
Liberating Effects with Rows and Handlers

Daniel Hillerström
The University of Edinburgh, UK

daniel.hillerstrom@ed.ac.uk

Sam Lindley
The University of Edinburgh, UK

sam.lindley@ed.ac.uk

Abstract
Algebraic effects and effect handlers provide a modular abstraction
for effectful programming. They support user-defined effects, as in
Haskell, in conjunction with direct-style effectful programming, as
in ML. They also present a structured interface to programming
with delimited continuations.

In order to be modular, it is necessary for an effect type sys-
tem to support extensible effects. Row polymorphism is a natural
abstraction for modelling extensibility at the level of types. In this
paper we argue that the abstraction required to implement extensi-
ble effects and their handlers is exactly row polymorphism.

We use the Links functional web programming language as a
platform to substantiate this claim. Links is a natural starting point
as it uses row polymorphism for polymorphic variants, records, and
its built-in effect types. It also has infrastructure for manipulating
continuations. Through a small extension to Links we smoothly
add support for effect handlers, making essential use of rows in
the frontend and first-class continuations in the backend.

We demonstrate the usability of our implementation by mod-
elling the mathematical game of Nim as an abstract computation.
We interpret this abstract computation in a variety of ways, illustrat-
ing how rows and handlers support modularity and smooth compo-
sition of effectful computations.

We present a core calculus of row-polymorphic effects and han-
dlers based on a variant of A-normal form used in the intermediate
representation of Links. We give an operational semantics for the
calculus and a novel generalisation of the CEK machine that imple-
ments the operational semantics, and prove that the two coincide.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]; F3.2 [Semantics of Programming Languages]

Keywords algebraic effects; effect handlers; effect typing; ab-
stract machine semantics; operational semantics; delimited control

1. Introduction
Algebraic effects [29] and effect handlers [30] are a more modu-
lar alternative to monads for managing user-defined computational
effects [6, 15, 17]. Effect handlers generalise exception handlers,
providing a mechanism for interpreting arbitrary algebraic effects,
and they present a structured interface to programming with delim-
ited continuations.

As a simple example consider a choice effect given by a single
effectful operation:

Choose : Bool

We can write an abstract computation M that invokes Choose, in-
dependently of specifying the meaning of Choose. We can then
handle M in multiple ways. For instance, we can define a han-
dler allResults that interprets the operation as nondeterministic
choice, returning a list of every possible outcome of M. We can
also define a different handler coin that interprets Choose as ran-
dom choice, returning a single value that depends on all of the ran-
dom choices made in M. Where effect handlers really come into
their own as a programming abstraction is when we start compos-
ing them: we can handle some effects while forwarding all others,
using row types to statically track the forwarded effects. We make
extensive use of handler composition in Section 2.

Many existing implementations of effect handlers are Haskell
libraries. Notable examples include the effect handlers library of
Kammar et al. [15], the extensible effects library of Kiselyov et al.
[17] and Kiselyov and Ishii [16], and implementations based on
variants of Swierstra’s data types à la carte technique [34], such
as the work of Wu et al. [36] on scoped effect handlers. Another
notable effect handlers library is the Idris effects library [6]. Each of
these libraries uses its own sophisticated encoding of an abstraction
which amounts to a restricted form of row polymorphism. In this
work we present the first, to our knowledge, implementation of
effect handlers using actual Remy-style row polymorphism [33].

Links [8] is a functional programming language for building
web applications. The defining feature of Links is that it provides
a single source language that targets all three tiers of a web ap-
plication: client, server, and database. Links source code is trans-
lated into an intermediate representation (IR) based on A-normal
form [11]. For the client, the IR is compiled to JavaScript. For
the server, the IR is interpreted using a variant of the CEK ma-
chine [10]. For the database, the IR is translated into an SQL query,
taking advantage of the effect type system and the subformula prop-
erty to guarantee query generation [22].

Links is a strict language with Hindley-Milner type inference.
Links has a row type system for polymorphic variants, records, and
its built-in effect types for concurrency and database integration [8,
22]. It also has support for manipulating first-class continuations, a
feature that is central to implementing effect handlers.

The row-polymorphic effect type system and continuation sup-
port make Links a natural choice for experimenting with row-based
algebraic effects and effect handlers. We have implemented an ef-
fect handlers extension to Links. Currently, it is supported only on
the server-side. The frontend to our implementation makes essen-
tial use of row polymorphism, while the backend is implemented
as a novel generalisation of the CEK machine.

Our main contributions are as follows.

• An implementation of effect handlers using Remy-style row
polymorphism [33].

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

TyDe’16, September 18, 2016, Nara, Japan
ACM. 978-1-4503-4435-7/16/09...
http://dx.doi.org/10.1145/2976022.2976033

15



• A demonstration of the usability of our implementation illus-
trating how rows and handlers support modularity and smooth
composition of effectful computations.

• A formalisation of our implementation including a small-step
call-by-value operational semantics and an abstract machine
semantics, based on a novel generalisation of the CEK machine
to account for effect handlers.

• A strong correspondence proof between the small-step and ab-
stract machine semantics: every reduction in the operational se-
mantics corresponds to a sequence of administrative steps fol-
lowed by a β-step in the abstract machine.

The rest of the paper is structured as follows. Section 2 gives
a tutorial introduction to programming with handlers in Links.
Section 3 presents a core calculus λρeff along with a type-and-effect
system and a small-step operational semantics. Section 4 relates
the operational semantics to an abstract machine semantics, that
captures the essence of our implementation. Section 5 discusses
implementation details. Section 6 discusses related work. Finally,
Section 7 concludes and discusses future work.

2. Programming with Handlers in Links
To demonstrate that rows and handlers provide an elegant and
modular abstraction for effectful programming, we use a simplified
version of the mathematical game Nim [5] as a running example.

Starting from an abstract representation of the game, we itera-
tively extend it with cheat detection and high score tracking capa-
bilities through smooth composition of handlers, without needing
to change the initial representation.

2.1 The Game of Nim and Effect Rows
The game of Nim is played between two players: Alice and Bob.
The game begins with a heap of n sticks. The players alternate to
take one, two, or three sticks from the heap. Alice makes the first
move. The player who takes the last stick wins the game.

We abstract over the notion of making a move by defining it
as an abstract effectful operation Move:(Player,Int) {}-> Int,
where Player is variant type with two constructors Alice and
Bob. The first parameter to Move is the active player, the second
parameter is the current number of sticks on the heap. We will
discuss the meaning of the braces ({}) prefix on the arrow shortly.
In Links, abstract operations like Move, are invoked using the do

primitive, for instance

do Move(Alice,3)

invokes the Move operation with values Alice and 3. Operation
names, data constructors, and type aliases all begin with a capital
letter. Records, variants, and effect signatures all have row types.
All typing is structural in Links, thus it is unnecessary to declare
a row occupant, such as an operation, before use. However, we
consider it good practice to wrap the invocation of operations as
functions. This is mainly because it lets us compose effects with
functions seamlessly. Moreover, sometimes we want to do more
than just invoking an operation. We will see an example of this in
Section 2.4. We wrap Move as follows:

sig move :
(Player,Int) {Move:(Player,Int) {}-> Int|e}-> Int

fun move(p,n) {do Move(p,n)}

The syntax of Links is loosely based on that of JavaScript. The fun

keyword begins a function definition (like function in JavaScript).
Just as in JavaScript functions are n-ary, but they can also be
curried. Unlike in JavaScript, functions are statically typed and the
sig keyword begins a type signature. The function move invokes the
operation Move with the parameters p and n.

In the type signature, the function arrow (->) is prefixed by a
row enclosed in curly braces. This row is the effect signature, or
effect row, of the function. The presence of Move in the effect row
indicates that the function may perform the Move operation. Fur-
thermore, the effect row is equipped with an effect variable e, which
can be instantiated with additional operations. This means that move
may be invoked in the scope of additional effects. We say an effect
row is closed if it has no effect variable, and open if it does. In gen-
eral an effect row consists of an unordered collection of operation
specifications and an optional effect variable. An operation speci-
fication either specifies that an operation is admissible (or present)
and has a particular type signature, or that it is absent, or that it
is polymorphic in its presence. We discuss the use of absence in
Section 2.5.

The effect row on the type signature of the Move operation itself
is empty, denoted by a pair of braces ({}). This is always the case
for abstract operations as any effects they might have are ultimately
conferred by their handlers.

The Nim game is modelled as two mutually recursive functions
aliceTurn and bobTurn. Here we show aliceTurn:

sig aliceTurn :
(Int) {Move:(Player,Int) {}-> Int|_}~> Player

fun aliceTurn(n) {
if (n <= 0) Bob
else bobTurn(n - move(Alice,n)) }

The parameter n is the current number of sticks on the heap. If n is
zero then Bob wins. Otherwise, Alice makes a move and it is now
Bob’s turn. The definition of bobTurn is completely symmetric, so
we omit it here for brevity.

Two observations are worth making about the effect signature
of aliceTurn. First, the effect variable is anonymous (_): type (or
effect) variables need not be named when they appear only once.
Second, the function arrow is squiggly (~>), which is syntactic
sugar for denoting that the computation has the wild effect. The
wild effect captures all intrinsic effects such as I/O, randomness,
divergence, etc. To some extent it is analogous to the IO monad of
Haskell, though the wild effect is much stricter as without it general
recursion is disallowed. In our current implementation intrinsic
effects cannot be handled by a handler, instead they are given a
predefined interpretation by the interpreter.

