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Effect Handlers via Generalised Continuations

DANIEL HILLERSTRÖM∗, SAM LINDLEY∗, and ROBERT ATKEY†

Abstract

Plotkin and Pretnar’s effect handlers offer a versatile abstraction for modular programming with
user-defined effects. This paper focuses on foundations for implementing effect handlers, for the
three different kinds of effect handlers that have been proposed in the literature: deep, shallow, and
parameterised.

Traditional deep handlers are defined by folds over computation trees, and are the original con-
struct proposed by Plotkin and Pretnar. Shallow handlers are defined by case splits (rather than folds)
over computation trees. Parameterised handlers are deep handlers extended with a state value that
is threaded through the folds over computation trees. We formulate the extensions both directly and
via encodings in terms of deep handlers, and illustrate how the direct implementations avoid the
generation of unnecessary closures.

We give two distinct foundational implementations of all the kinds of handlers we consider: a
continuation passing style (CPS) transformation and a CEK-style abstract machine. In both cases,
the key ingredient is a generalisation of the notion of continuation to accommodate stacks of effect
handlers. We obtain our CPS translation through a series of refinements as follows. We begin with a
first-order CPS translation into untyped lambda calculus which manages a stack of continuations
and handlers as a curried sequence of arguments. We then refine the initial CPS translation by
uncurrying it to yield a properly tail-recursive translation, and then moving towards more and more
intensional representations of continuations in order to support different kinds of effect handlers.
Finally, we make the translation higher-order in order to contract administrative redexes at translation
time. Our abstract machine design then uses the same generalised continuation representation as the
CPS translation. We have implemented both the abstract machine and the CPS transformation (plus
extensions) as backends for the Links web programming language.

1 Introduction

Effect handlers provide a modular and structured interface for programming with delim-
ited control, that subsumes contemporary control abstractions such as async/await and
generators and iterators directly. Such abstractions provide a restricted form of delimited
control (James & Sabry, 2011). As shown by Forster et al. (2017), general delimited
control operators such as shift/reset turn out to be instances of effect handlers. In contrast to
many control abstractions, effect handlers have a strong mathematical foundation (Plotkin
& Power, 2001; Plotkin & Pretnar, 2013), yet their practical relevance is inescapable
as they have been applied across a wide spectrum of diverse programming disciplines
including asynchronous programming (Leijen, 2017a; Dolan et al., 2017), concurrent pro-
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gramming (Dolan et al., 2015), probabilistic programming (Bingham et al., 2018), meta
programming (Yallop, 2017), and modular program construction (Kammar et al., 2013).

Effect handlers come in two flavours deep and shallow. Deep handlers are defined by
folds (specifically catamorphisms (Meijer et al., 1991)) over computation trees, whereas
shallow handlers are defined as case-splits. Catamorphisms are attractive because they are
semantically well-behaved and provide appropriate structure for efficient implementations
using optimisations such as fusion (Wu & Schrijvers, 2015). However, they are not always
convenient for implementing other structural recursion schemes such as mutual recursion.
Most existing accounts of effect handlers use deep handlers.

Effect handlers enjoy rather simple static and dynamic semantics, providing the basis
for many feasible implementation strategies. For instance, Kammar et al. (2013) imple-
ment effect handlers as libraries by making variously use of free monads, continuation
monads, and delimited continuations. By contrast, Multicore OCaml (Dolan et al., 2015)
uses a form of segmented stacks (Bruggeman et al., 1996) to provide an efficient native
implementation. Explicit stack manipulation is appealing when one has complete control
over the design of the backend. Similarly, delimited continuations are appealing when the
backend has support for delimited continuations (Kammar et al., 2013; Kiselyov & Sivara-
makrishnan, 2016). In this paper we study two foundational implementation strategies.

1. We translate effect handlers from a rich source lambda calculus into a plain lambda
calculus. Specifically, we study continuation passing style (CPS) transformations
for effect handlers. The benefit of CPS is that we require no primitives in the target
language to support effect handlers, meaning CPS is a good fit for targeting backends
where one has little or no control of runtime. CPS is also an established intermediate
representation used by compilers Appel (1992); Kennedy (2007), which makes it a
realistic compilation target, and it provides a general framework for implementing
control flow, making it a good fit for implementing control operators such as effect
handlers. The key to implementing a CPS transformation for effect handlers is to
generalise the notion of continuation to model a stack of effect handlers combined
with their associated local continuations.
We are aware of two other CPS transformations for effect handlers they are due to
Leijen (2017b) and Brachthäuser et al. (2018). Leijen’s work differs from ours in
that he does not CPS translate away operations or handlers, but rather uses a CPS
transformation to lift code into a free monad, relying on a special handle primitive
in the runtime. Leijen’s formalism includes features that we do not. In particular, he
performs a selective CPS transformation in order to avoid overhead in code that does
not use algebraic effects. Brachthäuser et al. provide an implementation of multi-
prompt delimited continuations for the Java Virtual Machine, their CPS transform
instruments effectful functions with additional byte code primitives in order to pro-
vide access to continuations. They make use of Java exception tracking system to
identify which functions require instrumentation. They implement effect handlers as
a Java library using multi-prompt continuations.

2. We study an abstract machine with simultaneous support for deep and shallow han-
dlers which is based on the CEK machine of Felleisen & Friedman (1986). As with
the CPS transform, we generalise the usual notion of continuation to a stack of effect



ZU064-05-FPR handlers 17 February 2019 22:36

Effect Handlers via Generalised Continuations 3

handlers combined with their local continuations in order to construct a machine
that supports effect handlers. Incidentally, the resulting machine provides a model
reminiscent of the segmented stacks approach as taken by Multicore OCaml. We are
aware of two other abstract machine semantics for effect handlers due to Biernacki
et al. (2019) and McBride (2016). Biernacki et al. presents an abstract machine for
the Helium language Their machine is inspired by ours with some minor differ-
ences. Although, their machine support only deep handlers. By contrast, McBride
implements Shonky, a dynamically typed variant of the Frank language (Lindley
et al., 2017), which uses generalisation of the CEK machine akin to ours, that only
supports shallow handlers. The main difference is that Shonky uses a completely flat
continuation structure with syntactic markers to delimit the extent of handlers.

Both implementation strategies form the basis for our implementation of effect handlers
in Links (Hillerström, 2015). Links is a single-source, tierless, strict ML-like functional
web programming language with Hindley-Milner type inference and a type-and-effect
system based on row polymorphism (Cooper et al., 2006). The compiler slices a given
source program into three parts: a part that compiles to JavaScript using a CPS transform
to run on the client (in a web browser), and a second part that runs on the server, which
is implemented as a virtual machine, and the third part which comprises database queries
that are compiled directly to SQL and executed on a database.

The main content and contributions of this paper are as follows.

1. A tutorial on modular effectful programming with effect handlers (Section 2) that
demonstrates the three kinds of effect handlers we study in this paper: deep, shallow,
and parameterised.

2. A fine-grain call-by-value calculus λ † of deep and shallow handlers with an evalu-
ation context based small step operational semantics. This calculus has a row-based
effect type system that ensures runtime safety (Section 3).

3. Encodings back and forth between deep and shallow handlers along with simulations
up to suitable notions of administrative reduction (Section 4).

4. A higher-order CPS transformation for λ † along with a detailed proof that the CPS
transformation implements the operational semantics (Section 5).

5. An abstract machine for λ † that implements the operational semantics, based on
ideas developed in the CPS translation (Section 6).

6. Finally, an extension of our calculus to natively support parameterised handlers,
along with a proof that parameterised handlers can be implemented by a local trans-
lation into deep handlers (Section 7).

Section 8 discusses the our implementation of effect handlers in Links, whilst Section 9
concludes.

Relation to Prior Publications This paper combines and streamlines the main results
of three previously published papers (Hillerström & Lindley, 2016; Hillerström et al.,
2017; Hillerström & Lindley, 2018). We have improved the CPS translations described
by Hillerström et al. (2017) and Hillerström & Lindley (2018) to remove all administrative
reductions, and fixed a minor bug in the shallow handler implementation (§5). The abstract
machine described by Hillerström & Lindley (2016) has been extended to also implement
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shallow handlers. Additionally, this paper also provides additional examples of the use of
effect handlers (§2), more detailed discussion of the design decisions in effect handler cal-
culi, includes detailed proofs for the complex higher order CPS translation, and describes
the necessary extensions to support parameterised handlers (§7).

2 Modular Effectful Programming with Effect Handers

In this section, we give a high-level introduction to programming with effect handlers by
example. We demonstrate the usefulness of effect handlers as a practical programming
abstraction by iteratively developing a modular implementation of the mathematical game
Nim (Bouton, 1901). Starting with a fixed abstract model of the game, we show how effect
handlers let us obtain different instantiations with ease.

We consider a slight variation of the Nim game in which two players, Alice and Bob, take
turns to remove between one or three sticks from a heap starting with n sticks. Whoever
takes the last stick wins the game. We implement the game in λ †, our calculus with effect
handlers, formally presented in Section 3, although we allow ourselves a fair amount of
syntactic sugar to make the examples more readable (in particular we use direct-style rather
than the fine-grain call-by-value discipline of λ †).

2.1 Abstract Operations and an Abstract Game Model

We model the Nim game as two mutually recursive functions aliceTurn and bobTurn.
The two players are also represented as values of a (polymorphic) type variant with two
constructors each denoting either Alice or Bob: Player def

= [Alice | Bob]. We implement the
aliceTurn function as follows:

aliceTurn : Int→ Player!{Move : 〈Player, Int〉 → Int,ε}
aliceTurn n def

= if n≤ 0 then Bob
else let m← do Move 〈Alice,n〉 in

bobTurn (n−m)

Besides some peculiarities in the tail of the type signature and the do-construct, the above
program ought to look like a normal functional program. The signature states that aliceTurn
is a function that takes an integer as input and produces a value of type Player as output. As
a side effect of computing the output value the function may perform an effectful operation
Move, which is parameterised by a pair of a Player and an integer, and produces an integer.
The right hand side of the bang (!) is the effect signature of the functon. In our calculus,
effect signatures are represented as rows (Remy, 1993), so we will also refer to them as
effect rows. The presence of Move indicates that the function is permitted to perform the
Move operation with the specified types. The row is terminated with an effect variable ε ,
which can be instantiated with additional operations. As a result, the function aliceTurn
may be invoked in a larger effect context that permits more effects that it requires.

In the definition of aliceTurn the parameter n is the current number of sticks on the heap.
When it is her turn, Alice first checks whether there are any sticks left on the heap, if it
is empty, then she declares Bob the winner. Otherwise, she performs her move. The do-
construct is the introduction form for effectful operations. The label Move is an abstract
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operation symbol with no predefined semantics. The operation is invoked with a pair
containing the label Alice and the current heap state n. The returned value of the operation
is another integer (as evident from the effect signature). This integer is intended to denote
the number of sticks that the Alice decides to take from the heap. After taking the sticks
from the heap, she hands over the turn to Bob. In the subsequent sections, we will see how
different interpretations of Move enable us to obtain vastly different instantiations of the
game in a modular fashion. The bobTurn function is the same, but swaps Alices and Bobs:

bobTurn : Int→ Player!{Move : 〈Player, Int〉 → Int,ε}
bobTurn n def

= if n≤ 0 then Alice
else let m← do Move 〈Bob,n〉 in

aliceTurn (n−m)

We define an auxiliary function game for configuring a new game with n sticks on the heap.

game : Int→ 〈〉→ Player!{Move : 〈Player, Int〉 → Int,ε}
game n def

= λ 〈〉.aliceTurn n

By convention Alice starts every game. Given an initial number of sticks, the game func-
tion returns a suspended computation that when forced starts the game. Without the λ -
abstraction to suspend computation, running aliceTurn n as is would cause evaluation to
halt, i.e. for any n > 0:

aliceTurn n + E [do Move 〈Alice,n〉],

evaluation gets stuck in this configuration as we have not provided an instantiation of Move.
Thus, we say that game, aliceTurn, and bobTurn are abstract computations. In the follow-
ing sections we will consider several possible interpretations of Move that allow alternative
strategies, monitoring of cheating players, and exploration of alternative plays of the game.
By separating effect operations from their semantics, such diverse interpretations can be
programmed modularly.

Omitting effect variables (syntactic sugar) The attentive reader might have observed
that the first arrow in the signature for game lacks an effect row. The actual type of game is

Int→ (〈〉 → Player!{Move : 〈Player, Int〉 → Int,ε})!{ε ′},

where ε ′ is a distinct effect variable from ε . The application game n for some n∈N does not
cause any effects, it is pure. The presence of the effect variable means that it is parametric
in the actual effect context that it is used in. Whereas had it been given the type

Int→ (〈〉 → Player!{Move : 〈Player, Int〉 → Int,ε})! /0,

then it could only be invoked in a pure context. By convention, we omit effect annotations
when the effect row is a singleton row with an effect variable that is only mentioned once
in the whole signature.

2.2 Deep Handlers and Assigning Strategies to Players

Abstract operations, like Move, have no predefined semantics. The programmer provides
them with semantics by writing an effect handler. When an asbtract operation is invoked,
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the current continuation is captured and passed to the effect handler. The captured continua-
tion is then exposed to the programmer as a first-class function that can be invoked multiple
times, discarded, or stored for later use. By choosing how the continuation of an abstract
operation is resumed, the programmer has freedom to choose the particular semantics of the
abstract operations. Henceforth we will use the term resumption to describe the captured
continuation in order to differentiate it from the notion of (generalised) continuation we
use in our CPS translations (§5) and abstract machine (§6).

In our setting we can use effect handlers to encode particular strategies for Alice and
Bob. For example, consider the perfect strategy defined by ps def

= λn.1 ‘max‘ (n ‘mod‘ 4),
where n is the number of sticks left in the heap. We can assign both players the perfect
strategy via a handler as follows.

ps_vs_ps : (〈〉 → α!{Move : 〈Player, Int〉 → Int,ε})→ α!{ε}
ps_vs_ps m def

= handle m 〈〉 with{
return x 7→ x
Move 〈_,n〉 resume 7→ resume (ps n)

}
The function ps_vs_ps (an abbreviation for perfect-strategy-vs-perfect-strategy) embodies
the handler. The signature of ps_vs_ps tells us, that the function takes as input a (sus-
pended) computation that may perform the Move and ultimately return a value of type
α . The type of the value returned by ps_vs_ps is the same as its higher order argument.
However, the Move operation has been removed its effect signature. This signifies that
the Move operations invoked by the argument have been instantiated with a concrete
interpretation; they have been handled.

The definition of ps_vs_ps uses the handle M with H construct to instantiate the Move
operation. The handle-construct is the elimination form for effectful operations. It runs a
computation M and interprets its effectful operations according to the handler definition H
(written within the curly braces). Any handler definition consists of a return-case and a
collection of operation cases. The return-case defines how to handle the final return value
of the input computation. In this example, we simply return the final value returned by
the computation. The operation cases define how to interpret operations that may occur in
the computation. The left hand side of an operation case matches on the particular label
of an operation (in our instance Move) and the value that it carries. In addition, the left
hand side also provides a name for the resumption. By convention, we call it resume. The
right hand side of an operation case defines the dynamic semantics of the operation. Here,
we interpret Move, regardless of the player, as playing the perfect strategy by invoking the
resumption resume with the value determined by the perfect strategy as implemented by
ps. The application of resume effectively transfers control back to the invocation site of
Move and substitutes its argument for the whole operation invocation term.

Using this handler, we can compute the winner of a single game, for instance:

ps_vs_ps (game 7) + Alice and ps_vs_ps (game 8) + Bob.

The handler handles all invocations of Move. This can be seen by examining the type of the
resumption resume: Int→ α!{ε}. The type is determined by the enclosing handler and the
signature of the operation. The input type is the return type of the operation Move, and the
return type is the body type of the handler. Similarly, the effect signature is the same as its
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enclosing handler. This reveals that resume handles any subsequent occurrences of Move.
It handles those operations by implicitly re-wrapping the handler around the remaining
computation after the operation was invoked, until the return clause is invoked by the
computation finishing.

