call-by-value
	Transforming deep effect handlers
	Transforming shallow effect handlers
	Transforming parameterised handlers
	Related work

	Abstract machine semantics
	Configurations with generalised continuations
	Generalised continuation-based machine semantics
	Realisability and efficiency implications
	Simulation of the context-based reduction semantics
	Related work

	III Expressiveness
	Interdefinability of effect handlers
	Deep as shallow
	Shallow as deep
	Parameterised handlers as ordinary deep handlers
	Related work

	Asymptotic speedup with effect handlers
	Simply-typed base and handler calculi
	A practical model of computation
	Predicates, decision trees, and generic count
	Pure generic count: a lower bound
	Extensions and variations
	Experiments
	Related work

	IV Conclusions
	Conclusions and future work
	Programming with effect handlers
	Canonical implementation strategies for handlers
	On the expressive power of effect handlers

	V Appendices
	Continuations
	Classifying continuations
	Controlling continuations
	Programming continuations
	Constraining continuations
	Implementing continuations

	Get get is redundant
	Proof details for the complexity of effectful generic count
	Berger count
	Bibliography