Links employs a strict evaluation strategy, so we thunk compu-
tations that we wish to handle, and define the following type alias:

typename Comp(e::Row,a) = () { |e}~> a;

The keyword typename is used to define type aliases. The Comp type
captures our notion of abstract computation, it is an alias for a thunk
with an open effect row and return type a. The notation e::Row

denotes that the type variable e has kind Row, which is the kind of
effect variables.

The game function begins a game with a given number of sticks.
Alice starts:

sig game : (Int) ->
Comp({Move:(Player,Int) {}-> Int|_}, Player)

fun game(n)() {aliceTurn(n)}

2.2 Strategies and Handlers
In general, algebraic effects come with equations [29], but as with
most other implementations of effect handlers, we do not consider
equations. Thus, on their own, abstract operations have no mean-
ing; handlers give them a semantics. We can use handlers to encode
particular strategies for Alice and Bob by interpreting the opera-
tion Move. We start by considering the perfect strategy, defined by
ps(n)

def
= max{1, n mod 4}, where n is the number of sticks left

16



in the game. If player p adopts the perfect strategy, then p is guar-
anteed to win if on p’s turn n is not divisible by four. We define
a handler pp (short for perfect-vs-perfect), that assigns the perfect
strategy to both players

1 sig pp : (Comp({Move:(Player,Int) {}-> Int|e}, a)) ->
2 Comp({Move- |e}, a)
3 fun pp(m)() {
4 handle(m) {
5 case Return(x) -> x
6 case Move(p,n,k) -> k(maximum(1, n ‘mod‘ 4)) }}

We describe the handler line by line.

Lines 1 and 2 give the type of pp: it takes a computation, which
may invoke the Move operation, and yields another computation
where the operation is absent (denoted by Move-). The computation
returns a value of type a. We may omit this type signature altogether
as the type system is capable of inferring the appropriate types.

Lines 3 and 4 begin the definition. The curried function pp wraps
the actual handler, that is applied to the argument m using the
handle construct, which specifies how to interpret abstract oper-
ations through a sequence of clauses.

Line 5 is a return clause. It defines how to handle the final return
value of the input computation. In this case, this value is simply
returned as is.

Line 6 is an operation clause. It expresses how to handle Move.
In general, an operation clause takes the form Op(p1, . . . , pn, k)→
M, where p1, . . . , pn are patterns that bind the operation parameters
and k is a pattern that binds the continuation of the computation in
M. In this case p and n are bound to the active player and number
of sticks in the heap, respectively. The continuation is invoked with
the perfect strategy, irrespective of the player. The input type of the
continuation is given by the output type of Move. The return type of
the continuation is the return type of the handler.

The handler pp returns a computation. For convenience we
define an auxiliary function to run (or force) a thunk:

sig run : (Comp({}, a)) {}~> a
fun run(m) { m() }

We can now compute the winner of a game in which both
players play the perfect strategy:

links> run(pp(game(7)));
Alice : Player
links> run(pp(game(12)));
Bob : Player

Syntactic Sugar The input computation in pp is immediately sup-
plied to handle. This abstract-over-handle idiom arises frequently,
so Links provides syntactic sugar for it. We can give a more suc-
cinct definition of pp using the handler keyword:

handler pp {
case Return(x) -> x
case Move(_,n,k) -> k(maximum(1,n ‘mod‘ 4)) }

We may choose to name the input computation by adding a pa-
rameter to the handler keyword in square brackets, for instance,
handler[m] pp {...}. Naming the computation can be useful if
we want to invoke the wrapper function recursively with the com-
putation from inside the handler.

2.3 Game Trees and Multi-shot Continuations
The handler pp computes the winner of a particular game. It only
considers one scenario in which both players play the same strat-
egy, but we can use handlers to compute other data about a game.

Alice

Bob

Alice

Alice wins

1

1

Bob wins

2

1

Bob

Bob wins

1

2

Alice wins

3

Figure 1: Game Tree Generated by run(gametree(game(3))).

For instance, we can give an interpretation that computes the game
tree. Figure 1 shows an example game tree. Each node represents
the active player, and each edge corresponds to a possible move for
that player. We define a game tree inductively:

typename GTree = [|Take:(Player,[(Int,GTree)])
|Winner:(Player)|];

The syntax [|...|] denotes a (polymorphic) variant type in Links
in which components of the variant type are delimited by the pipe
symbol (|). A Take node includes the active player and a list of
possible moves, where each move is paired with the subsequent
game tree. A Winner leaf denotes the winner of a game.

We define a handler gametree that generates game trees:

sig gametree :
(Comp({Move:(Player,Int) {}-> Int |e}, Player)) ->
Comp({Move- |e}, GTree)

handler gametree {
case Return(x) -> Winner(x)
case Move(p,n,k) ->

var subgames = map(k, validMoves(n));
var subtrees = zip([1,2,3], subgames);
Take(p, subtrees) }

The effect signatures of gametree and pp are identical, though their
interpretations of Move differ. The return clause wraps the winning
player x in a leaf node. The operation clause for Move reifies the
move as a node in the game tree. The var keyword denotes a let
binding. The crucial part is the invocation of map which applies the
continuation multiple times, once for each valid move, enumerating
every possible subgame. The function validMoves is a simple filter:

fun validMoves(n)
{ filter(fun(m) {m <= n}, [1,2,3]) }

Figure 1 shows the game tree generated by the handler when n = 3.

2.4 Cheating and Forwarding
Thus far we have considered a single operation Move, but in gen-
eral we may allow arbitrary algebraic operations. We could define
a monolithic handler that interprets every operation that may occur
in a computation. However, a more modular alternative is to de-
fine a series of fine-grained, specialised handlers that each handle
a particular operation, and then compose them together to fully in-
terpret a computation. Fortunately, handlers compose seamlessly.
Composed handlers can cooperate to interpret an abstract compu-
tation. Each handler operates on a subset of the abstract operations,
leaving the remainder for other handlers. Consequently, we obtain
a considerable amount of flexibility as it becomes possible to rein-
terpret computations by swapping in and out individual handlers.

17



We defer a full discussion of the role that row polymorphism
plays during composition of handlers until Section 2.5. In this
section we omit type signatures for handlers and instead focus on
the dynamic semantics of handler composition by augmenting the
game model with a cheat detection mechanism. A cheating strategy
might remove all remaining sticks from the heap, winning in a
single move. We introduce an additional operation Cheat to signal
that a cheater has been detected. The operation is parameterised by
the player, who was caught cheating:

sig cheat : (Player) {Cheat:(Player) {}-> Zero|_}-> _
fun cheat(p) { switch (do Cheat(p)) { } }

The Cheat operation can never return a value as its return type is
the empty type Zero. Thus invoking Cheat amounts to raising an ex-
ception. Concretely, an operation clause for Cheat can never invoke
the continuation. The switch(e){...} construct pattern matches
on the expression e, through a possibly empty list of clauses. We
define an exception handler that interprets Cheat by outputting an
error message and exiting the program:

handler report {
case Return(x) -> x
case Cheat(Alice,_) -> error("Alice cheated!")
case Cheat(Bob,_) -> error("Bob cheated!")

}

We implement the heart of the cheat detection machinery as a
handler:

handler checker {
case Return(x) -> x
case Move(p,n,k) -> var m = move(p,n);

if (m ‘elem‘ validMoves(n)) k(m)
else cheat(p) }

In order to detect cheating, the handler analyses the active player’s
move. If it is legal then the game continues. Otherwise, the Cheat

operation is invoked to signal that cheating has occurred. We may
compose pp with report and checker to give an interpretation of a
game in which no player may cheat. To make handler composition
syntactically lightweight we define a pipeline operator (-<-) for
composing handlers and another operator (-<) for applying a com-
putation to a pipeline of handlers. Infix binary operators are defined
using the op keyword in Links:

op f -<- g {fun(m) {f(g(m))}}
op f -< m {f(m)}

The operators are meant to indicate that unhandled operations are
forwarded from right to left in a pipeline. In order to run a pipeline
of handlers, we may apply the function run:

links> run -<- pp -<- report -<- checker -< game(7);
Alice : Player

The Cheat operation is never invoked as both players play the
same legal strategy. Let us define another handler that assigns the
perfect strategy to Alice and a cheating strategy to Bob

handler pc {
case Return(x) -> x
case Move(Alice,n,k) -> k(maximum(1, n ‘mod‘ 4))
case Move(Bob,n,k) -> k(n) }

Now the cheat detection handler catches Bob:

links> run -<- pc -<- report -<- checker -< game(7);
*** Fatal error : Bob cheated!

The order of composition is important as pc and checker both
handle moves. Bob gets away with cheating if we swap the two
handlers:

links> run -<- pp -<- report -<- checker
-<- pc -< game(7);

Bob : Player

Here we also use pp, because the type system does not know that
checker is not performing any Move operations.