The following sketched reduction sequence illustrates how the handler is re-wrapped by
giving the interesting steps of the computation ps_vs_ps (game 7). We let Hps_vs_ps denote
the handler definition.

ps_vs_ps (game 7)
 + (definition of ps_vs_ps)

handle (game 7) 〈〉 with Hps_vs_ps

 + (eventually invokes Move with Alice and n = 7)
handle E [do Move 〈Alice,7〉] with Hps_vs_ps

 + (Move-case definition)
(resume (ps 7))[λx.handle E [x] with Hps_vs_ps/resume]

 + (resuming with ps 7 = 3)
handle E [3] with Hps_vs_ps

 + (eventually invokes Move with Bob and n = 4)
handle E [do Move 〈Bob,4〉] with Hps_vs_ps

 + (Move-case definition)
(resume (ps 4))[λx.handle E [x] with Hps_vs_ps/resume]

 + (resuming with ps 4 = 1)
handle E [1] with Hps_vs_ps

 + (eventually invokes Move with Alice again)
handle E [do Move 〈Alice,3〉] with Hps_vs_ps

 + (Move-case definition)
(resume (ps 3))[λx.handle E [x] with Hps_vs_ps/resume]

 + (resuming with ps 3 = 3)
handle E [3] with Hps_vs_ps

 + (eventually returns Alice)
handle Alice with Hps_vs_ps

 + (definition of the return-case)
Alice

The handler forces evaluation of the suspended game computation. After some amount
of standard reduction steps the redex is do Move 〈Alice,7〉. At this point control gets
transferred to the handler, specifically the Move-case within the handler definition. The
resumption resume is replaced by a lambda abstraction, whose body contains the same
handler enclosing the remainder of the evaluation context E . As a result, the invocations
do Move 〈Bob,4〉 and do Move 〈Alice,3〉 are handled in the same manner. This handling
idiom is known as deep handlers. An alternative strategy is to not always wrap the remain-
ing continuation in the same handler, and to leave it to the programmer to decide how to
handle further operations. This gives us shallow handlers, which we describe in §2.6.

We can assign the players different strategies by pattern matching on the player identi-
fiers. For example, we can assign Bob a cheating strategy such as taking all the remaining
sticks on the heap, thereby winning in a single move. The following handler, ps_vs_cs,
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Fig. 1. The game tree generated by gameTree (game 3).

assigns the perfect strategy to Alice and the cheating strategy to Bob.

ps_vs_cs : (〈〉 → α!{Move : 〈Player, Int〉 → Int,ε})→ α!{ε}
ps_vs_cs m def

= handle m 〈〉 with
return x 7→ x
Move 〈Alice,n〉 resume 7→ resume (ps n)
Move 〈Bob,n〉 resume 7→ resume n


Using this handler, Bob wins whenever n ≥ 4. In §2.4 we will show how to handle

cheaters in a modular fashion using another effect handler.

2.3 Multi-shot Resumptions and Computing Game Data

The handlers ps_vs_ps and ps_vs_cs compute the winner of a single game under fixed
strategies for the players. Since we are simulating a single play of the game, the resumption
is always invoked once to return control in a single threaded mannre. By invoking the
resumption multiple times, we can explore and compute the outcomes of all possible legal
strategies for a single game. As a concrete example we will demonstrate how to compute
the game tree of a particular game. We define a type of game tree inductively as:

GameTree def
= [Take : 〈Player,List 〈Int,GameTree〉〉 |Winner : Player].

Each path from the root of a game tree to one of its leaves induces a particular sequence
of moves. The interior nodes are given by Take constructors, which carry them with
information about which player’s turn it was, and all the possible moves (and outcomes)
that the player can possibly commit to. The leaves of a game tree are of the form Winner p,
where p is the winning player resulting from that path through the tree. The following



ZU064-05-FPR handlers 17 February 2019 22:36

Effect Handlers via Generalised Continuations 9

handler computes the game tree for any given game.

gameTree : (〈〉 → Player!{Move : 〈Player, Int〉 → Int,ε})→ GameTree!{ε}
gameTree m def

= handle m 〈〉 with
return x 7→Winner x
Move 〈p,n〉 resume 7→ let subgames← map resume (legalMoves n) in

let subtrees← zip [1,2,3] subgames in
Take 〈p,subtrees〉


The return clause wraps the winning player x with a Winner constructor. The operation
case computes every subgame by invoking the resumption resume with every possible legal
move. The result of every subgame is reified as a subtree in the game tree. In order to
compute the subgames and subtree, we make use of standard list functions map and zip
for transforming a list and point-wise joining two lists, respectively. The auxiliary function
legalMoves ensures that the resumption resume is only applied to legal moves. For Nim, we
define it using another standard list operator filter: legalMoves def

= λn.filter (≤ n) [1,2,3].
Figure 1 visualises the result computed by gameTree (game 7). Without modifying the
underlying game model we have been able to compute data about particular games by
simply reinterpreting the abstract operation Move.

2.4 Effect Forwarding and Cheat Detection

Thus far we have considered a single operation Move, but in general a computation will
have more operations. We could define a monolithic handler that interprets every operation
that may occur in a given computation. A more modular alternative is to define a collec-
tion of fine-grained, specialised handlers that each handle a particular operation, and then
compose them together to fully interpret a computation. Composed handlers can cooperate
to interpret an abstract computation. Each handler operates on a particular subset of the
abstract operations, leaving the remainder for other handlers.

We will demonstrate how to implement a cheat detection mechanism for the game by
composing handlers. The idea is to signal cheating via an abstract operation Cheat. We
define a convenient function that raises the signal.

cheat : Player→ α!{Cheat : Player→ Zero,ε}
cheat p def

= case (do Cheat p) { }

The operation Cheat is parameterised by the identifier of player that was caught cheating.
The return type of the operation is the empty type Zero, which we define as the empty
variant type Zero def

= [ ].
We eliminate values of type Zero using an empty case construct. This allows us to

ascribe a polymorphic return type to cheat. From the point of view of the computation, an
invocation of Cheat will never return. Correspondingly, since there are no values of type
Zero, it is not possible for a handler to invoke the resumption to continue execution after
Cheat is invoked. Thus, the operation Cheat acts like an exception, and an interpretation
of Cheat in an effect handler amounts to implementing an exception handler. A potential
implementation of such a handler handles cheating players by assigning victory to the
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opponent player, who wins by default:

defaultVictory : (〈〉 → Player!{Cheat : Player→ Zero,ε})→ (〈〉 → Player!{ε})
defaultVictory m def

= λ 〈〉.handle m 〈〉 with
return x 7→ x
Cheat Alice _ 7→ Bob
Cheat Bob _ 7→ Alice


Next, we implement a handler that monitors a given game and raises Cheat if any player

is caught cheating.

monitor : (〈〉 → α!{Cheat : Player→ Zero,Move : 〈Player, Int〉 → Int,ε})
→ (〈〉 → α!{Cheat : Player→ Zero,Move : 〈Player, Int〉 → Int,ε})

monitor m def
= λ 〈〉.handle m 〈〉 with

return x 7→ x
Move 〈p,n〉 resume 7→ let n′← do Move 〈p,n〉 in

if n′ ∈ legalMoves n then resume n′

else cheat p


The return clause forwards on the result of the computation. The interesting case is the
operation case. To handle Move 〈p,n〉, the handler reperforms Move with the same param-
eters. That is, the handler explicitly forwards the operation to another enclosing handler.
The result is stored in n′ which is checked against the legal moves. If n′ is a legal move,
then the game continues. Otherwise, the handler raises the Cheat signal.

The input and output effect rows of monitor are identical. The operation Move appears
in both rows, because the handler handles invocations of Move in the input computation
by performing another invocation of Move, thus introducing the operation into the output
row. The Cheat operation appears in the output row, because the handler performs the
operation. The operation propagates to the input row, because the input computation may
perform at least as many operations as the handler. In our system, any handler has the
property that it monotonically decreases information, thereby never increasing information.
In other words, the output row mentions at least as many operations as the input row.
One may regard this property as introducing imprecision. However, it is an artefact of the
particular form of row polymorphism (Remy, 1993) that our system is based upon. Other
effect systems have been designed which allow programmers to be more precise about
effects generated by the input and output, for example in the Frank language (Lindley
et al., 2017).

Composing the handlers defaultVictory and monitor with ps_vs_cs means Bob is caught
cheating whenever n≥ 5, and thus Alice is declared the winner. Regular function compo-
sition composes handlers:

(ps_vs_cs◦defaultVictory◦monitor) (game 7) + Alice

The reader may have observed that the monitor handler does not handle the Move oper-
ation. The above composition works because all handlers implicitly forward operations
that they do not handle to their dynamically enclosing handler. This implicit forwarding
behaviour is known as effect forwarding. Unlike explicit forwarding, as in defaultVictory,
implicit forwarding does not affect the typing of handlers.
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2.5 Handling Stateful Computations and Instrumentation

In this section, we will show how to instrument a computation with logging using effect
handlers. We provide an interface for accessing and updating the value of a state cell via
two operations: Get : 〈〉 → β , which accesses the value of type β , and Put : β → 〈〉, which
updates the value. The following handler provides an implementation of this interface.

runState : β → (〈〉 → 〈α,β 〉!{Get : 〈〉 → β ,Put : β → 〈〉,ε})→ (〈〉 → 〈α,β 〉!{ε})
runState init m def

= λ 〈〉.let run← handle m 〈〉 with
return x 7→ λ st.〈x,st〉
Get 〈〉 resume 7→ λ st.resume st st
Put st′ resume 7→ λ_.resume 〈〉 st′


in run init

The runState handler provides a generic way to interpret any stateful computation. It takes
as its first parameter the initial value of the state cell. The second parameter is a stateful
computation that may perform Get and Put operations. Ultimately, the handler returns the
value of the input computation along with the current value of the state cell.

This formulation of state handling is analogous to the standard monadic implementation
of state handling (Wadler, 1995). In the context of handlers, the implementation uses a
technique known as parameter-passing (Pretnar, 2015). The operations Get and Put are
interpreted as functions that take the current state as input. Consequently, resume returns a
function that expects to be passed the state for the rest of the computation. For example, the
type of resume in the Get case is β → β → 〈α,β 〉!{ε}. The resumption threads the state
value through to the subsequent activation of the handler via its second argument. In the
Get case the state value is passed unchanged, whereas in the Put case the value of updated
state is set to be the invoker provided value bound to st′. A similar interpretation is given to
the return case, although, in this case the function takes the final state as input and returns
a pair consisting of the return value and the final state value.

Operationally, evaluation of the sub-computation m gets suspended when it either in-
vokes an operation or returns a value upon which the corresponding clause in the handler
definition returns a state accepting function. This function gets bound to run which is
subsequently applied to the initial state init, thereby continuing evaluation of the stateful
fragment of m.

Next, we implement a stateful handler computation, which intercepts and records move
operations.

history : (〈〉 → α!{Move : 〈Player, Int〉 → Int,
Get : 〈〉 → List 〈Player, Int〉,Put : List 〈Player, Int〉 → 〈〉,ε})

→ (〈〉 → α!{Move : 〈Player, Int〉 → Int,
Get : 〈〉 → List 〈Player, Int〉,Put : List 〈Player, Int〉 → 〈〉,ε})

history m def
= λ 〈〉.handle m 〈〉 with

return x 7→ x
Move 〈p,n〉 resume 7→ let n′← do Move 〈p,n〉 in

do Put (〈p,n′〉 :: do Get 〈〉); resume n′


The history handler uses Get and Put operations to accumulate a list of moves performed
during a game. The handler works in a similar way to the defaultVictory handler from
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the previous section. It intercepts the Move operation and immediately reperforms it. The
result stored in n′. The interpretation gets paired with the active player p, and consed onto
the current list of moves, which is accessed by Get. The resulting list is given as argument
to Put, which performs the update. Finally, the original invocation of Move is resumed
with n′. Plugging everything together, using runState with the empty list [ ] as the initial
state, we obtain the winner of the game and the (reversed) list of moves performed by each
player.

(ps_vs_ps◦ (runState [ ])◦history) (game 7) + 〈Alice, [〈Alice,3〉,〈Bob,1〉,〈Alice,3〉]〉

Moreover, we can compose this logging infrastructure with the cheat detection machinery
to witness that Bob is caught cheating.

(ps_vs_cs◦ (runState [ ])◦history◦defaultVictory◦monitor) (game 7)
 + 〈Alice, [〈Bob,4〉,〈Alice,3〉]〉

Alice wins by default after Bob makes the illegal move “4”.

Parameterised Handlers The parameter passing style used in runState is common enough
that it has its own specialised handling idiom known as parameterised handlers. A param-
eterised handler is an ordinary (deep) handler equipped with an explicit state parameter,
instead of using functions to implement state passing. Using a parameterised handler, the
runState handler above may be written as follows.

runState′ : β → (〈〉 → 〈α,β 〉!{Get : 〈〉 → β ,Put : β → 〈〉,ε})→ (〈〉 → 〈α,β 〉!{ε})
runState′ init m def

= λ 〈〉.handle m 〈〉 withst← init,


return x 7→ 〈x,st〉
Get 〈〉 resume 7→ resume 〈st,st〉
Put st′ resume 7→ resume 〈〈〉,st′〉




As compared to the handlers we saw above, the handler definition here is paired with a
variable st containing the current state value. Initially it is bound to init. The parameter
st is now accessible in the return and operaton clauses of the handler. Moreover, the
resumption now takes a pair as input, whose first component is the result of the operation
invocation, as before, and its second argument is the updated state value. Thus, from the
handler writer’s point of view, we have uncurried the resume function. The advantage of
making parameterised handlers primitive instead of an idiomatic use of deep handlers is
that they can be implemented more efficiently. The runState handler above results in a large
amount of closures being generated that can be avoided by a specialised implementation.
We discuss parameterised handlers and their implementation more in §7.

2.6 Shallow Handlers and Streaming

The machinery that we have developed thus far is only capable of running a single game
at any time. We now show how to support running multiple games concurrently. Vari-
ous forms of concurrency can be implemented using effect handlers, for example coop-
erative multi-threading (Bauer & Pretnar, 2015), message-passing (Hillerström, 2016),
the async/await idiom (Dolan et al., 2017; Leijen, 2017a), and synchronous streams via
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pipes (Kammar et al., 2013). We will use the latter to implement a basic live score system.
We will follow the Unix philosophy, i.e., decompose a game with a live scoring system
into a collection of modular processes, and then combine them in an pipeline.

The natural implementation of pipes is in terms of two mutually recursive handlers,
which handle production and consumption of values, respectively. Using the deep handler
construct we used above to implement mutual recursion is at best cumbersome as it essen-
tially amounts to encoding a mutumorphism using catamorphisms. Therefore, we switch to
using shallow handlers rather than deep handlers to implement pipes. Unlike deep handlers,
shallow handlers do not fix a particular recursion scheme. Consequently shallow handlers
offer more flexibility in how subsequent operations by a computation are handled.

We mark shallow handlers in our calculus with a †. With shallow handlers we define a
demand-driven Unix pipeline operator as follows.

pipe : 〈〈〉 → α!{Yield : β → 〈〉,ε}, 〈〉 → α!{Await : 〈〉 → β ,ε}〉 → α!{ε}
copipe : 〈β → α!{Await : 〈〉 → β ,ε},〈〉 → α!{Yield : β → 〈〉,ε}〉 → α!{ε}

pipe〈p,c〉= handle† c〈〉 with{
return x 7→ x
Await 〈〉 r 7→ copipe 〈r,p〉

}copipe〈c,p〉= handle† p〈〉 with{
return x 7→ x
Yield p r 7→ pipe 〈r,λ 〈〉.cp〉

}

A pipe takes two thunked computations, a producer p and a consumer c. Each of the
thunks returns a value of type α . The producer can perform the Yield operation, which
yields a value of type β and the consumer can perform the Await operation, which cor-
respondingly awaits a value of type β . The shallow handler pipe runs the consumer first.
If the consumer terminates with a value, then the return clause is executed and returns
that value as is. If the consumer performs the Await operation, then the copipe handler is
invoked with the resumption of the consumer (r) and the producer (p) as arguments.

The copipe function runs the producer to get a value to feed to the waiting consumer. The
arguments are swapped and the consumer component now expects a value. If the producer
performs the Yield operation, then pipe is invoked with the resumption of the producer
along with a thunk that applies the consumer’s resumption to the yielded value.

Next we implement some processes to pipe together. First, we implement a process that
receives an integer, which is used as the starting value for a game. As output the process
will yield the winner of the game.

gameProc : 〈〉 → α!{Await : 〈〉 → Int,Yield : Player→ 〈〉,ε}
gameProc def

= λ 〈〉. let n← do Await 〈〉 in
let winner← (ps_vs_ps◦defaultVictory◦monitor) (game n) in
do Yield winner; gameProc 〈〉

From the signature of gameProc we can see that the process will fit as an intermediate
component in a pipeline, since it both Awaits and Yields values. The process first awaits
the starting value n, which is used to start a new game with the cheat detection enabled and
where Alice and Bob both adopt the perfect strategy. The winner of the game is yielded,
before awaiting a new start value.
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To produce start values for some games, we define a recursive process which produces
a monotonically increasing sequence of integers on demand:

startFrom : Int→ 〈〉→ α!{Yield : Int→ 〈〉,ε}
startFrom j def

= λ 〈〉.do Yield j; startFrom (j+1) 〈〉

Given an initial value j the startFrom produces the infinite sequence j, j+1, j+2, j+3, . . . .
From the signature we can tell that this process acts exclusively as a producer.

Next, we implement a stateful process that keeps track of the number of games won
by each player, and upon receiving the winner of a game displays the current score. We
represent the current score as a simple pair Score def

= 〈Int, Int〉, where the first component
is the number of times Alice has won, and vice versa, the second component contains the
number of times Bob has won.

livescore : 〈〉 → α!{Await : 〈〉 → Player,Get : 〈〉 → Score,Put : Score→ 〈〉,ε}
livescore def

= λ 〈〉. let 〈fst = aliceSc,snd = bobSc〉=
case do Await 〈〉{

Alice 7→ 〈do Get 〈〉 with fst = (do Get 〈〉).fst+1〉
Bob 7→ 〈do Get 〈〉 with snd = (do Get 〈〉).snd+1〉

}
in do Put 〈aliceSc,bobSc〉; display aliceSc bobSc; livescore 〈〉

The signature of livescore tells us not only that this process is a consumer, but also that it
is stateful. First the process updates the current score by pattern matching on the winner,
which is received via the Await operation. The current score is updated using functional
record update. Subsequently, the value of the state cell is updated with the new score.
The function display prints the current score using a primitive operation, e.g. writing to
standard out. With the processes we have defined so far, we can produce a live score board
for an infinite series of games. In order to make the overall process finite, we define another
intermediate process, that halts the pipeline after a given number of steps:

take : Int→ 〈〉→ 〈〉!{Await : 〈〉 → β ,Yield : β → 〈〉,ε}
take j def

= λ 〈〉.if j≤ 0 then 〈〉 else do Yield (do Await 〈〉); take (j−1) 〈〉

This process uses explicit state passing to keep track of whether to halt. Alternatively, we
could have used the state interface provided by Get and Put.

For convenience, we define an infix pipe operator for constructing pipelines, analogous
the Unix shell’s pipe operator p1 | p2.

>>: (〈〉 → α!{Yield : β → 〈〉,ε})→ (〈〉 → α!{Await : 〈〉 → β ,ε})→ (〈〉 → α!{ε})
p >> c def

= λ 〈〉.pipe 〈p,c〉

Plugging everything together, we report the live score during a series of consecutive games.

(startFrom 7 >> gameProc >> take 3 >> ignore◦ (runState 〈0,0〉 livescore)) 〈〉
Alice 1 - 0 Bob
Alice 1 - 1 Bob
Alice 2 - 1 Bob

 + 〈〉

We start an infinite series of games with increasing initial heap sizes, then we consume
three of those games, and for each of the three games we report the winner. Here ignore
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is the standard call-by-value function that ignores its argument and returns unit. We post-
compose ignore to disregard the return value of runState.

Implementing Pipes with Deep Handlers As we have seen, shallow handlers provide a
direct way to implement Unix-style pipes. It is also possible to implement pipes using deep
handlers, albeit in a much more roundabout way. Indeed, shallow handlers can always be
simulated by deep handlers, as we show in §4, though not in a straightforward way. With
deep handlers we cannot use term level recursion and choose how to handle the next step
of the computation, instead we effectively have to defunctionalise (Reynolds, 1998) the
shallow version of pipes using recursive types. To introduce the general construction in §4,
we carry this out for the pipes example here. Following Kammar et al. (2013) we define a
pair of mutually recursive types for producers and consumers:

Producer ε α β
def
= 〈〉→ (Consumer ε α β → α!{ε})!{ε}

Consumer ε α β
def
= β→ (Producer ε α β → α!{ε})!{ε}

The underlying idea is state-passing: the Producer type is an alias for a suspended com-
putation which returns a computation parameterised by a Consumer computation. Corre-
spondingly, Consumer is an alias for a function that consumes an element of type β and
returns a computation parameterised by a Producer computation. The ultimate return value
has type α . Both are parameterised by an effect variable ε , that denote the allowed effects.
Using these recursive types, we can define the pipe′ and copipe′ implementations using
deep handlers as follows:

pipe′ : (〈〉 → α!{Await : 〈〉 → β ,ε})→ Producer ε α β → α!{ε}
copipe′ : (〈〉 → α!{Yield : β → 〈〉,ε}) → Consumer ε α β → α!{ε}

pipe′ c def
= handle c〈〉 with

return x 7→ λy.x
Await 〈〉 r 7→ λp.p 〈〉 r

copipe′ p def
= handle p〈〉 with

return x 7→ λy.x
Yield p r 7→ λc.c p r

p >>′ c def
= λ 〈〉.pipe′ c (λ 〈〉.copipe′ p)

Application of the pipe operator is no longer direct as extra plumbing is required to connect
the now decoupled handlers. The observable behaviour of >>′ is the same as >>. Indeed,
the example yields the same result.

(startFrom 7 >>′ gameProc >>′ take 3 >>′ ignore◦ (runState 〈0,0〉 livescore)) 〈〉
Alice 1 - 0 Bob
Alice 1 - 1 Bob
Alice 2 - 1 Bob
 + 〈〉

This example shows that, while it is possible to define everything in terms of deep
handlers, it is not always convienient to do so. Shallow handlers provide an extra level
of flexibility that is missing with deep handlers. The calculus we introduce in the next
section includes both deep and shallow handlers for this reason.
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Value types A,B ::= A→ C | ∀αK .C | 〈R〉 | [R] | α
Computation types C,D ::= A!E
Effect types E ::= {R}
Depth δ ::= | †
Handler types F ::= C⇒δ D
Row types R ::= ` : P;R | ρ | ·
Presence types P ::= Pre(A) | Abs | θ

Types T ::= A | C | E | F | R | P
Kinds K ::= Type | Comp | Effect | Handler | RowL | Presence
Label sets L ::= /0 | {`}]L
Type environments Γ ::= · | Γ,x : A
Kind environments ∆ ::= · | ∆,α : K

Fig. 2. Types, Kinds, and Environments

3 Handler Calculus

In this section, we present λ †, a Church-style row-polymorphic call-by-value calculus with
effect handlers. To support comparison within a single language we include both deep
and shallow handlers. The calculus is an extension of Hillerström and Lindley’s calculus
of extensible deep handlers λ

ρ

eff (Hillerström & Lindley, 2016) with shallow handlers and
recursive functions. We will further extend the language with parameterised handlers in §7.
Following Hillerström and Lindley, λ † provides a row polymorphic effect type system and
is based on fine-grain call-by-value (Levy et al., 2003), which names each intermediate
computation as in A-normal form (Flanagan et al., 1993), but unlike A-normal form is
closed under β -reduction.

3.1 Syntax of Types and Kinds, Kinding Rules

The syntax of types, kinds, and environments is given in Fig. 2.

Value Types Function types A→ C classify functions that map values of type A to com-
putations of type C. Polymorphic types ∀αK .C quantify universally over a type variable α

of kind K. Record types 〈R〉 represent records with fields constrained by the row R. Dually,
variant types [R] represents tagged sums constrained by the row R.

Computation Types and Effect Types The computation type A!E is given by a value type
A and an effect type E, which specifies the operations a computation inhabiting this type
may perform.

Handler Types The handler type C⇒δ D represent handlers that transform computations
of type C into computations of type D (where δ empty denotes a deep handler and δ = † a
shallow handler).

Row Types Effect, record, and variant types are given by row types. A row type (or just
row) describes a collection of distinct labels, each annotated by a presence type. A presence
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TYVAR

∆,α : K ` α : K

FORALL
∆,α : K ` C : Comp

∆ ` ∀αK .C : Type

COMP
∆ ` A : Type
∆ ` E : Effect

∆ ` A!E : Comp

FUN
∆ ` A : Type
∆ ` C : Comp

∆ ` A→ C : Type

RECORD
∆ ` R : Row /0

∆ ` 〈R〉 : Type

VARIANT
∆ ` R : Row /0

∆ ` [R] : Type

EFFECT
∆ ` R : Row /0

∆ ` {R} : Effect

PRESENT
∆ ` A : Type

∆ ` Pre(A) : Presence

ABSENT

∆ ` Abs : Presence

EMPTYROW

∆ ` · : RowL

EXTENDROW
∆ ` P : Presence

∆ ` R : RowL]{`}

∆ ` ` : P;R : RowL

HANDLER
∆ ` C : Comp ∆ ` D : Comp

∆ ` C⇒δ D : Handler

Fig. 3. Kinding rules for λ †

type indicates whether a label is present with type A (Pre(A)), absent (Abs) or polymorphic
in its presence (θ ). Row types are either closed or open. A closed row type ends in ·, whilst
an open row type ends with a row variable ρ . The row variable in an open row type can
be instantiated with additional labels. We identify rows up to reordering of labels. For
instance, we consider rows `1 : P1; · · · ;`n : Pn; · and `n : Pn; · · · ;`1 : P1; · equivalent. Closed
rows are further considered equivalent up to inclusion of explicitly absent labels. The unit
type is the empty closed record, that is, 〈·〉. Dually, the empty type is the empty, closed
variant [·]. Often we omit the · for closed rows.

Kinds We have six kinds: Type, Comp, Effect, Handler, RowL , Presence, which respec-
tively classify value types, computation types, effect types, row types, presence types, and
handler types. Row kinds are annotated with a set of labels L . The kind of a complete row
is Row /0. More generally, RowL denotes a partial row that may not mention labels in L .
We write ` : A as sugar for ` : Pre(A).

Type Variables We let α , ρ and θ range over type variables. By convention we write α

for value type variables or for type variables of unspecified kind, ρ for type variables of
row kind, and θ for type variables of presence kind.

Type and Kind environments Type environments (Γ) map term variables to their types
and kind environments (∆) map type variables to their kinds.

Kinding rules The kinding judgement ∆ ` T : K states that type T has kind K in kind
environment ∆. The kinding rules for λ † are given in Fig. 3.



ZU064-05-FPR handlers 17 February 2019 22:36

18 Daniel Hillerström, Sam Lindley, and Robert Atkey

Values V,W ::= x | λxA.M | ΛαK .M | 〈〉 | 〈`= V;W〉 | (`V)R

| recgA→C x.M

Computations M,N ::= V W | V T | let 〈`= x;y〉= V in N
| case V{` x 7→M;y 7→ N} | absurdCV
| return V | let x←M in N
| (do ` V)E | handleδ M with H

Handlers H ::= {return x 7→M} | {` p r 7→M}]H
Fig. 4. Term Syntax

3.2 Terms

The terms are given in Fig. 4. We let x,y,z,r,p range over term variables. By convention,
we use r to denote resumption names. The syntax partitions terms into values, compu-
tations and handlers. Value terms comprise variables (x), lambda abstraction (λxA.M),
type abstraction (ΛαK .M), the introduction forms for records and variants, and recursive
functions (recgA→C x.M). Records are introduced using the empty record 〈〉 and record
extension 〈`= V;W〉, whilst variants are introduced using injection (`V)R, which injects a
field with label ` and value V into a row whose type is R.

All elimination forms are computation terms. Abstraction and type abstraction are elim-
inated using application (V W) and type application (V T) respectively. The record elimi-
nator (let 〈`= x;y〉= V in N) splits a record V into x, the value associated with `, and y, the
rest of the record. Non-empty variants are eliminated using the case construct (case V {` x 7→
M;y 7→N}), which evaluates the computation M if the tag of V matches `. Otherwise it falls
through to y and evaluates N. The elimination form for empty variants is (absurdC V). A
trivial computation (returnV) returns value V . The expression (let x←M in N) evaluates
M and binds the result to x in N.

Operation invocation (do ` V)E performs operation ` with value argument V . Handling
(handleδ M with H) runs a computation M using deep (δ empty) or shallow (δ = †)
handler H. A handler definition H consists of a return clause {return x 7→ M} and a
possibly empty set of operation clauses {` p r 7→ N`}`∈L . The return clause defines how
to handle the final return value of the handled computation, which is bound to x in M. The
operation clause for ` binds the operation parameter to p and the resumption r in N`.

We define three projections on handlers: Hret yields the singleton set containing the
return clause of H and H` yields the set of either zero or one operation clauses in H
that handle the operation ` and Hops yields the set of all operation clauses in H. We
write dom(H) for the set of operations handled by H. Various term forms are annotated
with type or kind information; we sometimes omit such annotations. We write Id(M) for
handleM with{returnx 7→ returnx}.