2.5 Composition and Row Polymorphism
In this section we discuss the typing of composed handlers. First,
consider the type signature for the report handler:

sig report :
(Comp({Cheat:(Player) {}-> Zero|e1}, a)) ->
Comp({Cheat{p} |e1}, a)

In general, a handler accepts a computation as input and produces
another computation as output. Moreover, handlers have open input
and output effect rows, which both share the same effect variable.
As a consequence both rows mention the same operation names.
However, some of these operation names may be marked as ab-
sent or polymorphic in their presence. In the output effect row of
report, the syntax Cheat{p} denotes that the operation is presence
polymorphic. The type variable p can be instantiated to be either
present with a particular type (:A) or absent (-). Presence polymor-
phism is useful for seamless composition of handlers. We illustrate
why by type checking the composition:

var f = run -<- (pp -<- report);

Recall the type signature for pp:

sig pp : (Comp({Move:(Player,Int) {}-> Int|e2}, a)) ->
Comp({Move- |e2}, a)

The output effects of report must be compatible with the input
effects of pp, therefore the composition gives rise to the following
unification constraint:

{Move:(Player,Int) {}-> Int|e2} ∼ {Cheat{p}|e1}

which is solved by introducing a fresh effect variable e3, in-
stantiating e1 to {Move:(Player,Int) {}-> Int|e2}, and e2 to
{Cheat{p}|e3}. Thus the unified type is:

{Move:(Player,Int) {}-> Int, Cheat{p}|e3}

Note that with rows the order of operations is unimportant. The
output of pp must be compatible with the input to run, giving rise
to the constraint:

{Move-, Cheat{p}|e3} ∼ {}

which is solved by instantiating p to - and e3 to {}. Thus f has type:

(Comp({Move:(Player,Int) {}-> Int,
Cheat:(Player) {}-> Zero}, a)) {}~> a

Now we consider the type signature for the checker handler:

sig checker :
(Comp({Cheat:(Player) {}-> Zero,

Move: (Player,Int) {}-> Int|e},a)) ->
Comp({Cheat:(Player) {}-> Zero,

Move: (Player,Int) {}-> Int|e},a)

The reason Cheat:(Player) {}-> Zero appears in the input effect
is because Cheat is not handled, so if a Cheat operation is for-
warded it must have the correct type.

Remy’s ΠML′ What we actually require for soundness is that if
the Cheat effect is present then it must have type (Player) {}->

Zero, as that is the type it has in the output. In a slightly more
refined system along the lines of Remy’s ΠML′ [33], we could
specify this as follows:

18



sig checker :
(Comp({Cheat{_}:(Player) {}-> Zero,

Move: (Player,Int) {}-> Int|e},a)) ->
Comp({Cheat: (Player) {}-> Zero,

Move: (Player,Int) {}-> Int|e},a)

In the input row Cheat may or may not be present, but if it is then
it must have type (Player) {}-> Zero.

2.6 Choice and Built-in Effects
In this section we implement the choice effect described in the
introduction. We let Bob choose which strategy he will adopt. First,
we define a wrapper for the choice operation.

sig choose : Comp({Choose:Bool|_}, Bool)
fun choose() {do Choose}

Using this operation we define a strategy selecting function in
which Bob decides between playing the perfect or cheating strategy

fun bobChooses(m)()
{ if (choose()) pc(m)() else pp(m)() }

We can give a nondeterministic interpretation of Choose that in-
fuses Bob with oracular powers that enable him to explore both
alternatives. We define it as a handler allResults

sig allResults : (Comp({Choose:Bool|e},a)) ->
Comp({Choose{_}|e},[a])

handler allResults {
case Return(x) -> [x]
case Choose(k) -> k(true) ++ k(false) }

The handler wraps the result of the input computation into a single-
ton list. In the Choose-clause the handler accumulates the results of
both the alternatives by invoking the continuation twice.

Now, we can put everything together:

links> run -<- allResults -<- bobChooses -< game(7);
[Bob,Alice] : [Player]

Thus Bob wins only when he cheats.
Alternatively, we can replace Bob’s oracular powers with a fair

coin and let him perform a coin flip to decide which strategy to pick.
We use Links’ built-in random number generator, which returns a
floating point value between 0.0 and 1.0 (both inclusive):

sig coin : (Comp({Choose:Bool|e}, a)) ->
Comp({Choose{_}|e}, a)

handler coin {
case Return(x) -> x
case Choose(k) -> if (random() > 0.5) k(true)

else k(false) }

The handler uniformly interprets Choose as true or false. Thus,
using this handler Bob will be equally likely to play honestly or
dishonestly. The computation

links> run -<- coin -<- bobChooses -< game(7);

returns either Alice or Bob. Built-in effects interact smoothly with
the rest of the system.

2.7 A Scoreboard and Parameterised Handlers
As a final extension, we add a scoreboard that accumulates the
number of wins for each player. The scoreboard is updated after
each game. We represent state as an effect with operations for
reading (Get : s) and updating (Put : s {}-> ()) a state of type
s. We wrap them in the usual way:

sig get : () {Get:s|_}-> s
fun get() {do Get}

sig put : (s) {Put:(s) {}-> ()|_}-> ()
fun put(s) {do Put(s)}

We use a parameterised handler to give an interpretation of state.
In addition to supplying a computation to a parameterised handler,
we also supply one or more parameters. In this instance we pass the
state as an additional parameter s
sig state : (s) -> (Comp({Get:s,Put:(s) {}-> ()|e},a))->

Comp({Get{_},Put{_} |e},a)
handler state(s) {

case Return(x) -> x
case Get(k) -> k(s)(s)
case Put(p,k) -> k(())(p) }

The main difference compared to an unparameterised handler is
that the continuation k is a curried function that takes a return value
followed by the handler parameters. In the Get clause, we return the
state and also pass it unmodified to any subsequent invocations of
the handler. Similarly, in the Put clause, we return unit and update
the state.

We represent high scores as an association list and refer to a
value of this type as the game state:
typename GState = [(Player,Int)];

We define an initial state s0 = [(Alice,0),(Bob,0)]. We now
need a mechanism to update the game state when a game finishes.
Recall that game(n) returns a computation whose type is:
Comp({Move:(Player,Int) {}-> Int|_}, Player).

The computation returns the winner of the game. We may exploit
the fact that the return clauses of handlers are invoked in the or-
der of composition. Therefore, we define a simple post-processing
handler that contains only a Return case to update the scoreboard:
sig scoreUpdater :
(Comp({Get:GState,Put:(GState) {}-> ()|e}, Player)) ->

Comp({Get:GState,Put:(GState) {}-> ()|e}, Player)
handler scoreUpdater {

case Return(x) -> var s = updateScore(x, get());
put(s); x }

The function updateScore is pure it simply returns a copy of the
given game state, in which the number of wins for the given player
p has been incremented by one. The handler then reads and updates
the game state. The composition scoreUpdater(game(n)) causes
the effect row to grow accordingly:
Comp({Move:(Player,Int) {}-> Int,

Get:GState,Put:(GState) {}-> ()|_}, Player).

In a similar fashion, we define a handler that prints the scoreboard:
sig printer : (Comp({Get:GState|e}, a)) ->

Comp({Get:GState|e}, a)
handler printer
{ case Return(x) -> printBoard(get()); x }

The function printBoard is impure as it prints an ASCII represen-
tation of the given game state to standard out. To make matters
more interesting, we add replay functionality, which we implement
by invoking a handler recursively on its input computation:
sig replay : (Int) -> (Comp({ |e}, a)) -> Comp({ |e}, a)
handler[m] replay(n)
{case Return(x) -> if (n <= 1) x else replay(n-1)(m)()}

The replay handler reevaluates the computation m precisely n

times. Note, that the handler’s effect signature is an empty, open
row which means that it forwards every operation that might occur
to subsequent handlers. Now we can wire everything together:
links> run -<- state(s0) -<- printer -<- replay(10) -<-

coin -<- bobChooses -<- scoreUpdater -< game(7);

Figure 2 shows a possible output. In the same manner, we can ef-
fortlessly merge the cheating infrastructure into the pipeline with-
out changing the underlying computation.

19



/======================\
| NIM HIGH SCORE |
|======================|
| Player | #Wins |
|============|=========|
| Alice | 7 |
|============|=========|
| Bob | 3 |
\======================/

The Nim scoreboard after 10 games with n = 7, where Alice
plays the perfect strategy and Bob chooses between the perfect and
cheating strategies.

Figure 2: Nim High Score Output

Value types A,B ::= A→ C | ∀αK .C
| 〈R〉 | [R] | α

Computation types C,D ::= A!E
Effect types E ::= {R}
Row types R ::= ` : P; R | ρ | ·
Presence types P ::= Pre(A) | Abs | θ
Handler types F ::= C⇒ D
Types T ::= A | C | E | R | P | F
Kinds K ::= Type | RowL | Presence

| Comp | Effect | Handler
Label sets L ::= ∅ | {`} ] L
Type environments Γ ::= · | Γ, x : A
Kind environments ∆ ::= · | ∆, α : K

Figure 3: Types, Effects, Kinds, and Environments

3. A Calculus of Handlers and Rows
In this section, we present a type and effect system and a small-
step operational semantics for λρeff (pronounced “lambda-eff-row”),
a Church-style row-polymorphic call-by-value calculus for effect
handlers. This core calculus captures the essence of the Links IR.
We prove that the operational semantics is sound with respect to
the type and effect system.