Syntactic sugar We make use of standard syntactic sugar for pattern matching, n-ary
record extension, n-ary case elimination, and n-ary tuples.
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Values

T-VAR
x : A ∈ Γ

∆;Γ ` x : A

T-LAM
∆;Γ,x : A `M : C

∆;Γ ` λxA.M : A→ C

T-POLYLAM
∆,α : K;Γ `M : C α /∈ FTV(Γ)

∆;Γ ` Λα
K .M : ∀αK .C

T-UNIT

∆;Γ ` 〈〉 : 〈〉

T-EXTEND
∆;Γ ` V : A ∆;Γ `W : 〈` : Abs;R〉

∆;Γ ` 〈`= V;W〉 : 〈` : Pre(A);R〉

T-INJECT
∆;Γ ` V : A

∆;Γ ` (`V)R : [` : Pre(A);R]

Computations

T-APP
∆;Γ ` V : A→ C

∆;Γ `W : A

∆;Γ ` V W : C

T-POLYAPP
∆;Γ ` V : ∀αK .C

∆ ` T : K

∆;Γ ` V T : C[T/α]

T-SPLIT
∆;Γ ` V : 〈` : Pre(A);R〉

∆;Γ,x : A,y : 〈` : Abs;R〉 ` N : C

∆;Γ ` let 〈`= x;y〉= V in N : C

T-CASE
∆;Γ ` V : [` : Pre(A);R]

∆;Γ,x : A `M : C ∆;Γ,y : [` : Abs;R] ` N : C

∆;Γ ` case V{` x 7→M;y 7→ N} : C

T-ABSURD
∆;Γ ` V : []

∆;Γ ` absurdC V : C

T-RETURN
∆;Γ ` V : A

∆;Γ ` return V : A!E

T-LET
∆;Γ `M : A!E

∆;Γ,x : A ` N : B!E
∆;Γ ` let x←M in N : B!E

T-DO
∆;Γ ` V : A E = {` : A→ B;R}

∆;Γ ` (do ` V)E : B!E

T-HANDLE
Γ `M : C Γ ` H : C⇒δ D

Γ ` handleδ M with H : D

Handlers

T-HANDLER
C = A!{(`i : Ai→ Bi)i;R}
D = B!{(`i : Pi)i;R}
H = {return x 7→M}]{`i p r 7→ Ni}i

∆;Γ,x : A `M : D
[∆;Γ,p : Ai,r : Bi→ D ` Ni : D]i

∆;Γ ` H : C⇒ D

T-HANDLER†

C = A!{(`i : Ai→ Bi)i;R}
D = B!{(`i : Pi)i;R}
H = {return x 7→M}]{`i p r 7→ Ni}i

∆;Γ,x : A `M : D
[∆;Γ,p : Ai,r : Bi→ C ` Ni : D]i

Γ ` H : C⇒† D

Fig. 5. Typing rules for λ †

3.3 Typing Rules

The typing rules are given in Fig. 5. The value typing judgement ∆;Γ ` V : A states
that value term V has type A under kind environment ∆ and type environment Γ. The
computation typing judgement ∆;Γ ` M : C states that term M has computation type
C under kind environment ∆ and type environment Γ. The handler typing judgement
∆;Γ ` H : C ⇒δ D states that handler H has type C ⇒δ D under kind environment ∆

and type environment Γ. In the typing judgements, we implicitly assume that Γ, A, C, and
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S-APP (λx.M)V  M[V/x]
S-TYAPP (Λα.M)A M[A/α]
S-SPLIT let 〈`= x;y〉= 〈`= V;W〉 in N  N[V/x,W/y]
S-CASE1 case `V{` x 7→M;y 7→ N} M[V/x]
S-CASE2 case `V{`′ x 7→M;y 7→ N} N[`V/y], if ` 6= `′

S-REC (recgx.M)V  M[(recgx.M)/g,V/x]
S-LET let x← return V in N  N[V/x]
S-RET handleδ (return V) with H N[V/x],

where Hret = {return x 7→ N}
S-OP handle E [do ` V] with H 

N[V/p,λy.handle E [return y] with H/r],
where ` /∈ BL(E ) and H` = {` p r 7→ N}

S-OP† handle† E [do ` V] with H N[V/p,λy.E [return y]/r],
where ` /∈ BL(E ) and H` = {` p r 7→ N}

S-LIFT E [M] E [N], if M N

Evaluation contexts E ::= [ ] | let x← E in N | handleδ E with H

Fig. 6. Small-Step Operational Semantics

D, are well-kinded with respect to ∆. We define FTV(Γ) to be the set of free type variables
in Γ.

The interesting rules are those for performing and handling operations. The T-HANDLER

and T-HANDLER† rules are where most of the work happens. The effect rows on the
computation type C and the output computation type D must share the same suffix R.
This means that the effect row of D must explicitly mention each of the operations `i to say
whether an `i is present with a given type signature, absent, or polymorphic in its presence.
The row R describes the operations that are forwarded. It may include a row-variable, in
which case an arbitrary number of effects may be forwarded by the handler. The difference
in typing deep and shallow handlers is that the resumption of the former has return type D,
whereas the resumption of the latter has return type C.

3.4 Operational Semantics

Figure 6 gives a small-step operational semantics for λ †. The reduction relation  is
defined on computation terms. The interesting rules are the handler rules. We write BL(E )

for the set of operation labels bound by E .

BL([ ]) = /0 BL(let x← E in N) = BL(E )

BL(handleδ E with H) = BL(E )∪dom(H)

The S-RET rule invokes the return clause of a handler. The S-OPδ rules handle an opera-
tion by invoking the appropriate operation clause. The constraint ` /∈ BL(E ) asserts that no
handler in the evaluation context handles the operation: a handler reaches past any other
inner handlers that do not handle `. The difference between S-OP and S-OP† is that the
former rewraps the handler about the body of the resumption. We write R+ for transitive
closure of relation R.
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Definition 1
We say that computation term N is normal with respect to effect E if N is either of the form
return V or E [do ` W], where ` ∈ E and ` /∈ BL(E ).

Theorem 1 (Type Soundness)
If ` M : A!E then either M 6 ∗ or there exists ` N : A!E such that M + N 6 and N is
normal with respect to E.

4 Deep as Shallow and Shallow as Deep

In this section we show that shallow handlers and general recursion can simulate deep
handlers up to congruence, and that deep handlers can simulate shallow handlers up to
administrative reductions. The latter construction generalises the example of pipes imple-
mented using deep handlers that we gave in §2.6.

4.1 Deep as Shallow

The implementation of deep handlers using shallow handlers (and recursive functions) is
by a direct local translation, similar to how one would implement a fold (catamorphism)
in terms of general recursion. Each handler is wrapped in a recursive function and each re-
sumption has its body wrapped in a call to this recursive function. Formally, the translation
S J−K is defined as the homomorphic extension of the following equations to all terms.

S Jhandle M with HK = (rec h f .handle† f 〈〉 with S JHKh)(λ 〈〉.S JMK)
S JHKh = S JHretKh]S JHopsKh

S J{return x 7→ N}Kh = {return x 7→S JNK}
S J{` p r 7→ N`}`∈L Kh = {` p r 7→ let r← return λx.h(λ 〈〉.r x) in S JN`K}`∈L

Theorem 2
If ∆;Γ `M : C then ∆;Γ `S JMK : C.

In order to obtain a simulation result, we allow reduction in the simulated term to be
performed under lambda abstractions (and indeed anywhere in a term), which is necessary
because of the redefinition of the resumption to wrap the handler around its body. Never-
theless, the simulation proof makes minimal use of this power, merely using it to rename a
single variable. We write Rcong for the compatible closure of relation R, that is the smallest
relation including R and closed under term constructors for λ †.

Theorem 3 (Simulation up to Congruence)
If M N then S JMK +

cong S JNK.

Proof
By induction on using a substitution lemma. The interesting case is S-DEEP-OP, which
is where we apply a single β -reduction, renaming a variable, under the lambda abstraction
representing the resumption.
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4.2 Shallow as Deep

Implementing shallow handlers in terms of deep handlers is slightly more involved than
the other way round. It amounts to the encoding of a case split by a fold and involves a
translation on handler types as well as handler terms. Formally, the translation DJ−K is
defined as the homomorphic extension of the following equations to all types, terms, and
type environments.

DJC⇒ DK = DJCK⇒ 〈〈〉 →DJCK,〈〉 →DJDK〉

DJhandle† M with HK = let z← handle DJMK with DJHK in
let 〈f ,g〉= z in g〈〉

DJHK = DJHretK]DJHopsK
DJ{return x 7→ N}K = {return x 7→ return 〈λ 〈〉.return x,λ 〈〉.DJNK〉}
DJ{` p r 7→ N}`∈L K = {` p r 7→

let r = λx.let z← r x in let 〈f ,g〉= z in f 〈〉 in
return 〈λ 〈〉.let x← do `p in r x,λ 〈〉.DJNK〉}`∈L

Each shallow handler is encoded as a deep handler that returns a pair of thunks. The first
forwards all operations, acting as the identity on computations. The second interprets a
single operation before reverting to forwarding.

Theorem 4
If ∆;Γ `M : C then DJ∆K;DJΓK `DJMK : DJCK.

As with the implementation of deep handlers as shallow handlers, the implementation is
again given by a local translation. However, this time the administrative overhead is more
significant. Reduction up to congruence is insufficient and we require a more semantic
notion of administrative reduction.

Definition 2 (Administrative Evaluation Contexts)
An evaluation context E is administrative, admin(E ), iff

1. For all values V , we have: E [return V] ∗ return V
2. For all evaluation contexts E ′, operations ` ∈ BL(E )\BL(E ′), values V:

E [E ′[do ` V]] ∗ let x← do ` V in E [E ′[return x]]

The intuition is that an administrative evaluation context behaves like the empty evaluation
context up to some amount of administrative reduction, which can only proceed once the
term in the context becomes sufficiently evaluated. Values annihilate the evaluation context
and handled operations are forwarded.

Definition 3 (Approximation up to Administrative Reduction)
Define & as the compatible closure of the following inference rules.

M &M

M M′ M′ & N

M & N

admin(E ) M & N

E [M]& N

We say that M approximates N up to administrative reduction if M & N.
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Approximation up to administrative reduction captures the property that administrative re-
duction may occur anywhere within a term. The following lemma states that the forwarding
component of the translation is administrative.

Lemma 1
For all shallow handlers H, the following context is administrative:

let z← handle [ ] with DJHK in let 〈f ;_〉= z in f 〈〉

Theorem 5 (Simulation up to Administrative Reduction)
If M′ &DJMK and M N then there exists N′ such that N′ &DJNK and M′ + N′.

Proof
By induction on  using a substitution lemma and Lemma 1. The interesting case is
S-OP†, which uses Lemma 1 to approximate the body of the resumption up to admin-
istrative reduction.

5 Continuation Passing Style for Effect Handlers

We now show how our effect handler calculus λ † can be implemented via a continuation
passing style (CPS) translation into a calculus without effect handlers. Beyond a practical
implementation technique for λ †, the contribution of this section is the identification of the
structure of generalised continuations that we need to correctly model the behaviour of dy-
namically nested handlers, and the way that deep and shallow handlers behave differently
upon resumption. Once we have identified this structure in the CPS translation, we use it
in to design an CEK-like abstract machine for deep and shallow handlers in §6.

The basic idea of the translation is as follows. We upgrade the continuation argument
from a standard CPS translation to be a stack of continuations, similar to CPS translations
for delimited continuations (Materzok & Biernacki, 2012). Special to handlers, this stack
is composed of alternating pure and handler continuations. Returning from a computation
invokes the pure continuation, and invoking an operation initiates a search through the
handler frames to find the one that handles it. The frames skipped over in the search are
remembered so they can be reinstated after the operation has been handled and execution
resumed.

We define our untyped target calculus in §5.1. We then present our CPS translation
in stages. We start with a basic translation for fine-grain call-by-value without handlers in
§5.2. We then formulate a sequence of first-order translations that progressively move from
representing the dynamic stack of handlers as functions to explicit stacks in §5.3, gaining
support for both deep and shallow handlers as we do so. These steps prepare us for our
final higher-order one-pass translation in §5.4 that uses static computation at translation
time to avoid run time administrative reductions.

5.1 Target Calculus

The target calculus is given in Fig. 7. As in λ † there is a syntactic distinction between
values (V) and computations (M). Values (V) comprise: lambda abstractions (λx.M); re-
cursive functions (recgx.M); empty tuples (〈〉); pairs (〈V,W〉); and first-class labels (`). In
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Syntax

Values V,W ::= x | λx.M | recgx.M | 〈〉 | 〈V,W〉 | `
Computations M,N ::= V |M W | let 〈x,y〉= V in N | case V {` 7→M;y 7→ N} | absurdV

Evaluation contexts E ::= [ ] | E W

Reductions
U-APP (λx.M)V  M[V/x]
U-REC (recgx.M)V  M[recgx.M/g,V/x]
U-SPLIT let 〈x,y〉= 〈V,W〉 in N  N[V/x,W/y]
U-CASE1 case ` {` 7→M;y 7→ N} M
U-CASE2 case ` {`′ 7→M;y 7→ N} N[`/y], if ` 6= `′

U-LIFT E [M] E [N], if M N
Syntactic sugar

let x = V in N ≡ N[V/x]
` V ≡ 〈`;V〉

〈〉 ≡ `〈〉
〈`= V;W〉 ≡ 〈`,〈V,W〉〉

[] ≡ `[]
V :: W ≡ 〈`::,〈V,W〉〉

case V {`x 7→M;y 7→ N} ≡
let y = V in let 〈z,x〉= y in
case z{` 7→M;z 7→ N}

let 〈`= x;y〉= V in N ≡
let 〈z,z′〉= V in let 〈x,y〉= z′ in
case z {` 7→ N;z 7→ `⊥}

Fig. 7. Untyped target calculus for the CPS translations

§5.3.3, we will extend the values to also include convenience constructors for building re-
sumptions and invoking structured continuations. Computations (M) comprise: values (V);
applications (M V); pair elimination (let 〈x,y〉 = V in N); label elimination (case V {` 7→
M;x 7→ N}); and explicit marking of unreachable code (absurd). We permit the function
position of an application to be a computation (i.e., the application form is M W rather than
V W). This relaxation is used in our initial CPS translations, but will be ruled out in our
final translation when we start to use explicit lists to represent stacks of handlers in §5.3.2.

The reductions for functions, pairs, and first-class labels are standard.
We define syntactic sugar for variant values, record values, list values, let binding,

variant eliminators, and record eliminators. We assume standard n-ary generalisations and
use pattern matching syntax for deconstructing variants, records, and lists.

5.2 CPS translation for fine-grain call-by-value

We start by giving a CPS translation of the operation and handler-free subset of λ † in
Figure 8. Fine-grain call-by-value admits a particularly simple CPS translation due to the
separation of values and computations. All constructs from the source language are trans-
lated homomorphically into the target language, except for return, let, and type abstraction
(the translation performs type erasure). Lifting a value V to a computation return V is
interpreted by passing the value to the current continuation. Sequencing computations with
let is translated in the usual continuation passing way. In addition, we explicitly η-expand
the translation of a type abstraction in order to ensure that value terms in the source calculus
translate to value terms in the target.
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Values
JxK = x

Jλx.MK = λx.JMK
JΛα.MK = λk.JMK k

Jrecgx.MK = recgx.JMK
J〈〉K = 〈〉

J〈`= V;W〉K = 〈`= JVK;JWK〉
J` VK = ` JVK

Computations
JV WK = JVK JWK
JV AK = JVK

Jlet 〈`= x;y〉= V in NK = let 〈`= x;y〉= JVK in JNK
Jcase V {` x 7→M;y 7→ N}K = case JVK {` x 7→ JMK;y 7→ JNK}

Jabsurd VK = absurd JVK
Jreturn VK = λk.k JVK

Jlet x←M in NK = λk.JMK(λx.JNKk)

Fig. 8. First-order CPS translation of fine-grain call-by-value

5.3 First-order CPS translations of handlers

As is usual for CPS, the translation of a computation term by the basic CPS translation
in §5.2 takes a single continuation parameter that represents the context. With effects and
handlers in the source language, we must now keep track of two kinds of context in which
each computation executes: a pure context that tracks the state of pure computation in the
scope of the current handler, and an effect context that describes how to handle operations
in the scope of the current handler. Correspondingly, we have both pure continuations (k)
and effect continuations (h). As handlers can be nested, each computation executes in the
context of a stack of pairs of pure and effect continuations.

On entry into a handler, the pure continuation is initialised to a representation of the
return clause and the effect continuation to a representation of the operation clauses. As
pure computation proceeds, the pure continuation may grow, for example when executing
a let. If an operation is encountered then the effect continuation is invoked. The current
continuation pair (k, h) is packaged up as a resumption and passed to the current handler
along with the operation and its argument. The effect continuation then either handles the
operation, invoking the resumption as appropriate, or forwards the operation to an outer
handler. In the latter case, the resumption is modified to ensure that the context of the
original operation invocation can be reinstated when the resumption is invoked.

The translations introduced in this subsection differ in how they represent stacks of
pure and effect continuations, and how they represent resumptions. The first translation
represents the stack of continuations using currying, and resumptions as functions (§5.3.1).
Currying obstructs proper tail-recursion, so we move to an explicit representation of the
stack (§5.3.2). Then, in order to avoid administrative reductions in our final higher-order
one-pass translation we use an explicit representation of resumptions (§5.3.3). Finally, in
order to support shallow handlers, we will use an explicit stack representation for pure
continuations (§5.3.4).

5.3.1 Curried translation

Our first translation builds upon the CPS translation of Figure 8. The extension to oper-
ations and handlers is localised to the additional features because currying conveniently
lets us get away with a shift in interpretation: rather than accepting a single continuation,
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translated computation terms now accept an arbitrary even number of arguments repre-
senting the stack of pure and effect continuations. Thus, the translation of core constructs
remain exactly the same as in Figure 8, where we imagine there being some number of
extra continuation arguments that have been η-reduced. The translation of operations and
handlers is as follows:

Jdo ` VK = λk.λh.h 〈`,〈JVK,λx.k x h〉〉
Jhandle M with HK = JMK JHretK JHopsK, where

J{return x 7→ N}K = λx.λh.JNK
J{` p r 7→ N`}`∈L K = λ 〈z,〈p,r〉〉.case z {(` 7→ JN`K)`∈L ;y 7→Mforward(y,p,r)}

Mforward(y,p,r) = λk.λh.h〈y,〈p,λx.r xk h〉〉

Each operation is encoded as a value tagged with the name `, where the value consists of a
pair consisting of the parameter of the operation, and a resumption, which ensures that any
subsequent operations are handled by the same effect continuation h.

The translation of handle M with H invokes the translation of M with new pure and
effect continuation arguments for the return and operation clauses of H. The translation of
a return clause is a term which garbage collects the current effect continuation h. The trans-
lation of a set of operation clauses is a function which dispatches on encoded operations,
and in the default case forwards to an outer handler. In the forwarding case, the resumption
is extended by the parent continuation pair in order to reinstate the handler stack, thereby
ensuring subsequent invocations of the same operation are handled uniformly.

The translation of complete programs feeds the translated term the identity pure con-
tinuation (which discards its handler argument), and an effect continuation that is never
intended to be called:

>JMK = JMK (λx.λh.x) (λ 〈z,_〉.absurd z)

Conceptually, this translation of top-level programs encloses the translated program by
a top-level handler with an empty collection of operation clauses and an identity return
clause.

There are three shortcomings of this initial translation that we address below. First, it
is not properly tail-recursive due to the curried representation of the continuation stack.
We will rectify this using an explicit list representation in the next subsection. Second, it
yields administrative redexes (redexes that could be reduced statically). We will rectify this
with a higher-order one-pass translation in §5.4. Third, this translation cannot cope with
shallow handlers. The pure continuations k are abstract and include the return clause of
the corresponding handler. Shallow handlers require that the return clause of a handler is
discarded when one of its operations is invoked. We will fix this in §5.3.4, where we will
represent pure continuations as explicit stacks.

To illustrate the first two issues, consider the following example:

>Jreturn 〈〉K = (λk.k 〈〉)(λx.λh.x)(λ 〈z,_〉.absurdz)
 ((λx.λh.x)〈〉)(λ 〈z,_〉.absurdz)
 (λh.〈〉)(λ 〈z,_〉.absurdz)
 〈〉
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The first reduction is administrative: it has nothing to do with the dynamic semantics of
the original term and there is no reason not to eliminate it statically. The second and third
reductions simulate handling return 〈〉 at the top level. The second reduction partially
applies λx.λh.x to 〈〉, which must return a value so that the third reduction can be applied:
evaluation is not tail-recursive. The lack of tail-recursion is also apparent in our relaxation
of fine-grain call-by-value in Figure 7: the function position of an application can be a
computation, and the calculus makes use of evaluation contexts.

Remark We originally derived this curried CPS translation for effect handlers by compos-
ing Forster et al.’s translation from effect handlers to delimited continuations (2017) with
Materzok & Biernacki’s CPS translation for delimited continuations (2012).

5.3.2 Continuations as explicit stacks

Following Materzok & Biernacki we uncurry our CPS translation in order to obtain a
properly tail-recursive translation, representing the stacks of pure and effect continuations
explicitly as lists. The translation of return, let binding, operations, handlers, and top level
programs is adjusted as follows for the new representation:

Jreturn VK = λ (k :: ks).k JVK ks
Jlet x←M in NK = λ (k :: ks).JMK((λx.λks.JNK(k :: ks)) :: ks)

Jdo ` VK = λ (k :: h :: ks).h 〈`,〈JVK,λx.λks.k x (h :: ks)〉〉 ks

Jhandle M with HK = λks.JMK(JHretK :: JHopsK :: ks), where

J{return x 7→ N}K = λx.λks.let (h :: ks′) = ks in JNKks′

J{` p r 7→ N`}`∈L K = λ 〈z,〈p,r〉〉.λks.case z {(` 7→ JN`Kks)`∈L ;
y 7→Mforward((y,p,r),ks)}

Mforward((y,p,r),ks) = let (k′ :: h′ :: ks′) = ks in
h′ 〈y,〈p,λx.λks′′.r x(k′ :: h′ :: ks′′)〉〉ks′

>JMK = JMK ((λxks.x) :: (λ 〈z,〈p,r〉〉.λks.absurd z) :: [])

The other cases are as in the original CPS translation in Figure 8. The stacks of continu-
ations are now lists, where pure continuations and effect continuations occupy alternating
positions.

Since we now use a list representation for the stacks of continuations, we have had
to modify the translations of all the constructs that manipulate continuations. For return
and let, we extract the top continuation k and manipulate it analogously to the original
translation in Figure 8. For do, we extract the top pure continuation k and effect continua-
tion h and invoke h in the same way as the curried translation, except that we explicitly
maintain the stack ks of additional continuations. The translation of handle, however,
pushes a continuation pair onto the stack instead of supplying them as arguments. Handling
of operations is the same as before, except for explicit passing of the ks. Forwarding now
pattern matches on the stack to extract the next continuation pair, rather than accepting
them as arguments. Proper tail recursion coincides with a refinement of the target syntax.
Now applications are either of the form V W or of the form U V W. We could also add a rule
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for applying a two argument lambda abstraction to two arguments at once and eliminate
the U-LIFT rule, but we defer this until our higher order translation in §5.4.

5.3.3 Resumptions as explicit reversed stacks

In the CPS translations of operations and handlers that we have defined so far, resumptions
have been represented as functions, and forwarding has been implemented using function
composition. In order to avoid the administrative redexes arising from function composi-
tion, we move to an explicit representation of resumptions as reversed stacks of pure and
effect continuations. We convert these reversed stacks to actual functions on demand using
a special let r = resV in N computation term that reduces as follows:

U-RES let r = res(Vn :: . . . :: V1 :: []) in N  N[λxk.V1 x(V2 :: . . . :: Vn :: k)/r]

This reduction rule reverses the stack, pulls out the top continuation V1, and prepends the
remainder onto the current stack W. The stack representing a resumption and the remaining
stack W are reminiscent of the zipper data structure for representing cursors in lists (Huet,
1997). Resumptions can therefore be thought of as representing pointers into the stack of
handlers.

The translations of do, handling, and forwarding need to be modified to handle the
change in representation of resumptions. The translation of do builds a resumption stack,
handling uses the res construct to convert the resumption stack into a function, and Mforward

extends the resumption stack with the current continuation pair.

Jdo ` VK = λk :: h :: ks.h〈`,〈JVK,h :: k :: []〉〉ks
J{(` p r 7→ N`)`∈L }K = λ 〈z,〈p,rk〉〉.λks.case z {(` 7→ let r = res rk in JN`Kks)`∈L ;

y 7→Mforward((y,p,rk),ks)}
Mforward((y,p,r),ks) = let (k′ :: h′ :: ks′) = ks in h′ 〈y,〈p,h′ :: k′ :: r〉〉ks′

Since we have only changed the representation of resumptions, the translation of top-level
programs remains the same.

5.3.4 Shallow Handlers: Pure continuations as explicit stacks

We now extend the CPS translation to allow deep and shallow handlers. Hillerström et al.
(2017) sketched a translation based on the CPS translations given above, but this translation
unfortunately contained a bug. The problem is that the return clause is integrated into the
pure continuation of each stack frame, but the semantics of shallow handlers demands that
this return clause is discarded when any of the operations is invoked. Using a functional
representation of pure continuations means that there is no way to remove the (translation
of the) return clause. Hillerström & Lindley (2018) fixed this by switching to a more
intensional representation of pure continuations as explicit stacks. We present their solution
again here, relating it to the CPS translations for only deep handlers presented above.

Stack frames now consist of triples 〈fs,〈hret,hops〉〉, where fs is list of stack frames repre-
senting the pure continuation for the computation occurring between the current execution
and the handler, hret is the (translation of the) return clause of the enclosing handler, and
hops is the (translation of the) operation clauses.
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Since pure continuations are no longer represented simply as functions, we cannot in-
voke them by simple function application. Instead, we must inspect the structure of the
pure stack fs and act appropriately. To package this neatly, we introduce a computation
form app V W that feeds a value W into the continuation stack represented by V . There are
two reduction rules:

U-KAPPNIL app (〈[],〈hret,hops〉〉 :: ks)W  hret W ks
U-KAPPCONS app (〈f :: fs,h〉 :: ks)W  f W (〈fs,h〉 :: ks)

The first rule describes what happens when the pure continuation stack is exhausted and
the return clause of the enclosing handler is invoked. The second rule describes the case
when the pure continuation stack has at least one element: this continuation is invoked and
the remainder of the stack is passed in as the new continuation.

Since the representation of stacks has changed, we must also change how resumptions
(i.e. reversed stacks) are converted into functions that can be applied. Resumptions for deep
handlers (resV) are similar to the previous section, except that we now use app to invoke
the continuation. Resumptions for shallow handlers (res† V) are more complex. Instead
of taking all the frames and reverse appending them to the current stack, we remove the
current handler h and move the pure continuation f1 :: . . . :: fm :: [] into the next frame. This
captures the intended behaviour of shallow handlers: they are removed from the stack once
they have been invoked. The reduction rules describing the behaviour of resumptions are:

U-RES let r = res(Vn :: . . . :: V1 :: []); in N N[λxk.app (V1 :: . . .Vn :: k)x/r]
U-RES† let r = res† (〈Vf1 :: . . . :: Vfm :: [],h〉 :: Vn :: . . . :: V1 :: []); in N 

N[λxk.let〈fs′,h′〉 :: k′ = W in
app(V1 :: . . . :: Vn :: 〈Vf1 :: . . . :: Vfm :: fs′,h′〉 :: k′)V/r]

These constructs along with their reduction rules are macro-expressible in terms of the
existing constructs. We choose to treat them as primitives in order to keep the presentation
relatively concise.

The CPS translation is modified to take into account the new representation of stacks. We
can now implement both deep and shallow handlers within a single translation by choosing
the appropriate way to convert resumptions via the flag δ .

Jreturn VK = λks.app ks JVK
Jlet x←M in NK = λ 〈fs,h〉 :: ks.JMK(〈(λx.λks.JNKks) :: fs,h〉 :: ks)

Jdo ` VK = λ 〈fs,〈hret,hops〉〉 :: ks.hops 〈`,〈JVK,〈fs,〈hret,hops〉〉 :: []〉〉ks
Jhandleδ M with HK = λks.JMK(〈[],〈JHretK,JHopsKδ 〉〉 :: ks), where

J{return x 7→ N}K = λx.λks.JNKks
J{` p r 7→ N`}`∈L Kδ = λ 〈z,〈p,rk〉〉.λks.case z {(` 7→ let r = resδ rk inJN`Kks)`∈L ;

y 7→Mforward((y,p,rk),ks)}
Mforward((y,p,rk),ks) = let 〈s,〈hret,hops〉〉 :: ks′ = ks in

let rk′ = 〈s,〈hret,hops〉〉 :: rk in
hops 〈y,〈p,rk′〉〉ks′

The translation of top-level programs feeds in an empty stack for the pure computation, the
identity return clause, and an operations clause that never expects to be invoked:

>JMK = JMK (〈[],〈λx.λks.x,λ 〈z,〈p,rk〉〉.λks.absurd z〉〉 :: [])
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We now have a CPS translation of λ † that handles deep and shallow handlers, and is tail
recursive. There still remains the problem of administrative reductions, making translated
code less efficient than it could be. We rectify this in the next section by using a higher-
order translation that eliminates administrative reductions statically.

5.4 A higher-order explicit stack translation

We now adapt the translation of §5.3.4 to a higher-order one-pass CPS translation (Danvy
& Filinski, 1990) that partially evaluates administrative redexes at translation time. Fol-
lowing Danvy & Nielsen (2003), we adopt a two-level lambda calculus notation to distin-
guish between static lambda abstraction and application in the meta language and dynamic
lambda abstraction and application in the target language: overline denotes a static syntax
constructor; underline denotes a dynamic syntax constructor. The idea is that redexes
marked as static are reduced as part of the translation (at compile time), whereas those
marked as dynamic are reduced at runtime. To facilitate this notation we write application
in both calculi with an infix “at” symbol (@).

5.4.1 Dynamic Terms: The Target Calculus

The target calculus is given in Fig. 9. This is essentially the same as the target calculus
described in §5.1, except that the application form (U @ V @ W) comprises three values,
and all applications take two arguments: a function argument and a parameter. The calculus
also includes the app and let r = resδ V in N constructs described in §5.3.4. There is a small
difference in the reduction rules for the resumption constructs: for deep resumptions we do
an additional pattern match on the current continuation stack (k). This is required to make
the simulation proof for the CPS translation described below go through, because it makes
the functions that resumptions get converted to have the same shape as the translation of
source level functions – this is required because our operational semantics treats resump-
tions as special kinds of functions, not as first-class objects in their own right. As above,
the app and resumption constructs, with their reduction rules, are macro-expressible in
terms of the other constructs of the dynamic language. We have also taken care to colour
dynamic red the constructors and eliminators for functions, pairs, and lists, because these
are the features that overlap with the static language.

5.4.2 Static Terms

Static constructs are marked in static blue, and their redexes are reduced as part of the
translation (at compile time). We make use of static lambda abstractions, pairs, and lists.
Reflection of dynamic language values into the static language is written as ↑V . We use
κ for variables representing statically known continuations (frame stacks), θ for variables
representing pure frame stacks, and χ for variables representing handlers. We let V ,W

range over meta language values, M range over static language expressions, and P,Q

over static language patterns. We use list and record pattern matching in the meta language,
which behaves as follows:

(λ 〈P,Q〉.M )@ 〈V ,W 〉 = (λP.λQ.M )@V @W = (λ (P ::Q).M )@ (V ::W )
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Syntax

Values V,W ::= x | λxk.M | recgxk.M | ` | 〈V,W〉
Computations M,N ::= V | U @ V @ W | let 〈x,y〉= V in N

| case V {` 7→M;x 7→ N} | absurd V
| appV W | let r = resδ V in M

Syntactic sugar

let x = V in N ≡ N[V/x]
` V ≡ 〈`,V〉

〈〉 ≡ `〈〉
〈`= V;W〉 ≡ ` 〈V,W〉

[] ≡ `[]
V :: W ≡ `:: 〈V,W〉

case V {`x 7→M;y 7→ N} ≡
let y = V in let 〈z,x〉= y in
case z {` 7→M;z 7→ N}

let 〈`= x;y〉= V in N ≡
let 〈z,z′〉= V in let 〈x,y〉= z′ in
case z {` 7→ N;z 7→ `⊥}

Reductions

U-APP (λxk.M)@ V @ W  M[V/x,W/k]
U-REC (recgxk.M)@ V @ W  M[recgxk.M/g,V/x,W/k]

U-SPLIT let 〈x,y〉= 〈V,W〉 in N  N[V/x,W/y]
U-CASE1 case `{` 7→M;x 7→ N} M
U-CASE2 case `{`′ 7→M;x 7→ N} N[`/x], if ` 6= `′

U-KAPPNIL app (〈[],〈v,e〉〉 :: k)V  v @ V @ k
U-KAPPCONS app (〈f :: s,h〉 :: k)V  f @ V @ (〈s,h〉 :: k)

U-RES let r = res(Vn :: · · · :: V1 :: []) in N 
N[λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in

app (V1 :: · · · :: Vn :: 〈fs,〈hret,hops〉〉 :: k′) x/r]
U-RES† let r = res†(〈Vf1 :: · · · :: Vfm :: [],h〉 :: Vn :: · · · :: V1 :: []) in N 

N[λxk.let 〈s′,h′〉 :: k′ = k in
app (q1 :: · · · :: qn :: 〈f1 :: · · · :: fm :: s′,h′〉 :: k′) x/r]

Fig. 9. Untyped Target Calculus for the Higher-order CPS translation

Static language values comprised of reflected values, pairs and list conses are reified as
dynamic language values ↓V by induction on their structure:

↓↑V = V ↓(V ::W ) = ↓V ::↓W ↓〈V ,W 〉= 〈↓V ,↓W 〉

We assume the static language is pure and hence respects the usual β and η equivalences.