A key advantage of row polymorphism is that it integrates rather
smoothly with Hindley-Milner type inference. We concern our-
selves only with the explicitly-typed core language, as the treatment
of type inference is quite standard.

The design of λρeff is inspired by the λ-calculi of Kammar et al.
[15], Pretnar [32], and Lindley and Cheney [22]. As in the work
of Kammar et al. [15], each handler can have its own effect signa-
ture. As in the work of Pretnar [32], the underlying formalism is
fine-grain call-by-value [20], which names each intermediate com-
putation like in A-normal form [11], but unlike A-normal form is
closed under β-reduction. As in the work of Lindley and Cheney
[22], the effect system is based on row polymorphism.

3.1 Types
The grammars of types, kinds, label sets, and type and kind envi-
ronments are given in Figure 3.

Value Types The function type A → C represents functions that
map values of type A to computations of type C. The polymorphic
type ∀αK .C is parameterised by a type variable α of kind K. The
record type 〈R〉 represents records with fields constrained by row R.
Dually, the variant type [R] represents tagged sums constrained by
row R. The handler type C⇒ D represents handlers that transform
computations of type C into computations of type D.

Values V,W ::= x | λxA.M | ΛαK .M
| 〈〉 | 〈` = V; W〉 | (`V)R

Computations M,N ::= V W | V A
| let 〈` = x; y〉 = V in N
| case V{` x 7→ M; y 7→ N} | absurdCV
| return V
| let x← M in N
| (do ` V)E

| handle M with H

Handlers H ::= {return x 7→ M}
| {` x k 7→ M} ] H

Figure 4: Term Syntax

Computation Types A computation type A!E is given by a value
type A and an effect E, which specifies the operations that the
computation may perform.

Row Types Effect types, records and variants are defined in terms
of rows. A row type embodies a collection of distinct labels, each of
which is annotated with a presence type. A presence type indicates
whether a label is present with some type A (Pre(A)), absent (Abs)
or polymorphic in its presence (θ).

Row types are either closed or open. A closed row type ends in ·,
whilst an open row type ends with a row variable ρ. Furthermore,
a closed row term can have only the labels explicitly mentioned in
its type. Conversely, the row variable in an open row can be instan-
tiated with additional labels. We identify rows up to reordering of
labels. For instance, we consider the following two rows equivalent:

`1 : P1; · · · ; `n : Pn ≡ `n : Pn; · · · ; `1 : P1.

The unit and empty type are definable in terms of row types.
We define the unit type as the empty, closed record, that is, 〈·〉.
Similarly, we define the empty type as the empty, closed variant [·].
Usually, we usually omit the · for closed rows.

Handler Types A handler type C ⇒ D is given by an input
computation type C and an output computation type D.

Kinds We have six kinds: Type, Comp, Effect, RowL, Presence,
Handler, which classify value types, computation types, effect
types, row types, presence types, and handler types, respectively.
Row kinds are annotated with a set of labels L. The kind of a com-
plete row is Row∅. More generally, the kind RowL denotes a partial
row that cannot mention the labels in L.

Type Variables We let α, ρ and θ range over type variables. By
convention we use α for value type variables or for type variables
of unspecified kind, ρ for type variables of row kind, and θ for type
variables of presence kind.

Type and Kind Environments Type environments map term vari-
ables to their types and kind environments map type variables to
their kinds.

3.2 Terms
The terms are given in Figure 4. We let x, y, z, k range over term
variables. By convention, we use k to denote continuation names.

The syntax partitions terms into values, computations and
handlers. Value terms comprise variables (x), lambda abstraction
(λxA.M), type abstraction (ΛαK .M), and the introduction forms
for records and variants. Records are introduced using the empty
record 〈〉 and record extension 〈` = V; W〉, whilst variants are in-
troduced using injection (`V)R, which injects a field with label `

20



and value V into a row whose type is R. We include the row type
annotation in order to support bottom-up type reconstruction.

All elimination forms are computation terms. Abstraction and
type abstraction are eliminated using application (V W) and type
application (V A) respectively. The record eliminator (let 〈` =
x; y〉 = V in N) splits a record V into x, the value associated with
`, and y, the rest of the record. Non-empty variants are eliminated
using the case construct (case V {` x 7→ M; y 7→ N}), which
evaluates the computation M if the tag of V matches `. Otherwise it
falls through to y and evaluates N. The elimination form for empty
variants is (absurdC V). A trivial computation (return V) returns
value V . The expression (let x ← M in N) evaluates M and binds
the result value to x in N.

The construct (do ` V)E invokes an operation ` with value
argument V . The handle construct (handle M with H) runs a
computation M with handler definition H. A handler definition H
consists of a return clause return x 7→ M and a possibly empty set
of operation clauses {`i xi ki 7→ Mi}i. The return clause defines
how to handle the final return value of the handled computation,
which is bound to x in M. The i-th operation clause binds the
operation parameter to xi and the continuation ki in Mi.

We write Id(M) for handle M with {return x 7→ x}. We write
H(return) for the return clause of H and H(`) for the set of either
zero or one operation clauses in H that handle the operation `. We
write dom(H) for the set of operations handled by H. As our cal-
culus is Church-style, we annotate various term forms with type or
kind information (term abstraction, type abstraction, injection, op-
erations, and empty cases); we sometimes omit these annotations.

3.3 Static Semantics
The kinding rules are given in Figure 5 and the typing rules are
given in Figure 6.

The kinding judgement ∆ ` T : K states that type T has kind
K in kind environment ∆. The value typing judgement ∆; Γ `
V : A states that value term V has type A under kind environment
∆ and type environment Γ. The computation typing judgement
∆; Γ ` M : C states that term M has computation type C under
kind environment ∆ and type environment Γ. The handler typing
judgement ∆; Γ ` H : C ⇒ D states that handler H has type
C ⇒ D under kind environment ∆ and type environment Γ. In the
typing judgements, we implicitly assume that Γ, A, C, and D, are
well-kinded with respect to ∆. We define the functions FTV(Γ) to
be the set of free type variables in Γ.

The kinding and typing rules are mostly straightforward. The
interesting typing rules are T-HANDLE and the two handler rules.
The T-HANDLE rule states that handle M with H produces a
computation of type D given that the computation M has type C,
and that H is a handler that transforms a computation of type C
into another computation of type D.

The T-HANDLER rule is crucial. The effect rows on the com-
putation type C and the output computation type D must share the
same suffix R. This means that the effect row of D must explicitly
mention each of the operations `i, whether that be to say that an `i

is present with a given type signature, absent, or polymorphic in its
presence. The row R describes the operations that are forwarded. It
may include a row-variable, in which case an arbitrary number of
effects may be forwarded by the handler. The typing of the return
clause is straightforward. In the typing of each operation clause,
the continuation returns the output computation type D. Thus, we
are here defining deep handlers [15] in which the handler is im-
plicitly wrapped around the continuation, such that any subsequent
operations are handled uniformly by the same handler. The Links
implementation also supports shallow handlers [15], in which the
continuation is instead annotated with the input effect and one has

TYVAR

∆, α : K ` α : K

COMP
∆ ` A : Type ∆ ` E : Effect

∆ ` A!E : Comp

FUN
∆ ` A : Type ∆ ` C : Comp

∆ ` A→ C : Type

FORALL
∆, α : K ` C : Comp

∆ ` ∀αK .C : Type

RECORD
∆ ` R : Row∅
∆ ` 〈R〉 : Type

VARIANT
∆ ` R : Row∅
∆ ` [R] : Type

EFFECT
∆ ` R : Row∅

∆ ` {R} : Effect

PRESENT
∆ ` A : Type

∆ ` Pre(A) : Presence

ABSENT

∆ ` Abs : Presence

EMPTYROW

∆ ` · : RowL

EXTENDROW
∆ ` P : Presence ∆ ` R : RowL]{`}

∆ ` ` : P; R : RowL

HANDLER
∆ ` C : Comp ∆ ` D : Comp

∆ ` C⇒ D : Handler

Figure 5: Kinding Rules

to explicitly reinvoke the handler after applying the continuation
inside an operation clause.

3.4 Operational Semantics
We give a small-step operational semantics for λρeff. Figure 7 dis-
plays the operational rules. The reduction relation is defined on
computation terms. The statement M  M′ reads: term M reduces
to term M′ in a single step. Most of the rules are standard. We use
evaluation contexts to focus on the active expression. The interest-
ing rules are the handler rules.

We write BL(E) for the set of operation labels bound by E .

BL([ ]) = ∅
BL(let x← E in N) = BL(E)

BL(handle E with H) = BL(E) ∪ dom(H)

The rule S-HANDLE-RET invokes the return clause of a han-
dler. The rule S-HANDLE-OP handles an operation by invoking the
appropriate operation clause. The constraint ` /∈ BL(E) ensures
that no inner handler inside the evaluation context is able to handle
the operation: thus a handler is able to reach past any other inner
handlers that do not handle `. In our abstract machine semantics
we realise this behaviour using explicit forwarding operations, but
more efficient implementations are perfectly feasible.