5.4.3 The Translation

The CPS translation is given in Fig. 10. In essence, it is the same as the CPS translation for
deep and shallow handlers we described in §5.3.4, albeit separated into static and dynamic
parts. A major difference that has a large cosmetic effect on the presentation of the trans-
lation is that we maintain the invariant that the statically known stack (κ) always contains
at least one frame, consisting of a triple 〈↑Vfs,〈↑Vret,↑Vops〉〉 of reflected dynamic pure
frame stacks, return handlers, and operation handlers. Maintaining this invariant ensures
that all translations are uniform in whether they appear statically within the scope of a
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Values

JxK = x
Jλx.MK = λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JMK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k)
JΛα.MK = λ zk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JMK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k)

Jrecgx.MK = recgxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JMK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k)
J〈〉K = 〈〉 J〈`=V;W〉K = 〈`=JVK;JWK〉 J`VK = `JVK

Computations

JVWK = λκ.JVK@ JWK@↓κ
JVTK = λκ.JVK@ 〈〉@↓κ

Jlet 〈`= x;y〉= V in NK = λκ.let 〈`= x;y〉= JVK in JNK@ κ

Jcase V {` x 7→M;y 7→ N}K = λκ.case JVK {` x 7→ JMK@ κ;y 7→ JNK@ κ}
Jabsurd VK = λκ.absurd JVK

JreturnVK = λκ.app (↓κ) JVK
Jlet x←M in NK = λ 〈θ ,〈χ ret,χops〉〉 :: κ.

JMK@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓θ),

〈χ ret,χops〉〉 :: κ)

Jdo ` VK = λ 〈θ ,〈χ ret,χops〉〉 :: κ.↓χops @ 〈`,〈JVK,〈↓θ ,〈↓χ ret,↓χops〉〉 :: []〉〉@↓κ
Jhandleδ M with HK = λκ.JMK@ (〈↑[],JHKδ 〉 :: κ)

JHKδ = 〈↑JHretK,↑JHopsKδ 〉
J{return x 7→ N}K = λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in

JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)
J{(` p r 7→ N`)`∈L }Kδ = λ 〈z,〈p,rk〉〉k.case z {(` 7→ let r = resδ rk in

let 〈fs,〈hret,hops〉〉 :: k′ = k in
JN`K@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))`∈L

y 7→ Mforward((y,p,rk),k)}
Mforward((y,p,rk),k) = let 〈fs,〈hret,hops〉〉 :: k′ = k in

let rk′ = 〈fs,〈hret,hops〉〉 :: rk in
hops @ 〈y,〈p,rk′〉〉@ k′

Top-level program

>JMK = JMK@ (〈↑[],〈↑λxk.x,↑λ 〈z,〈p,rk〉〉k.absurd z〉〉 ::↑[])

Fig. 10. Higher-Order Uncurried CPS Translation of λ †

handler or not, and this simplifies our correctness proof. To maintain the invariant, any
place where a dynamically known stack is passed in (as a continuation parameter k), it is
immediately decomposed using a dynamic language let and repackaged as a static value
with reflected variable names. Unfortunately, this does add some clutter to the translation
definition, as compared to the translations above. However, there is a payoff in the removal
of administrative reductions at run time. The translations presented by Hillerström et al.
(2017) and Hillerström & Lindley (2018) did not do this decomposition and repackaging
step, which resulted in additional administrative reductions in the translation due to the
translations of let and do being passed dynamic continuations when they were expecting
statically known ones.
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Example The following example illustrates how the higher-order CPS translation avoids
generating administrative redexes by performing static reductions.

>Jhandle (do Await 〈〉) with HK = Jhandle (do Await 〈〉) with HK@K>
= Jdo Await 〈〉K@ 〈[],JHK〉 ::K>
= Jdo Await 〈〉K@ 〈[],〈JHretK,JHopsK〉〉 ::K>
= JHopsK@Await 〈〈〉,〈[],JHK〉 :: []〉@↓K>

where K> = (〈[],〈↑λx.λk.x,↑λ 〈z,〈p,rk〉〉.λk.absurd z〉〉 :: ↑[]) is the top-level handler.
The resulting term passes Await directly to the dispatcher that implements the operation
clauses of H.

5.4.4 Correctness

To prove the correctness of our CPS translation (Theorem 6), we first state several lem-
mas describing how translated terms behave. In view of the invariant of the translation
that we described above, we state each of these lemmas in terms of static continuation
stacks where the shape of the top element is always known statically, i.e., it is of the
form 〈Vfs,〈Vret,Vops〉〉 :: W . Moreover, the static values Vfs, Vret, and Vops are all reflected
dynamic terms (i.e., of the form ↑V). This fact is used implicitly in our proofs, which are
given in Appendix A.

First, the higher-order CPS translation commutes with substitution in value and compu-
tation terms:

Lemma 2 (Substitution)
1. (JMK@(〈Vfs,〈Vret,Vops〉〉::W ))[JVK/x] = JM[V/x]K@(〈Vfs,〈Vret,Vops〉〉::W )[JVK/x]
2. JWK[JVK/x] = JW[V/x]K

In order to reason about the behaviour of the S-OP and S-OP† rules, which are defined
in terms of evaluation contexts, we extend the CPS translation to evaluation contexts, using
the same translations as for the corresponding constructs in λ †:

J[ ]K = λκ.κ

Jlet x← E in NK = λ 〈θ ,〈χ ret,χops〉〉 :: κ.

JE K@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓θ),

〈χ ret,χops〉〉 :: κ)

Jhandleδ E with HK = λκ.JE K@ (〈[],JHKδ 〉 :: κ)

The following lemma is the characteristic property of the CPS translation on evaluation
contexts. This allows us to focus on the computation within an evaluation context.

Lemma 3 (Decomposition)
JE [M]K@ (〈Vfs,〈Vret,Vops〉〉 ::W ) = JMK@ (JE K@ (〈Vfs,〈Vret,Vops〉〉 ::W ))

By definition, reifying a reflected dynamic value is the identity (↓↑V = V), but we also
need to reason about the inverse composition. As a result of the invariant that the translation
always has static access to the top of the handler stack, the translated terms are insensitive
to whether the remainder of the stack is statically known or is a reflected version of a
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reified stack. This is captured by the following lemma. The proof is by induction on the
structure of M (after generalising the statement to stacks of arbitrary depth), and relies on
the observation that translated terms either access the top of the handler stack, or reify the
stack to use dynamically, whereupon the distinction between reflected and reified becomes
void. Again, this lemma holds when the top of the static continuation stack is known:

Lemma 4 (Reflect after reify)
JMK@ (〈Vfs,〈Vret,Vops〉〉 ::↑↓W ) = JMK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

The next lemma states that the CPS translation correctly simulates forwarding. The proof
is by inspection of how the translation of operation clauses treats non-handled operations.

Lemma 5 (Forwarding)
If ` /∈ dom(H1) then:

JHops
1 Kδ @〈`,〈Vp,Vrk〉〉@(〈Vfs,JH2Kδ 〉::W) + JHops

2 Kδ @〈`,〈Vp,〈Vfs,JH2Kδ 〉::Vrk〉〉@W

The following lemma is central to our simulation theorem. It characterises the sense in
which the translation respects the handling of operations. Note how the values substituted
for the resumption variable r in both cases are in the image of the translation of λ -terms
in the CPS translation. This is thanks to the precise way that the reductions rules for
resumption construction computations works in our dynamic language, as described above.

Lemma 6 (Handling)
If ` /∈ BL(E ) and H` = {`pr 7→ N`} then:

1. Jdo ` VK@ (JE K@ (〈↑[],JHK〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )) +

(JN`K@ 〈Vfs,〈Vret,Vops〉〉 ::W )

[JVK/p,λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
Jreturn yK@ (JE K@ (〈↑[],JHK〉 :: 〈↑s,〈↑hret,↑hops〉〉 ::↑k′))/r]

2. Jdo ` VK@ (JE K@ (〈↑[],JHK†〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )) +

(JN`K@ 〈Vfs,〈Vret,Vops〉〉 ::W )

[JVK/p,λyk.let 〈s,〈hret,hops〉〉 :: k′ = k in
Jreturn yK@ (JE K@ (〈↑s,〈↑hret,↑hops〉〉 ::↑k′))/r]

Now our main result for the translation: a simulation result in the style of Plotkin (1975).

Theorem 6 (Simulation)
If M N then JMK@ (〈Vfs,〈Vret,Vops〉〉 ::W ) + JNK@ (〈Vfs,〈Vret,Vops〉〉 ::W ).

Proof
The proof is by case analysis on the reduction relation using Lemmas 3–6. In particular,
the S-OP and S-OP† cases follow from Lemma 6.

In common with most CPS translations, full abstraction does not hold (a function could
count the number of handlers it is invoked within by examining the continuation stack,
for example). However, as our semantics is deterministic it is straightforward to show a
backward simulation result.
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Lemma 7 (Backwards simulation)
If >JMK + V then there exists W such that M ∗ W and >JWK = V .

Corollary 1
M ∗ V iff >JMK ∗ >JVK.

6 Abstract Machine

In this section we develop an abstract machine that supports deep and shallow handlers
simultaneously, using the generalised continuation structure we identified in the previous
section for the CPS translation. We also build upon prior work (Hillerström & Lindley,
2016) that developed an abstract machine for deep handlers by generalising the contin-
uation structure of a CEK machine (Control, Environment, Kontinuation) (Felleisen &
Friedman, 1986). Hillerström & Lindley (2016) sketched an adaptation for shallow han-
dlers. It turns out that this adaptation had a subtle flaw, similar to the flaw in the sketched
implementation of a CPS translation for shallow handlers given by Hillerström et al.
(2017). We fix the flaw here with a full development of shallow handlers along with a
statement of the correctness property.

6.1 The Machine

The informal account A machine continuation is a list of handler frames. A handler frame
is a pair of a handler closure (handler definition) and a pure continuation (a sequence of let
bindings), analogous to the structured frames used in the CPS translation in §5.4. Handling
an operation amounts to searching through the continuation for a matching handler. The
resumption is constructed during the search by reifying each handler frame. As in the CPS
translation, the resumption is assembled in one of two ways depending on whether the
matching handler is deep or shallow. For a deep handler, the current handler closure is in-
cluded, and a deep resumption is a reified continuation. An invocation of a deep resumption
amounts to concatenating it with the current machine continuation. For a shallow handler,
the current handler closure must be discarded leaving behind a dangling pure continuation,
and a shallow resumption is a pair of this pure continuation and the remaining reified
continuation. (By contrast, the prior flawed adaptation prematurely precomposed the pure
continuation with the outer handler in the current resumption.) An invocation of a shallow
resumption again amounts to concatenating it with the current machine continuation, but
taking care to concatenate the dangling pure continuation with that of the next frame.

The formal account The abstract machine syntax is given in Fig. 11. A configuration
C = 〈M | γ | κ ◦κ ′〉 of our abstract machine is a quadruple of a computation term (M), an
environment (γ) mapping free variables to values, and two continuations (κ) and (κ ′). The
latter continuation is always the identity, except when forwarding an operation, in which
case it is used to keep track of the extent to which the operation has been forwarded. We
write 〈M | γ | κ〉 as syntactic sugar for 〈M | γ | κ ◦ []〉 where [] is the identity continuation.

Values consist of function closures, type function closures, records, variants, and cap-
tured continuations. A continuation κ is a stack of frames [θ1, . . . ,θn]. We annotate cap-
tured continuations with input types in order to make the results of §6.2 easier to state.
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Configurations C ::= 〈M | γ | κ ◦κ ′〉
Value environments γ ::= /0 | γ[x 7→ v]
Values v,w ::= (γ,λxA.M) | (γ,ΛαK .M)

| 〈〉 | 〈`= v;w〉 | (`v)R | κA | (κ,σ)A

Continuations κ ::= [] | θ :: κ Continuation frames θ ::= (σ ,χ)

Handler closures χ ::= (γ,H)δ

Pure continuations σ ::= [] | φ :: σ Pure continuation frames φ ::= (γ,x,N)

Fig. 11. Abstract Machine Syntax

Each frame θ = (σ ,χ) represents pure continuation σ , corresponding to a sequence of let
bindings, inside handler closure χ . A pure continuation is a stack of pure frames. A pure
frame (γ,x,N) closes a let-binding let x = [ ] in N over environment γ . A handler closure
(γ,H) closes a handler definition H over environment γ . We write [] for an empty stack,
x :: s for the result of pushing x on top of stack s, and s++ s′ for the concatenation of stack
s on top of s′. We use pattern matching to deconstruct stacks.

The abstract machine semantics defining the transition function−→ is given in Fig. 12. It
depends on an interpretation function J−K for values. The machine is initialised (M-INIT)
by placing a term in a configuration alongside the empty environment and identity contin-
uation. The rules (M-APPCLOSURE), (M-APPREC), (M-APPCONT), (M-APPCONT†),
(M-APPTYPE), (M-SPLIT), and (M-CASE) enact the elimination of values. The rules
(M-LET) and (M-HANDLE) extend the current continuation with let bindings and handlers
respectively. The rule (M-RETCONT) binds a returned value if there is a pure contin-
uation in the current continuation frame; (M-RETHANDLER) invokes the return clause
of a handler if the pure continuation is empty; and (M-RETTOP) returns a final value if
the continuation is empty. The rule (M-DO) applies the current handler to an operation
if the label matches one of the operation clauses. The captured continuation is assigned
the forwarding continuation with the current frame appended to the end of it. The rule
(M-DO†) is much like (M-DO), except it constructs a shallow resumption, discarding
the current handler but keeping the current pure continuation. The rule (M-FORWARD)
appends the current continuation frame onto the end of the forwarding continuation.

6.2 Correctness

The (M-INIT) rule provides a canonical way to map a computation term onto a configu-
ration. Fig. 13 defines an inverse mapping L−M from configurations to computation terms
via a collection of mutually recursive functions defined on configurations, continuations,
computation terms, handler definitions, value terms, and values. We write dom(γ) for the
domain of γ and γ\{x1, . . . ,xn} for the restriction of environment γ to dom(γ)\{x1, . . . ,xn}.