Remark The attentive reader may have noticed that the two rules
S-LET and S-HANDLE-RET are strikingly similar. Indeed, we
could omit let bindings altogether since any let binding

let x← M in N

may be simulated by a trivial handler:

handle M with {return x→ N}
Nevertheless, we elect to keep let bindings in λρeff. As we discuss
in Section 4, one reason for doing so is in order to facilitate more
efficient implementations.

We write R+ for the transitive closure of relation R. Subject
reduction and type soundness for λρeff are standard.

21



Values
T-VAR

x : A ∈ Γ

∆; Γ ` x : A

T-LAM
∆; Γ, x : A ` M : C

∆; Γ ` λxA.M : A→ C

T-POLYLAM
∆, α : K; Γ ` M : C α /∈ FTV(Γ)

∆; Γ ` ΛαK .M : ∀αK .C

T-UNIT

∆; Γ ` 〈〉 : 〈〉

T-EXTEND
∆; Γ ` V : A ∆; Γ ` W : 〈` : Abs; R〉

∆; Γ ` 〈` = V; W〉 : 〈` : Pre(A); R〉

T-INJECT
∆; Γ ` V : A

∆; Γ ` (`V)R : [` : Pre(A); R]

Computations

T-APP
∆; Γ ` V : A→ C ∆; Γ ` W : B

∆; Γ ` V W : C

T-POLYAPP

∆; Γ ` V : ∀αK .C ∆ ` A : K
∆; Γ ` V A : C[A/α]

T-SPLIT
∆; Γ ` V : 〈` : Pre(A); R〉

∆; Γ, x : A, y : 〈` : Abs; R〉 ` N : C
∆; Γ ` let 〈` = x; y〉 = V in N : C

T-CASE
∆; Γ ` V : [` : Pre(A); R]

∆; Γ, x : A ` M : C
∆; Γ, y : [` : Abs; R] ` N : C

∆; Γ ` case V{` x 7→ M; y 7→ N} : C

T-ABSURD
∆; Γ ` V : []

∆; Γ ` absurdC V : C

T-RETURN
∆; Γ ` V : A

∆; Γ ` return V : A!E

T-LET
∆; Γ ` M : A!E ∆; Γ, x : A ` N : C

∆; Γ ` let x← M in N : C

T-DO
∆; Γ ` V : A E = {` : A→ B; R}

∆; Γ ` (do ` V)E : B!E

T-HANDLE
∆; Γ ` M : C ∆; Γ ` H : C⇒ D

∆; Γ ` handle M with H : D

Handlers
T-HANDLER
C = A!{(`i : Ai → Bi)i; R} D = B!{(`i : Pi)i; R} H = {return x 7→ M} ] {`i y k 7→ Ni}i

[∆; Γ, y : Ai, k : Bi → D ` Ni : D]i ∆; Γ, x : A ` M : D
∆; Γ ` H : C⇒ D

Figure 6: Typing Rules

S-APP (λxA.M)V  M[V/x]
S-TYAPP (ΛαK .M)A  M[A/α]
S-SPLIT let 〈` = x; y〉 = 〈` = V; W〉 in N  N[V/x,W/y]
S-CASE1 case (`V)R{` x 7→ M; y 7→ N}  M[V/x]
S-CASE2 case (`V)R{`′ x 7→ M; y 7→ N}  N[(`V)R/y], if ` 6= `′

S-LET let x← return V in N  N[V/x]
S-HANDLE-RET handle (return V) with H  N[V/x], where {return x 7→ N} ∈ H
S-HANDLE-OP handle E [do ` V] with H  N[V/x, λy. handle E [return y] with H/k],

where ` /∈ BL(E) and {` x k 7→ M} ∈ H
S-LIFT M  N, if E [M] E [N]

Evaluation contexts E ::= [ ] | let x← E in N | handle E with H

Figure 7: Small-Step Operational Semantics

Theorem 3.1 (Subject Reduction). If ∆; Γ ` M : A!E and M  
M′, then ∆; Γ ` M′ : A!E.

There are two ways in which a computation can terminate. It
can either successfully return a value, or it can get stuck on an
unhandled operation.

Definition 3.2. We say that computation term N is normal with
respect to effect E, if N is either of the form return V, or E [do ` W],
where ` ∈ E and ` /∈ BL(E).

If N is normal with respect to the empty effect {·}, then N has
the form return V .

Theorem 3.3 (Type Soundness). If ` M : A!E, then there exists
` N : A!E, such that M  + N 6 , and N is normal with respect to
effect E.

4. Abstract Machine Semantics
In this section we present an abstract machine semantics for λρeff
that is closely related to the actual implementation of effect han-
dlers in Links. We prove that the abstract machine simulates the
operational semantics in the sense that each reduction in the small
step semantics corresponds exactly to a finite sequence of one or
more steps of the abstract machine.

The Links interpreter is based on a CEK-style abstract ma-
chine [10] and operates directly on ANF terms [11]. The standard

22



Configurations C ::= 〈M | γ | κ〉
| 〈M | γ | κ | κ′〉op

Value environments γ ::= ∅ | γ[x 7→ v]
Values v,w ::= (γ, λxA.M) | (γ,ΛαK .M)

| 〈〉 | 〈` = v; w〉 | (` v)R | κA

Continuations κ ::= [ ] | δ :: κ
Continuation frames δ ::= (σ, χ)
Pure continuations σ ::= [ ] | φ :: σ
Pure continuation frames φ ::= (γ, x,N)
Handler closures χ ::= (γ,H)

Figure 8: Abstract Machine Syntax

CEK machine operates on configurations which are triples of the
form 〈C | E | K〉.

• The control C is the expression currently being evaluated.
• The environment E binds the free variables.
• The continuation K instructs the machine what to do once it is

done evaluating the current term in the C component.

In order to accommodate handlers we generalise the CEK ma-
chine. The syntax of abstract machine states is given in Figure 8.
Just like in the standard CEK machine, a standard configuration
C = 〈M | γ | κ〉 of our abstract machine is a triple of a com-
putation term M, an environment γ mapping free variables to val-
ues, and a continuation κ. However, our continuations differ from
the standard machine. On the one hand, they are somewhat simpli-
fied, due to our strict separation between computations and values.
On the other hand, they have considerably more structure in order
to accommodate effects and handlers. In order to account for for-
warding of unhandled operations, configurations occasionally gain
an additional continuation argument.

Values consist of function closures, type function closures,
records, variants, and captured continuations. A continuation κ
consists of a stack of continuation frames [δ1, . . . , δn]. We choose
to annotate captured continuations with their input type in order
to make the results of Section 4.1 easier to state. Intuitively, each
continuation frame δ = (σ, χ) represents the pure continuation σ,
corresponding to a sequence of let bindings, inside a particular han-
dler closure χ. A pure continuation is a stack of pure continuation
frames. A pure continuation frame (γ, x,N) closes a let-binding
let x = [ ] in N over environment γ. A handler closure (γ,H)
closes a handler definition H over environment γ. We write [ ] for
an empty stack, x :: s for the result of pushing x on top of stack s,
and s ++ s′ for the concatenation of stack s on top of s′. We use
pattern matching to deconstruct stacks.

The abstract machine semantics is given in Figure 9. The tran-
sition function is given by −→. This depends on an interpretation
function J−K for values. The machine is initialised (M-INIT) by
placing a term in a configuration alongside the empty environment
and identity continuation κ0. The rules (M-APP), (M-TYAPP),
(M-SPLIT), and (M-CASE) enact the elimination of values. Note
that (M-APP) handles application of both closures and of cap-
tured continuations. The rules (M-LET) and (M-HANDLE) extend
the current continuation with let bindings and handlers respec-
tively. The rule (M-RETCONT) binds a returned value if there is
a pure continuation in the current continuation frame. The rule
(M-RETHANDLER) invokes the return clause of a handler if there
is no pure continuation in the current continuation frame, but there
is a handler. The rule (M-RETTOP) returns a final value if the con-
tinuation is empty. The rule (M-OP) switches to a special four place
configuration in order to handle an operation. The fourth compo-

nent of the configuration is an auxiliary forwarding continuation,
which keeps track of the continuation frames through which the
operation has been forwarded. It is initialised to be empty. The rule
(M-OP-HANDLE) uses the current handler to handle an operation
if the label matches one of the operation clauses of the current han-
dler. The captured continuation is assigned the forwarding contin-
uation with the current continuation frame appended to the bottom
of it. The rule (M-OP-FORWARD) appends the current continuation
frame onto the bottom of the forwarding continuation. Notice that
if the main continuation is empty then the machine gets stuck. This
occurs when an operation is unhandled, and the forwarding con-
tinuation describes the succession of handlers that have failed to
handle the operation along with any pure continuations that were
encountered along the way.

Assuming the input is a well-typed closed computation term
` M : A!E, the machine will either return a value of type A, or
it will get stuck failing to handle an operation appearing in E. We
now make the correspondence between the operational semantics
and the abstract machine more precise.

Remark Taking advantage of the observation that let bindings can
be simulated by handlers, it is straightforward to define a variant of
our abstract machine with flat continuations in which each contin-
uation frame is just a handler closure without a pure continuation.
In practice, we believe it is helpful to distinguish between pure and
impure parts of the continuation. Apart from anything else, it sup-
ports more efficient implementations by reducing the number of
continuation frames that a forwarded effect must bubble through.