The L−M function enables us to classify the abstract machine reduction rules
according to how they relate to the operational semantics. The rules (M-INIT) and
(M-RETTOP) are concerned only with initial input and final output, neither a feature
of the operational semantics. The rules (M-APPCONTδ ), (M-LET), (M-HANDLE), and
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Configurations

L〈M | γ | κ ◦κ
′〉M = Lκ

′++κM(LMMγ) = Lκ
′M(LκMLMMγ)

Pure continuations

L[]MM = M L((γ,x,N) :: σ)MM = LσM(let x←M in LNM(γ\{x}))

Continuations

L[]MM = M L(σ ,χ) :: κMM = LκM(LχM(LσM(M)))

Handler closures

L(γ,H)Mδ M = handleδ M with LHMγ

Computation terms

LV WMγ = LVMγ LWMγ

LV AMγ = LVMγ A
Llet 〈`= x;y〉= V in NMγ = let 〈`= x;y〉= LVMγ in LNM(γ\{x,y})

Lcase V {` x 7→M;y 7→ N}Mγ = case LVMγ {` x 7→ LMM(γ\{x});y 7→ LNM(γ\{y})}
Lreturn VMγ = return LVMγ

Llet x←M in NMγ = let x← LMMγ in LNM(γ\{x})
Ldo ` VMγ = do ` LVMγ

Lhandleδ M with HMγ = handleδ LMMγ with LHMγ

Handler definitions

L{return x 7→M}Mγ = {return x 7→ LMM(γ\{x})}
L{` x k 7→M}]HMγ = {` x k 7→ LMM(γ\{x,k}}] LHMγ

Value terms and values

LxMγ = LvM, if γ(x) = v
LxMγ = x, if x /∈ dom(γ)

LλxA.MMγ = λxA.LMM(γ\{x})
LΛαK .MMγ = ΛαK .LMMγ

L〈〉Mγ = 〈〉
L〈`= V;W〉Mγ = 〈`= LVMγ;LWMγ〉

L(` V)RMγ = (` LVMγ)R

LκAM = λxA.LκM(return x)
L(κ,σ)AM = λxA.LσM(LκM(return x))

L(γ,λxA.M)M = λxA.LMM(γ\{x})
L(γ,ΛαK .M)M = ΛαK .LMMγ

L〈〉M = 〈〉
L〈`= v;w〉M = 〈`= LvM;LwM〉

L(` v)RM = (` LvM)R

LrecgA→C x.MMγ = recgA→C x.LMM(γ\{g,x}) = L(γ,recgA→C x.M)M

Fig. 13. Mapping from Abstract Machine Configurations to Terms

(M-FORWARD) are administrative in that L−M is invariant under them. This leaves
β -rules (M-APPCLOSURE), (M-APPREC), (M-APPTYPE), (M-SPLIT), (M-CASE),
(M-RETCONT), (M-RETHANDLER), (M-DO†), and (M-DO†), each of which corresponds
directly to performing a reduction in the operational semantics. We write −→a for
administrative steps, −→β for β -steps, and =⇒ for a sequence of steps of the form
−→∗a−→β .

Each reduction in the operational semantics is simulated by a sequence of administrative
steps followed by a single β -step in the abstract machine. The Id handler (§3.2) implements
the top-level identity continuation.

Theorem 7 (Simulation)
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M,N ::= · · · | handle M with H(−)
H(−) ::= qA← V, H

Fig. 14. Syntax Extensions for Parameterised Handlers

T-PARAM-HANDLE
Γ `M : C Γ ` H(−) : C⇒ D

Γ ` handle‡ M with H(−) : D

Handlers
T-PARAM-HANDLER

C = A!{(`i : Ai→ Bi)i;R}
D = B!{(`i : Pi)i;R}
H = {return x 7→M}]{`i pi ri 7→ Ni}i
Γ `W : A′ ∆;Γ,q : A′,x : A `M : D

[∆;Γ,q : A′,pi : Ai,ri : 〈Bi,A′〉 → D ` Ni : D]i

∆;Γ ` H(qA′ ←W) : C⇒ D

Fig. 15. Typing Rules for Parameterised Handlers

If M N, then for any C such that LC M = Id(M) there exists C ′ such that C =⇒ C ′ and
LC ′M = Id(N).

Proof
By induction on the derivation of M N.

Corollary 2
If `M : A!E and M + N 6 , then M −→+ C with LC M = N.

7 Parameterised Handlers

In §2.5 we informally presented parameterised handlers as useful idiom for handling state-
ful computations. We now consider parameterised handlers as a primitive kind of handler
in λ †, and show how to extend the CPS and abstract machine implementations to them. We
also show that parameterised handlers can always be simulated by deep handlers.

7.1 Syntax and Semantics

Syntax Figure 14 extends the syntax of λ † with parameterised handlers. Syntactically a
parameterised handler is a binding of value V to a name q and an ordinary handler definition
H. The variable q may appear free in H, as such, a parameterised handler is a form of
closure over an ordinary handler. We shall use the more suggestive notation H(q← V) to
mean (q← V, H).

Typing and Dynamic Semantics Adding parameterised handlers to the typing rules is
entirely modular: we only need to add the rules in Figure 15. The return and operation cases
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Computations

Jdo ` VK = λ 〈θ ,〈χ ret,χops,ξ 〉〉 :: κ.
↓χops @ 〈` 〈JVK,〈↓θ ,〈↓χ ret,↓χops,↓ξ 〉〉 :: []〉,↓ξ 〉@↓κ

Jhandle‡ M with H(q← V)K = λκ.JMK@ 〈↑[],JH(q← V)K‡〉 :: κ

JH(q← V)K‡ = 〈↑JHretK‡
q,↑JHopsK‡

q,↑JVK〉
J{return x 7→ N}K‡

q = λ 〈x,q〉k.let〈fs,〈hret,hops,q〉〉 :: k′ = k in
JNK@ (〈↑fs,〈↑hret,↑hops,↑q〉〉 ::↑k′)

J{(` p r 7→ N`)`∈L }K‡
q = λ 〈x,q〉k.let 〈z,〈p,rk〉〉= x in

case z {(` 7→ let〈fs,〈hret,hops,q〉〉 :: k′ = k in
let r = res‡ rk in
JN`K@ (〈↑fs,〈↑hret,↑hops,↑q〉〉 ::↑k′))`∈L

y 7→ Mforward((y,p,rk),k)}
Mforward((y,p,rk),k) = let 〈s′,〈hret,hops,q〉〉 :: k′ = k in

hops @ 〈y〈p,〈s′,〈hret,hops,q〉〉 :: rk〉,q〉@ k′

Top-level program

>JMK = JMK@ (〈[],〈↑λ 〈x,_〉k.x,↑λ 〈z,_〉k.absurd z〉〉 ::↑[])

Fig. 16. CPS Translation for Parameterised Handlers

are typed with respect to the parameter. The key difference is that the resumption is typed as
a function accepting a pair as input. Operationally, the resumption takes the first component
as the return value of the operation, and the second component as the updated value of the
handler parameter. This operational behaviour is formalised by following reduction rule
S-OP‡.

handle‡ E [do ` V] with H(q←W)

 N[V/p,W/q,λ 〈x,q′〉.handle E [return y] with H(q← q′)/r]
where ` /∈ BL(E ) and H` = {` p r 7→ N}

The value W of the parameter q is substituted into the body. As with ordinary deep handlers,
the resumption is implicitly rewraps its handler, but with the slight twist that value of the
parameter is updated with q′. The reduction rule for handling the return of a computation
as follows.

handle‡ (return V) with H(q←W) N[V/x,W/q],where Hret = {return x 7→ N}

In addition to the return value V , the value of the parameter is substituted into the body.

7.2 Implementing Parameterised Handlers

Continuation Passing Style To accommodate parameterised handlers, we generalise the
notion of continuations once more. A continuation becomes a triple consisting of a pure
continuation, effect continuation, and the handler parameter. This effectively amounts to
explicit state passing as the parameter value gets threaded every function application. The
pure continuation invocation rule U-KAPPNIL is slightly modified to account for the third
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component.

app (〈[],〈hret,hops,q〉〉 :: k)V hret @ 〈V,q〉@ k

The pure continuation v is now applied to a pair consisting of the return value V and the
current value of the handler parameter q. The resumption rule U-RES is adapted to update
the value of the handler parameter.

let r = res(〈hret,hops,_〉 :: · · · :: q1 :: []) in N 
N[λ 〈x,p〉k.app (q1 :: · · · :: 〈hret,hops,p〉 :: k) x/r]

Thus, the parameter of the top-most handler in the resumption stack is ignored and replaced
by a new value p. The translation is updated accordingly to account for the triple structure.
This involves updating all the parts that previously dyanmically decomposed and statically
recompose frames to now include the additional state parameter. The key updated transla-
tion clauses are shown in Figure 16. The translation of do invokes the effect continuation
↓χops with a pair consisting of the operation and the value of the handler parameter. The
parameter is also pushed onto the reversed resumption stack. This is necessary to account
for the case where the effect continuation ↓χops does not handle operation `.

The translation of the return and operation clauses yields functions that take a pair as
input in addition to the current continuation. The forwarding case is adjusted in much the
same way as the translation for do. The current continuation k is destructed in order to
identify the next effect continuation hops and its parameter q. Then hops is invoked with the
updated resumption stack and the value of its parameter q.

The amended CPS translation for parameterised handlers is not a zero cost translation
for shallow and ordinary deep handlers as they will have to thread a “dummy” parameter
value through. In contrast, the abstract machine implementation of parameterised handlers
does not impose an overhead on shallow and deep handlers.

Abstract Machine Semantics The abstract machine requires two modest changes to ac-
commodate parameterised handlers. The handler installation transition rule M-HANDLE

now binds the parameter in the closure environment.

〈handle‡ M with H(q← V) | γ | κ〉 −→ 〈M | γ | ([],(γ[q 7→ JVKγ],H)) :: κ〉

The parameter q is bound to the interpretation of its initial value V . Otherwise there are no
differences from installing an ordinary deep handler.

The resumption application rule M-APPCONT is adapted to update the value of param-
eter in the handler closure environment.

〈V 〈W,W ′〉 | γ | κ〉 −→ 〈return W | γ | (κ ′++[(σ ,(γ ′[q 7→ JW ′Kγ],H))])++κ〉,
if JVKγ = (κ ′++[(σ ,(γ ′,H))])A

Besides the environment update, the rule is the same as for ordinary deep handlers. In
contrast to the CPS translation, the extension of the abstract machine does implement
parameterised handlers as a zero-cost abstraction. This is because the abstract machine
has intensional access to the environments that a CPS translation does not.
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7.3 Parameterised Handlers as Deep Handlers

Parameterised handlers are not any more expressive than ordinary deep handlers. In fact,
one may think of parameterised handlers as syntactic sugar for handlers using parameter-
passing, as we showed by example in §2.5. We define a local transformation PJ−K that
desugars parameterised handlers into ordinary deep handlers. Below we omit the homo-
morphic cases and show only the interesting cases.

PJhandle‡ M with H(q← V)K = (handle PJMK with PJHKq) PJVK
PJ{return x 7→M}Kq = {return x 7→ λq.PJMK}

PJ{` p r 7→M}Kq =

{
` p r 7→ λq.let r′← return λ 〈x,q′〉.r x q′

in PJMK[r′/r]

}
The parameterised handle‡ construct becomes an application, where the abstractor is an
ordinary deep handler and the argument is the translation of the value of the handler param-
eter. The bodies of return and operation cases get enclosed in a lambda abstraction whose
formal parameter is the handler parameter q. As a result the ordinary deep resumption r is
a curried function. However, the uses of r in M expects a binary function. To repair this
discrepancy, we construct an uncurried interface of r via the function r′.

This translation of parameterised handlers simulates the native semantics. As with the
simulation of deep handlers via shallow handlers in §4.1, this simulation is only up to
congruence due to the need for an application of a pure function to a variable to be reduced.
The interesting cases of the proof appear in Appendix B.

Theorem 8 (Simulation of Parameterised Handlers by Deep Handlers)
If M N then PJMK +

cong PJNK.

8 Implementation

In this section we briefly discuss our experiences with using the CPS transforms from Sec-
tion 5 and the abstract machine from Section 6 as implementation techniques in practice.
Our implementation in Links (available at https://github.com/links-lang/links)
relies on both the higher-order CPS translation and abstract machine.

We retrofitted Links with effect handlers by leveraging most of the infrastructure that
was already in place. Server-side code were interpreted by an abstract machine, which was
reminiscent of the CEK machine by Felleisen & Friedman (1986). By modest effort we
were to generalise the machine’s notion of continuation to support handlers. The machine is
actually parameterised by the notion of continuation, allowing us to switch effect handlers
on and off as a language extension.

On the client-side, Links has long used a CPS translation to JavaScript, relying on
a trampoline for supporting lightweight concurrency and responsive user-interfaces. The
trampoline periodically discards the call stack, therefore it is essential that the CPS trans-
lation is properly tail-recursive. Initially we attempted to implement a higher-order curried
translation. We then realised that it is unclear whether it is even possible to define a
higher-order curried translation for effect handlers, so we began implementing a first-order
curried translation. It quickly became apparent that this approach could not work given
the need to be properly tail-recursive. At this point we changed track and successfully
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implemented a properly tail-recursive higher-order uncurried translation along the lines
of the one described in Section 5.4. Our implementation selectively CPS transform terms
based on their purity, which is crucial in practice for performance. The CPS compiler is
also parameterised by the notion of continuation in order to support toggling of handlers.

Our implementation also supports n-ary parameterised handlers. Initially, we desugared
parameterised handlers into ordinary deep handlers using a source-to-source translation
along the lines of the translation presented in Section 7.3. Now, we provide native support
for them in the abstract machine and CPS transform. Anecdotally, we have observed a
performance boost when handling stateful computations using parameterised handlers.

9 Conclusions and Future Work

In this paper we have examined effect handlers and their implementation in depth. We
have explored the design space of handlers: deep, shallow, and parameterised, and formally
and informally compared their expressiveness. We have also given two formally presented
implementation strategies for all the different kinds effect handlers: a CPS translation into a
calculus without effect handlers, and an abstract machine designed explicitly for executing
languages with effect handlers. This is the first full CPS translations for effect handlers:
our translations go all the way to lambda calculus without relying on a special low-level
handling construct as Leijen (2017b) does. As well as the formal development, we have
also demonstrated the practicality of our implementation techniques by implementing them
in the Links programming language.

A key finding of this work is the structure of generalised continuations needed to cor-
rectly implement effect handlers in both the CPS translation and the abstract machine.
For us, this turned out to be surprisingly subtle, and we had several broken designs be-
fore arriving at the ones presented here. The presence of an implementation in the Links
interpreter/compiler made the process of discovering buggy translations much easier.

Our formal translations between the different kinds of handlers shows that they are,
in a sense, equally expressive, and one might consider a language with only deep han-
dlers as this most closely matches Plotkin and Pretnar’s original vision. However, as we
demonstrated in §2, shallow handlers allow more natural programming for some prob-
lems. Moreover, parameterised handlers appear to offer an efficiency boost for a common
idiomatic use of deep handlers. Comprehensive benchmarking is still required to prove this
conclusively though.

For future work, we wish to further explore the range of possible effect handler idioms
and their implementations. Of particular interest are handlers that use their resumptions
linearly (exactly once), or affine linearly (at most once). The latter restriction is enforced
dynamically in Multicore OCaml (Dolan et al., 2017) because it allows an implementation
that does not have to copy runtime stacks for multiple resumptions after an operation.
Extending the abstract machine we presented in §6 to accurately model linearly used
continuations seems feasible, as does attempting to linearly type the CPS translation of §5,
following the linearly used continuation passing style described by Berdine et al. (2002).

We would also like to make our CPS translation typed, so that the type safety guarantees
of the source language are carried through automatically to the translation. The appendix
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of Hillerström et al. (2017) sketches a type preserving CPS translation for deep handlers,
but it remains to extend this to shallow and parameterised handlers.

Finally, there is now a wide diversity of implementation strategies for a wide variety
of styles of effect handler. We plan to do comprehensive benchmarking of competing im-
plementation strategies, especially in the setting of “advanced control abstraction hostile”
environments, such JavaScript.
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A Proofs of correctness of the higher-order uncurried CPS translation

Lemma 2 (Substitution)

1. (JMK@(〈Vfs,〈Vret,Vops〉〉::W ))[JVK/x] = JM[V/x]K@(〈Vfs,〈Vret,Vops〉〉::W )[JVK/x]

2. JWK[JVK/x] = JW[V/x]K

Proof

The proof is by mutual induction on the structure of the computation term M and the value
term W. For most of the cases, the existence of the top level frame on the stack is not
important, so we just refer to the whole static continuation stack as W . Note that we make
implicit use of the fact that the parts of the continuation stack that are statically known are
all of the form of right nested triples of reflected dynamic terms.

Case M = V ′W.