4.1 Correctness
The (M-INIT) rule immediately provides a canonical way to map
a computation term onto the abstract machine. A more interesting
question is how to map an arbitrary configuration to a computation
term. Figure 10 describes such a mapping L−M from configurations
to terms via a collection of mutually recursive functions defined
on configurations, continuations, computation terms, handler defi-
nitions, value terms, and values. We write dom(γ) for the domain
of γ, and γ\{x1, . . . , xn} for the restriction of environment γ to
dom(γ)\{x1, . . . , xn}.

The L−M function enables us to classify the abstract ma-
chine reduction rules according to how they relate to the op-
erational semantics. The rules (M-INIT) and (M-RETTOP) are
concerned only with initial input and final output, neither of
which is a feature of the operational semantics, so we can ig-
nore them. The rules (M-APPCONT), (M-LET), (M-HANDLE),
(M-OP), and (M-OP-FORWARD) are administrative in the sense
that L−M is invariant under these rules. This leaves the β-rules
(M-APP), (M-TYAPP), (M-SPLIT), (M-CASE), (M-RETCONT),
(M-RETHANDLER), and (M-OP-HANDLE). Each of these corre-
sponds directly with performing a reduction in the operational se-
mantics. We write −→a for administrative steps, −→β for β-steps,
and =⇒ for a sequence of steps of the form −→∗a−→β .

The following lemma describes how we can simulate each re-
duction in the operational semantics by a sequence of administra-
tive steps followed by one β-step in the abstract machine. The idea
is to represent a computation term M by the equivalence class of
configurations C such that LCM = Id(M). The Id wrapper captures
the top-level identity handler.

Lemma 4.1. If M  N, then for any C such that LCM = Id(M)
there exists C′ such that C =⇒ C′ and LC′M = Id(N).

Proof. By induction on the derivation of M  N. If LCM = Id(M),
then the underlying structure of the term in the configuration C
must be the same as M, as L−M is homomorphic on computation
terms. Some value subterms of M may appear in the environment,

23



Identity continuation
κ0 = [([ ], (∅, {return x 7→ x}))]

Transition function
M-INIT M −→ 〈M | ∅ | κ0〉

M-APP 〈V W | γ | κ〉 −→ 〈M | γ′[x 7→ JWKγ] | κ〉, if JVKγ = (γ′, λxA.M)
M-APPCONT 〈V W | γ | κ〉 −→ 〈return W | γ | κ′ ++ κ〉, if JVKγ = (κ′)A

M-TYAPP 〈M A | γ | κ〉 −→ 〈M[A/α] | γ′ | κ〉, if JVKγ = (γ′,ΛαK .M)
M-SPLIT 〈let 〈` = x; y〉 = V in N | γ | κ〉 −→ 〈N | γ[x 7→ v, y 7→ w] | κ〉, if JVKγ = 〈` = v; w〉

M-CASE 〈case V {` x 7→ M; y 7→ N} | γ | κ〉 −→
{
〈M | γ[x 7→ v] | κ〉, if JVKγ = ` v
〈N | γ[y 7→ `′ v] | κ〉, if JVKγ = `′ v and ` 6= `′

M-LET 〈let x← M in N | γ | (σ, χ) :: κ〉 −→ 〈M | γ | ((γ, x,N) :: σ, χ) :: κ〉
M-HANDLE 〈handle M with H | γ | κ〉 −→ 〈M | γ | ([ ], (γ,H)) :: κ〉
M-RETCONT 〈return V | γ | ((γ′, x,N) :: σ, χ) :: κ〉 −→ 〈N | γ′[x 7→ JVKγ] | (σ, χ) :: κ〉
M-RETHANDLER 〈return V | γ | ([ ], (γ′,H)) :: κ〉 −→ 〈M | γ′[x 7→ JVKγ] | κ〉,

if H(return) = {return x 7→ M}
M-RETTOP 〈return V | γ | [ ]〉 −→ JVKγ

M-OP 〈(do ` V)E | γ | κ〉 −→ 〈(do ` V)E | γ | κ | [ ]〉op
M-OP-HANDLE 〈(do ` V)E | γ | (σ, (γ′,H)) :: κ | κ′〉op −→ 〈M | γ′[x 7→ JVKγ, k 7→ (κ′ ++ [(σ, (γ′,H))])B] | κ〉,

if ` : A→ B ∈ E and H(`) = {` x k 7→ M}
M-OP-FORWARD 〈(do ` V)E | γ | (σ, (γ′,H)) :: κ | κ′〉op −→ 〈(do ` V)E | γ | κ | κ′ ++ [(σ, (γ′,H))]〉op, if H(`) = ∅

Value interpretation

JxKγ = γ(x)
J〈〉Kγ = 〈〉

JλxA.MKγ = (γ, λxA.M)
J〈` = V; W〉Kγ = 〈` = JVKγ; JWKγ〉

JΛαK .MKγ = (γ,ΛαK .M)
J(`V)RKγ = (` JVKγ)R

Figure 9: Abstract Machine Semantics

Configurations

L〈M | γ | κ〉M = LκM(LMMγ) L〈M | γ | κ | κ′〉opM = Lκ′ ++ κM(LMMγ) = Lκ′M(LκMLMMγ)

Continuations
L[]MM = M

L((γ, x,N) :: σ, χ) :: κMM = L(σ, χ) :: κM(let x← M in LNM(γ\{x}))
L([], (γ,H)) :: κMM = LκM(handle M with LHMγ)

Computation terms
LV WMγ = LVMγ LWMγ
LV AMγ = LVMγ A

Llet 〈` = x; y〉 = V in NMγ = let 〈` = x; y〉 = LVMγ in LNM(γ\{x, y})
Lcase V {` x 7→ M; y 7→ N}Mγ = case LVMγ {` x 7→ LMM(γ\{x}); y 7→ LNM(γ\{y})}

Lreturn VMγ = return LVMγ
Llet x← M in NMγ = let x← LMMγ in LNM(γ\{x})

Ldo ` VMγ = do ` LVMγ
Lhandle M with HMγ = handle LMMγ with LHMγ

Handler definitions
L{return x 7→ M}Mγ = {return x 7→ LMM(γ\{x})}

L{` x k 7→ M} ] HMγ = {` x k 7→ LMM(γ\{x, k}} ] LHMγ
Value terms and values

LxMγ = LvM, if γ(x) = v
LxMγ = x, if x /∈ dom(γ)

LλxA.MMγ = λxA.LMM(γ\{x})
LΛαK .MMγ = ΛαK .LMMγ

L〈〉Mγ = 〈〉
L〈` = V; W〉Mγ = 〈` = LVMγ; LWMγ〉

L(` V)RMγ = (` LVMγ)R

L(γ, λxA.M)M = λxA.LMM(γ\{x})
L(γ,ΛαK .M)M = ΛαK .LMMγ

L〈〉M = 〈〉
L〈` = v; w〉M = 〈` = LvM; LwM〉

L(` v)RM = (` LvM)R

LκAM = λxA.LκM(return x)

Figure 10: Mapping from Abstract Machine Configurations to Terms

24



and part of the evaluation context of M may appear in the contin-
uation. Administrative reductions update C by growing the contin-
uation, whilst maintaining the invariant that LCM = Id(M). This
process corresponds directly to traversing an evaluation context. It
is straightforward to see that only a finite number of administra-
tive reductions can occur consecutively as they either reduce the
size of M or leave it unchanged and reduce the size of κ in the
case of forwarding. Eventually the control part of the continuation
will contain a redex corresponding to the active redex in M and
it will then transition via a β-rule to a configuration C′, such that
LC′M = Id(N).

The correspondence here is rather strong: there is a one-to-
one mapping between  and =⇒. The inverse of the lemma
is straightforward as the semantics is deterministic. Notice that
Lemma 4.1 does not require that M be well-typed. We have chosen
here not to perform type-erasure, but it is straightforward to adapt
the results to semantics in which all polymorphism is erased and all
type annotations are erased.

Theorem 4.2 (Simulation). If ` M : A!E, and M  + N, such that
N is normal with respect to E, then M −→+ C, such that LCM = N.

Proof. By repeated application of Lemma 4.1.

5. Implementation
Our implementation of handlers is based on a mild syntactic exten-
sion to Links: the syntax is extended with do for invoking opera-
tions and handle(m) {...} for handling abstract computations.

Syntactic Sugar We provide syntactic sugar to make it more
convenient to program with handlers. The function D is a source-
to-source translation that elaborates the sugar. Figure 11 shows the
cases for handlers only: D is a homomorphism on the other syntax
constructors. Crucially, handlers are desugared into a function,
that returns a thunk. This is important to ensure that handlers
compose smoothly. For the same reason a parameterised handler
desugars into a curried function, where the parameters precede
the computation argument m. The parameters are passed around
by enclosing each operation clause by a function. Thus, the initial
parameter values are applied directly to the handle expression.

Backend The Links interpreter is based on a CEK machine for
ANF expressions. We have generalised this machine to support
handlers based on the abstract machine of Section 4. The interpreter
maintains a stack of handlers with first-in-last-out semantics, which
makes it straightforward to implement effect forwarding. The invo-
cation of an operation causes the interpreter to unwind the stack to
find a suitable handler for the operation.

Row Polymorphism We have extended Links with support for
user-defined operations, making use of the existing row type sys-
tem. The current row type system is based on that of Rémy [33],
adapted to support effect typing in a similar manner to the work
of Leroy and Pessaux [19] and Blume et al. [4] on typing excep-
tions. Fields in a record can be absent, present at a particular type,
or polymorphic in their presence. An earlier version of Links [22]
was based on a slightly more refined variant of Remy’s system,
ΠML′ [33], in which the type of a label is independent of its pres-
ence. This system was abandoned because it seemed somewhat
counterintuitive for the purposes of record typing, but (as discussed
in Section 2.5) it may offer advantages for effect typing.

Subtyping and Row Typing

Subtyping is in fact a poor man’s row polymorphism.
— Andreas Rossberg1

1 http://lambda-the-ultimate.org/node/3711#comment-52984

Subtyping (or subeffecting) and row typing address similar con-
cerns. However, they are not the same. In one dimension row poly-
morphism is more expressive than subtyping and in another dimen-
sion subtyping is more expressive than row polymorphism. Row
polymorphism allows part of an effect to be named and reused in
several places, which is essential for typing polymorphic functions
such as map. Row polymorphism can also be used whenever one
might otherwise use subtyping in a first order manner. In terms of
effects, this amounts to always keeping functions polymorphic in
their effects such that the effect variable can be instantiated in or-
der to simulate an upcast. On the other hand, subtyping applies at
higher-order whereas row typing does not.

Links does not support subsumption (implicitly inferred subtyp-
ing), but does support subtyping via explicit upcasts. Anecdotally,
such casts seem to be rarely needed in practice and can often be re-
placed by first-class polymorphism (another Links feature) instead.

Shallow Handlers We have not covered them in much detail here,
but our implementation also supports shallow handlers [15]. These
are indicated by using the shallowhandler keyword in place of
handler. Whereas a deep handler performs a fold over a compu-
tation, a shallow handler merely performs a case-split. This means
that one must explicitly reinvoke the handler each time the contin-
uation is implied inside an operation clause. An advantage is that
it makes it easy to switch to a different handler midway through a
computation. A disadvantage is that shallow handlers are not much
use without an external notion of recursion, and they are less easy to
optimise than deep handlers [35]. The changes to the typing rules
and operational semantics to accommodate shallow handlers are
standard [15]. The modifications to the abstract machine are mod-
est; the M-OP-HANDLE rule is adapted to drop the current handler
and append the pure continuation on to its successor:

〈(do ` V)E | γ | (σ, χ) :: (σ′, χ′) :: κ | κ′〉op −→
〈M | γ′[x 7→ JVKγ, k 7→ (κ′)B | (σ ++ σ′, χ′) :: κ〉

6. Related Work
Faking Row Polymorphism in Haskell Haskell provides a rather
rich type system that allows one to simulate many aspects of row
polymorphism. Perhaps the biggest mismatch between rows and
other typing features is that rows are inherently unordered, whereas
other typing features are usually inherently ordered.

One approach is Swierstra’s data types a la carte technique [34].
This amounts to encoding a row type as a sum, and then leveraging
the type class system to automatically navigate through the sum
type as if it were unordered. In practice, this encoding is a little
fragile (e.g. sometimes additional type annotations are required),
although recent improvements can make it somewhat more ro-
bust [25], particularly if one adds support for instance chains [26].

Another approach is to take advantage of the property that type
class constraints are unordered. Early work on monad transform-
ers [21] uses this idea to write modular abstract computations, as do
Kammar et al. [15], Kiselyov et al. [17], and Kiselyov and Ishii [16]
in their handler libraries. However, without some form of higher-
order constraint solving (not supported by Haskell), one must still
materialise ordered lists of effects when composing handlers. For
many useful examples this is not a problem, but if we wish to build
a list of handlers from disparate sources, then we must carefully
ensure that their effects are composed in the same order.

Orchard and Petricek [28] make some progress towards encod-
ing unordered effect rows by performing a sorting algorithm at the
level of types, taking advantage of GHC’s support for dependently-
typed programming [37]. However, this approach can fail in prac-
tice, as the type system cannot always infer that two types are
equivalent in the presence of effect polymorphism.

25

http://lambda-the-ultimate.org/node/3711#comment-52984


Handler
handler h(p) ≡ handler[m] h(p), where m is fresh.

D
(
handler[m] h(p) { c }

)
=

{
fun h(m)() { handle(m) { D (c) } } if |(p)| = 0

fun h(p)(m)() { handle(m) { D(p) (c) }(p) } otherwise

Handler cases

D(p) (c) = D(p) (c1) · · · D(p) (cn) D(p) (case q -> M) =

{
case q -> D (M) if |(p)| = 0

case q -> fun(p) { D (M) } otherwise

Figure 11: Desugaring Handlers

Implementations Any signature of abstract operations can be un-
derstood as a free algebra and represented as a functor. In particular,
every such functor gives rise to a free monad. Thus, free monads
provide a natural basis for implementing effect handlers. Many of
the library implementations of effect handlers include implementa-
tions based on free monads [6, 15–17, 36].

Kammar et al. [15] provide an implementation of effect handlers
using a continuation monad, which avoids materialising any data
constructors. Wu and Schrijvers [35] explain how it works, by
taking advantage of Haskell’s fusion optimisations. This approach
does appear to depend rather critically on the handlers being deep
rather than shallow, and in Haskell it relies on them being type
classes, and hence not really first class.

The Idris effects library [6] takes advantage of dependent types
to provide effect handlers for a form of effects corresponding to
parameterised monads [1].

We are aware of three languages that are specifically designed
with effect handlers in mind.

• Eff [3] is a strict language with Hindley-Milner type inference
similar in spirit to ML, but extended with effect handlers. It
includes a novel feature for supporting fresh generation of ef-
fects in order to support effects such as ML-style higher-order
state (which has an operation for generating new references).
The original version of Eff [3] does not include an effect type
system. Later variants do include an effect type system [2, 31]
which is considerably more complicated than ours. It makes es-
sential use of subtyping, includes a region system, and a form of
effect polymorphism which uses a form of row polymorphism.

• Frank [23] is a language with effect handlers but no separate
notion of function: a function is but a special case of a handler.
Frank has a bidirectional type system. It includes an effect type
system and a novel form of effect polymorphism in which the
programmer need never read or write effect variables. Frank’s
effect system can be viewed as implementing a form of row
polymorphism. Unlike Links, but much like Koka [18], Frank
allows multiple occurrences of the same label in a row. In
contrast rows in Links are based on Remy’s design in which
duplicates are not allowed, but negative information is.

• Shonky [24] amounts to a dynamically-typed variant of Frank.
Though it is not statically typed, handlers must be annotated
with the names of the effects that they handle. The implemen-
tation of Shonky is quite similar to ours in that it uses a gen-
eralisation of the CEK machine. The main differences are that
Shonky does not use an ANF representation, so has more forms
of continuation to handle, and in contrast to our nested contin-
uation structure, Shonky uses a completely flat structure.

Although OCaml itself has no support for effect handlers, a
development branch, Multicore OCaml [9], does. Multicore OCaml
does not include an effect type system, and handlers are restricted

so that continuations can be invoked at most once. This design
admits an efficient implementation, as continuations need never be
copied, so they can simply be stored on the stack.

7. Conclusions and Future Work
We have implemented algebraic effects and handlers using row
polymorphism and demonstrated that rows allow us to compose
effectful computations seamlessly. We have formalised our system
as the core calculus λρeff and shown a correspondence between two
semantics: a small-step operational semantics and an abstract ma-
chine semantics, the latter of which matches the implementation.
We conclude by discussing ongoing and future work.

Effects are pervasive in modern web applications, so we would
like to extend our implementation to the client backend of Links.
The client backend already produces JavaScript in continuation-
passing style in order to implement concurrency. We plan to extend
this representation to support handlers.

The overhead incurred by the Links interpreter is significant [12,
14]. To improve performance, we are working on building a com-
piler backend with support for handlers [13]. One performance bot-
tleneck we envisage is the need to support copying of continuations.
It is well-known that one-shot continuations can be implemented
efficiently [7]. Links already has a linear type system, which in the
future we plan to take advantage of in order to track the linearity
of handlers. During code generation we can specialise the run-time
representation of handlers according to their linearity.

Links employs a message-passing concurrency model, similar
to Erlang, but typed. Taking ideas from Multicore OCaml [9], we
are investigating whether we can rebuild the Links concurrency
implementation directly in terms of handlers.

Acknowledgments
Nicolas Oury originally suggested the Nim game as an example to
demonstrate programming with handlers. Thanks to Simon Fowler,
Ohad Kammar, Caoimhı́n Laoide-Kemp, Craig McLaughlin, Math-
ias R. Pedersen, and Gabriel Scherer for useful feedback, sugges-
tions, and discussions. The first author was supported by EPSRC
grant EP/L01503X/1 (The University of Edinburgh CDT in Per-
vasive Parallelism). The second author was supported by EPSRC
grant EP/K034413/1 (A Basis for Concurrency and Distribution).

References
[1] R. Atkey. Parameterised notions of computation. Journal of Func-

tional Programming, 19(3-4):335–376, 2009.

[2] A. Bauer and M. Pretnar. An effect system for algebraic effects and
handlers. Logical Methods in Computer Science, 10(4), 2014.

[3] A. Bauer and M. Pretnar. Programming with algebraic effects and
handlers. Journal of Logical and Algebraic Methods in Programming,
84(1):108–123, 2015.

26



[4] M. Blume, U. A. Acar, and W. Chae. Exception handlers as exten-
sible cases. In G. Ramalingam, editor, Programming Languages and
Systems, 6th Asian Symposium, APLAS 2008, Bangalore, India, De-
cember 9-11, 2008. Proceedings, volume 5356 of Lecture Notes in
Computer Science, pages 273–289. Springer, 2008.

[5] C. L. Bouton. Nim, a game with a complete mathematical theory. The
Annals of Mathematics, 3(1/4):35–39, 1901. URL https://www.
jstor.org/stable/pdf/1967631.pdf.

[6] E. Brady. Programming and reasoning with algebraic effects and
dependent types. In Morrisett and Uustalu [27], pages 133–144.

[7] C. Bruggeman, O. Waddell, and R. K. Dybvig. Representing control
in the presence of one-shot continuations. In C. N. Fischer, editor,
Proceedings of the ACM SIGPLAN’96 Conference on Programming
Language Design and Implementation (PLDI), Philadephia, Pennsyl-
vania, May 21-24, 1996, pages 99–107. ACM, 1996.

[8] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web program-
ming without tiers. In F. S. de Boer, M. M. Bonsangue, S. Graf,
and W. P. de Roever, editors, Formal Methods for Components and
Objects, 5th International Symposium, FMCO 2006, Amsterdam, The
Netherlands, November 7-10, 2006, Revised Lectures, volume 4709 of
Lecture Notes in Computer Science, pages 266–296. Springer, 2006.

[9] S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and A. Mad-
havapeddy. Effective concurrency through algebraic effects. OCaml
Workshop, September 2015. URL http://kcsrk.info/papers/
effects_ocaml15.pdf.

[10] M. Felleisen and D. P. Friedman. Control operators, the SECD-
machine, and the λ-calculus. In The Proceedings of the Conference
on Formal Description of Programming Concepts III, Ebberup, Den-
mark, pages 193–217. Elsevier, 1987.

[11] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implemen-
tation, PLDI ’93, pages 237–247, New York, NY, USA, 1993. ACM.

[12] D. Hillerström. Handlers for algebraic effects in Links. Mas-
ter’s thesis, The University of Edinburgh, Scotland, 2015. URL
http://project-archive.inf.ed.ac.uk/msc/20150206/
msc_proj.pdf.

[13] D. Hillerström, S. Lindley, and K. Sivaramakrishnan. Compil-
ing Links effect handlers to the OCaml backend. ML Work-
shop, 2016. URL http://homepages.inf.ed.ac.uk/s1467124/
papers/mlabstract2016.pdf.

[14] S. Holmes. Compiling Links server-side code. Bachelor thesis, The
University of Edinburgh, 2009. URL http://links-lang.org/
papers/undergrads/steven.pdf.

[15] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In Morrisett
and Uustalu [27], pages 145–158.

[16] O. Kiselyov and H. Ishii. Freer monads, more extensible effects. In
B. Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN Sympo-
sium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 94–105. ACM, 2015.

[17] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alterna-
tive to monad transformers. In C. Shan, editor, Proceedings of the 2013
ACM SIGPLAN Symposium on Haskell, Boston, MA, USA, September
23-24, 2013, pages 59–70. ACM, 2013.

[18] D. Leijen. Koka: Programming with row polymorphic effect types. In
P. Levy and N. Krishnaswami, editors, Proceedings 5th Workshop on
Mathematically Structured Functional Programming, MSFP, Greno-
ble, France, April 2014, volume 153 of EPTCS, pages 100–126, 2014.

[19] X. Leroy and F. Pessaux. Type-based analysis of uncaught exceptions.
ACM Transactions on Programming Languages and Systems, 22(2):
340–377, 2000.

[20] P. B. Levy, J. Power, and H. Thielecke. Modelling environments in
call-by-value programming languages. Information and Computation,
185(2):182–210, 2003.

[21] S. Liang, P. Hudak, and M. P. Jones. Monad transformers and modular
interpreters. In R. K. Cytron and P. Lee, editors, Conference Record
of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Francisco, California, USA, January
23-25, 1995, pages 333–343. ACM Press, 1995.

[22] S. Lindley and J. Cheney. Row-based effect types for database integra-
tion. In B. C. Pierce, editor, Proceedings of TLDI 2012: The Seventh
ACM SIGPLAN Workshop on Types in Languages Design and Imple-
mentation, Philadelphia, PA, USA, Saturday, January 28, 2012, pages
91–102. ACM, 2012.

[23] S. Lindley, C. McBride, and C. McLaughlin. Do be do
be do. URL http://homepages.inf.ed.ac.uk/slindley/
papers/frankly-draft-july2016.pdf. Draft, March 2016.

[24] C. McBride. Shonky, 2016. https://github.com/pigworker/
shonky.

[25] J. G. Morris. Variations on variants. In B. Lippmeier, editor, Proceed-
ings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015,
Vancouver, BC, Canada, 2015, pages 71–81. ACM, 2015.

[26] J. G. Morris and M. P. Jones. Instance chains: type class programming
without overlapping instances. In P. Hudak and S. Weirich, editors,
Proceeding of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2010, Baltimore, Maryland, USA,
September 27-29, 2010, pages 375–386. ACM, 2010.

[27] G. Morrisett and T. Uustalu, editors. ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA
- September 25 - 27, 2013, 2013. ACM.

[28] D. A. Orchard and T. Petricek. Embedding effect systems in Haskell.
In W. Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN
symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014,
pages 13–24. ACM, 2014.

[29] G. D. Plotkin and J. Power. Adequacy for algebraic effects. In
F. Honsell and M. Miculan, editors, Foundations of Software Science
and Computation Structures, 4th International Conference, FOSSACS
Genova, Italy, April 2-6, 2001, Proceedings, volume 2030 of Lecture
Notes in Computer Science, pages 1–24. Springer, 2001.

[30] G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4), 2013.

[31] M. Pretnar. Inferring algebraic effects. Logical Methods in Computer
Science, 10(3), 2014.

[32] M. Pretnar. An introduction to algebraic effects and handlers. invited
tutorial paper. Electronic Notes in Theoretical Computer Science, 319:
19–35, 2015.

[33] D. Rémy. Theoretical aspects of object-oriented programming. chap-
ter Type Inference for Records in Natural Extension of ML, pages 67–
95. MIT Press, Cambridge, MA, USA, 1994.

[34] W. Swierstra. Data types à la carte. Journal of Functional Program-
ming, 18(4):423–436, 2008.

[35] N. Wu and T. Schrijvers. Fusion for free - efficient algebraic effect
handlers. In R. Hinze and J. Voigtländer, editors, Mathematics of
Program Construction - 12th International Conference, MPC 2015,
Königswinter, Germany, 2015. Proceedings, volume 9129 of Lecture
Notes in Computer Science, pages 302–322. Springer, 2015.

[36] N. Wu, T. Schrijvers, and R. Hinze. Effect handlers in scope. In Pro-
ceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell
’14, pages 1–12, New York, NY, USA, 2014. ACM.

[37] B. A. Yorgey, S. Weirich, J. Cretin, S. L. P. Jones, D. Vytiniotis, and
J. P. Magalhães. Giving Haskell a promotion. In B. C. Pierce, editor,
Proceedings of TLDI 2012: The Seventh ACM SIGPLAN Workshop
on Types in Languages Design and Implementation, Philadelphia, PA,
USA, Saturday, January 28, 2012, pages 53–66. ACM, 2012.

27

https://www.jstor.org/stable/pdf/1967631.pdf
https://www.jstor.org/stable/pdf/1967631.pdf
http://kcsrk.info/papers/effects_ocaml15.pdf
http://kcsrk.info/papers/effects_ocaml15.pdf
http://project-archive.inf.ed.ac.uk/msc/20150206/msc_proj.pdf
http://project-archive.inf.ed.ac.uk/msc/20150206/msc_proj.pdf
http://homepages.inf.ed.ac.uk/s1467124/papers/mlabstract2016.pdf
http://homepages.inf.ed.ac.uk/s1467124/papers/mlabstract2016.pdf
http://links-lang.org/papers/undergrads/steven.pdf
http://links-lang.org/papers/undergrads/steven.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-july2016.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/frankly-draft-july2016.pdf
https://github.com/pigworker/shonky
https://github.com/pigworker/shonky

	Introduction
	Programming with Handlers in Links
	The Game of Nim and Effect Rows
	Strategies and Handlers
	Game Trees and Multi-shot Continuations
	Cheating and Forwarding
	Composition and Row Polymorphism
	Choice and Built-in Effects
	A Scoreboard and Parameterised Handlers

	A Calculus of Handlers and Rows
	Types
	Terms
	Static Semantics
	Operational Semantics

	Abstract Machine Semantics
	Correctness

	Implementation
	Related Work
	Conclusions and Future Work