(JV ′WK@W )[JVK/x]
= (definition of J−K)

((λκ.JV ′K@ JWK@↓κ)@W )[JVK/x]
= (static β -conversion)

(JV ′K@ JWK@↓W )[JVK/x]
= (definition of [−])

(JV ′K[JVK/x])@ (JWK[JVK/x])@↓W [JVK/x]
= (IH 2, twice)

JV ′[V/x]K@ JW[V/x]K@↓W [JVK/x]
= (static β -conversion)

(λκ.JV ′[V/x]K@ JW[V/x]K@↓κ)@W [JVK/x]
= (definition of J−K)

J(V ′[V/x]) (W[V/x])K@W [JVK/x]
= (definition of [−])

J(V ′W)[V/x]K@W [JVK/x]
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Case M = W T .

(JW TK@W )[JVK/x]
= (definition of J−K)

((λκ.JWK@ 〈〉@↓κ)@W )[JVK/x]
= (static β -conversion)

(JWK@ 〈〉@↓W )[JVK/x]
= (definition of [−])

JWK[JVK/x]@ 〈〉@↓W [JVK/x]
= (IH 2)

JW[V/x]K@ 〈〉@↓W [JVK/x]
= (static β -conversion)

(λκ.JW[V/x]K@ 〈〉@↓κ)@W [JVK/x]
= (definition of J−K)

JW[V/x]TK@W [JVK/x]
= (definition of [−])

J(W T)[V/x]K@W [JVK/x]

Case M = let 〈`= x′;y〉= W in N.

(Jlet 〈`= x′;y〉= W in NK@W )[JVK/x]
= (definition of J−K)

((λκ.let 〈`= x′;y〉= JWK in JNK@ κ)@W )[JVK/x]
= (static β -conversion)

(let 〈`= x′;y〉= JWK in JNK@W )[JVK/x]
= (definition of [−])

let 〈`= x′;y〉= JWK[JVK/x] in (JNK@W )[JVK/x]
= (IH 1 and IH 2)

let 〈`= x′;y〉= JW[V/x]K in JN[V/x]K@W [JVK/x]
= (static β -conversion)

(λκ.let 〈`= x′;y〉= JW[V/x]K in JN[V/x]K@ κ)@W [JVK/x]
= (definition of J−K)

Jlet 〈`= x′;y〉= W[V/x] in N[V/x]K@W [JVK/x]
= (definition of [−])

J(let 〈`= x′;y〉= W in N)[V/x]K@W [JVK/x]

Case M = case V {` x 7→M;y 7→ N}. Similar to the M = let 〈`= x;y〉= V in N case.
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Case M = absurd W.

(Jabsurd WK@W )[JVK/x]
= (definition of J−K)

((λκ.absurd W)@W )[JVK/x]
= (static β -conversion)

(absurd JWK)[JVK/x]
= (definition of [−])

absurd JWK[JVK/x]
= (IH 2)

absurd JW[V/x]K
= (static β -conversion)

(λκ.absurd JW[V/x]K)@W [JVK/x]
= (definition of J−K)

Jabsurd W[V/x]K@W [JVK/x]
= (definition of [−])

J(absurd W)[V/x]K@W [JVK/x]

Case M = return W.

(Jreturn WK@W )[JVK/x]
= (definition of J−K)

((λκ.app ↓κ JWK)@W )[JVK/x]
= (static β -conversion)

(app ↓W JWK)[JVK/x]
= (definition of [−/−])

app ↓(W [JVK/x]) (JWK[JVK/x])
= (IH 2)

app ↓(W [JVK/x]) JW[V/x]K
= (static β -conversion)

(λκ.app ↓κ JW[V/x]K)@W [JVK/x]
= (definition of J−K)

Jreturn (W[V/x])K@W [JVK/x]
= (definition of [−/−])

J(return W)[V/x]K@W [JVK/x]
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Case M = let y←M′ in N. We have:

(Jlet y←M′ in NK@ (〈Vfs,〈Vret,Vops〉〉 ::W ))[JVK/x]
= (definition of J−K)

((λ 〈θ ,〈χ ret,χops〉〉 :: κ.

JM′K@ (〈↑((λyk. let 〈fs,〈hret,hops〉〉 :: k′ = k in JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓θ),〈χ ret,χops〉〉 :: κ))

@(〈Vfs,〈Vret,Vops〉〉 ::W ))[JVK/x]
= (static β -conversion)

(JM′K@ (〈↑((λyk. let 〈fs,〈hret,hops〉〉 :: k′ = k in JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs),Vh〉 ::W ′))[JVK/x]
= (IH 1 on M′)

JM′[V/x]K@
((〈↑((λyk. let 〈fs,〈hret,hops〉〉 :: k′ = k in JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs),Vh〉 ::W ′)[JVK/x])

= (definition of [−/−])
JM′[V/x]K@
(〈↑((λyk. let 〈fs,〈hret,hops〉〉 :: k′ = k in

(JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))[JVK/x]) ::↓(Vfs[JVK/x])),Vh[JVK/x]〉 :: (W ′[JVK/x]))
= (IH 1 on N)

JM′[V/x]K@
(〈↑((λyk. let 〈fs,〈hret,hops〉〉 :: k′ = k in

JN[V/x]K@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) :: (↓Vfs[JVK/x])),Vh[JVK/x]〉 :: (W ′[JVK/x]))
= (static β -conversion and definition of J−K)

Jlet y←M′[V/x] in N[V/x]K@ ((〈Vfs,〈Vret,Vops〉〉 ::W )[JVK/x])
= (definition of [−/−])

J(let y←M′ in N)[V/x]K@ ((〈Vfs,〈Vret,Vops〉〉 ::W )[JVK/x])

Case M = do (`W)E. We have:

(Jdo (`W)EK@ 〈Vfs,〈Vret,Vops〉〉 ::W )[JVK/x]
= (definition of J−K)

((λ 〈θ ,〈χ ret,χops〉〉 :: κ.↓χops @ 〈`,〈JWK,〈↓θ ,〈↓χ ret,↓χops〉〉 :: []〉〉@↓κ)@ (〈Vfs,〈Vret,Vops〉〉 ::W ))[JVK/x]
= (static β -conversion)

(↓Vops @ 〈`,〈JWK,〈↓Vfs,〈↓Vret,↓Vops〉〉 :: []〉〉@↓W )[JVK/x]
= (definition of [−/−])
↓Vops[JVK/x]@ 〈`,〈JWK[JVK/x],〈↓Vfs[JVK/x],〈↓Vret[JVK/x],↓Vops[JVK/x]〉〉 :: []〉〉@↓W [JVK/x]

= (IH 2 on W)

↓Vops[JVK/x]@ 〈`,〈JW[V/x]K,〈↓Vfs[JVK/x],〈↓Vret[JVK/x],↓Vops[JVK/x]〉〉 :: []〉〉@↓W [JVK/x]
= (static β -conversion)

(λ 〈θ ,〈χ ret,χops〉〉 :: κ.hops @ 〈`,〈JW[V/x]K,〈↓θ ,〈↓χ ret,↓χops〉〉 :: []〉〉@↓κ)@ (〈Vfs,〈Vret,Vops〉〉 ::W )[JVK/x]
= (definition of J−K)

(Jdo (`W[V/x])EK@ (〈Vfs,〈Vret,Vops〉〉 ::W )[JVK/x]
= (definition of [−/−])

(J(do (`W)E)[V/x]K@ (〈Vfs,〈Vret,Vops〉〉 ::W )[JVK/x]

Case M = handleδ M′ with H. We make use of two auxiliary results.

1. JHretK[JVK/x] = JHret[V/x]K
2. JHopsKδ [JVK/x] = JHops[V/x]Kδ
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Proof
Suppose Hret = {return y 7→ N}.

JHretK[JVK/x]
= (definition of J−K)

(λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))[JVK/x]
= (definition of [−/−])

λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in (JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))[JVK/x]
= (IH 1 for N)

λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JN[V/x]K@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)
= (definition of J−K)

JHret[V/x]K

The Hops = {(`pr 7→ N`)`∈L } case goes through similarly.

We can now prove that substitution commutes with the translation of handlers:

(Jhandleδ M′ with HK@W )[JVK/x]
= (definition of J−K)

((λκ.JM′K@ 〈↑[],〈JHretK,JHopsKδ 〉〉 :: κ)@W )[JVK/x]
= (static β -conversion)

(JM′K@ 〈↑[],〈JHretK,JHopsKδ 〉〉 ::W )[JVK/x]
= (IH 1 for M′)

JM′[V/x]K@ 〈↑[],〈JHretK[JVK/x],JHopsKδ [JVK/x]〉〉 ::W [JVK/x]
= (by (1) and (2))

JM′[V/x]K@ 〈↑[],〈JHret[V/x]K,JHops[V/x]Kδ 〉〉 ::W [JVK/x]
= (static β -conversion)

((λκ.JM′[V/x]K@ 〈↑[],〈JHret[V/x]K,JHops[V/x]Kδ 〉〉 :: κ)@W [JVK/x])
= (definition of J−K)

Jhandleδ M′[V/x];with H[V/x]K@W [JVK/x]
= (definition of [−/−])

J(handleδ M′ with H)[V/x]K@W [JVK/x]

Lemma 8 (Type erasure)
1. JMK@W = JM[T/α]K@W

2. JWK = JW[T/α]K

Proof
Follows from the observation that the translation is oblivious to types.

Lemma 3 (Decomposition)
JE [M]K@ (〈Vfs,〈Vret,Vops〉〉 ::W ) = JMK@ (JE K@ (〈Vfs,〈Vret,Vops〉〉 ::W ))

Proof
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For reference, we repeat the translation of evaluations contexts here:

J[ ]K = λκ.κ

Jlet x← E in NK = λ 〈θ ,〈χ ret,χops〉〉 :: κ.

JE K@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓θ),

〈χ ret,χops〉〉 :: κ)

Jhandleδ E with HK = λκ.JE K@ (〈[],JHKδ 〉 :: κ)

The proof proceeds by structural induction on the evaluation context E .

Case E = [].

JE [M]K@ (V ::W )

= (assumption)
JMK@ (V ::W )

= (static β -conversion)
JMK@ ((λκ.κ)@ (V ::W ))

= (definition of J−K)
JMK@ (JE K@ (V ::W ))

Case E = let x← E ′[−] in N.

JE [M]K@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (assumption)
Jlet x← E ′[M] in NK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λ 〈θ ,〈χ ret,χops〉〉 :: κ.

JE ′[M]K@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓θ),〈χ ret,χops〉〉 :: κ))

@(〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
JE ′[M]K@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs),〈Vret,Vops〉〉 ::W )

= (IH for E ′[−])
JMK@ (JE ′K@

(〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs),〈Vret,Vops〉〉 ::W ))

= (static β -conversion)
JMK@ ((λ 〈θ ,〈χ ret,χops〉〉 :: κ.

JE ′K@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓θ),〈χ ret,χops〉〉 :: κ))

@(〈Vfs,〈Vret,Vops〉〉 ::W ))

= (definition of J−K)
JMK@ (Jlet x← E ′[M] in NK)@ (〈Vfs,〈Vret,Vops〉〉 ::W ))

= (assumption)
JMK@ (JE K@ (〈Vfs,〈Vret,Vops〉〉 ::W ))
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Case E = handleδ E ′ with H.

JE [M]K@ (V ::W )

= (assumption)
Jhandleδ E ′[M] with HK@ (V ::W )

= (definition of J−K)
(λκ.JE ′[M]K@ (〈[],JHKδ 〉 :: κ))@ (V ::W )

= (static β -conversion)
JE ′[M]K@ (〈[],JHKδ 〉 :: (V ::W ))

= (IH)

JMK@ (JE ′K@ (〈[],JHKδ 〉 :: (V ::W )))

= (static β -conversion)
JMK@ ((λκ.JE ′K@ (〈[],JHKδ 〉 :: κ))@ (V ::W ))

= (definition of J−K)
JMK@ (Jhandleδ E ′ with HK@ (V ::W ))

= (assumption)
JMK@ (JE K@ (V ::W ))

Lemma 4 (Reflect after reify)
JMK@ (〈Vfs,〈Vret,Vops〉〉 ::↑↓W ) = JMK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

Proof
For an inductive proof to go through in the presence of let and handle, which alter or
extend the continuation stack, we generalise the lemma statement to inlcude an arbitrary
list of handler frames:

JMK@(〈Vfs,〈Vret,Vops〉〉 ::V1 :: . . .Vn ::↑↓W ) = JMK@(〈Vfs,〈Vret,Vops〉〉 ::V1 :: . . .Vn ::W )

This is the lemma statement when n = 0. The proof now proceeds by induction on rhe
stucture of M. Most of the translated terms do not examine the top of the continuation
stack, so we will write V0 for 〈Vfs,〈Vret,Vops〉〉 to save space.

Case M = V W.

JV WK@ (V0 :: · · · ::Vn ::↑↓W )

= (definition of J−K)
(λκ.JVK@ JWK@↓κ)@ (V0 :: · · · ::Vn ::↑↓W )

= (static β -conversion)
JVK@ JWK@↓(V0 :: · · · ::Vn ::↑↓W )

= (definition of ↓)
JVK@ JWK@ (V1 :: · · · ::Vn ::↓W )

= (definition of ↓)
JVK@ JWK@↓(V0 :: · · · ::Vn ::W )

= (static β -conversion)
(λκs.JVK@ JWK@↓κs)@ (V0 :: · · · ::Vn ::W )

= (definition of J−K)
JV WK@ (V0 :: · · · ::Vn ::W )
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Case M = V T . Similar to the M = V W case.

Case M = let 〈`= x;y〉= V in N.

Jlet 〈`= x;y〉= V in NK@ (V0 :: · · · ::Vn ::↑↓W )

= (definition of J−K)
(λκ.let 〈`= x;y〉= JVK in JNK@ κ)@ (V0 :: · · · ::Vn ::↑↓W )

= (static β -conversion)
let 〈`= x;y〉= JVK in JNK@ (V0 :: · · · ::Vn ::↑↓W )

= (IH)

let 〈`= x;y〉= JVK in JNK@ (V0 :: · · · ::Vn ::W )

= (static β -conversion)
(λκ.let 〈`= x;y〉= JVK in JNK@ κ)@ (V0 :: · · · ::Vn ::W )

= (definition of J−K)
Jlet 〈`= x;y〉= JVK in JNKK@ (V0 :: · · · ::Vn ::W )

Case M = case V{` x 7→M;y 7→ N}. Similar to the M = let 〈`= x;y〉= V in N case.

Case M = absurd V .

Jabsurd VK@ (V0 :: · · · ::Vn ::↑↓W )

= (definition of J−K)
(λκ.absurd JVK)@ (V0 :: · · · ::Vn ::↑↓W )

= (static β -conversion)
absurd JVK

= (static β -conversion)
(λκs.absurd JVK)@ (V0 :: · · · ::Vn ::W )

= (definition of J−K)
Jabsurd VK@ (V0 :: · · · ::Vn ::W )

Case M = return V .

Jreturn VK@ (V0 :: · · · ::Vn ::↑↓W )

= (definition of J−K)
(λκ.app (↓κ) JVK)@ (V0 :: · · · ::Vn ::↑↓W )

= (static β -conversion)
app (↓(V0 :: · · · ::Vn ::↑↓W )) JVK

= (definition of ↓)
app (↓V0 :: · · · ::↓Vn ::↓W )) JVK

= (definition of ↓)
app (↓(V0 :: · · · ::Vn ::W )) JVK

= (static β -conversion)
(λκ.app (↓κ) JVK)@ (V0 :: · · · ::Vn ::W )

= (definition of J−K)
Jreturn VK@ (V0 :: · · · ::Vn ::W )
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Case M = let x←M′ in N.

Jlet x←M′ in NK@ (〈Vfs,〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::↑↓W )

= (definition of J−K)
(λ 〈θ ,〈χ ret,χops〉〉 :: κ.JM′K@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k; in

JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓θ),
〈χ ret,χops〉〉 :: κ)))

@(〈Vfs,〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::↑↓W )

= (static β -conversion)
JM′K@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k; in

JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs),

〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::↑↓W )

= (IH on M)

JM′K@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k; in
JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs),

〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::W )

= (static β -conversion)
(λ 〈θ ,〈χ ret,χops〉〉 :: κ.JM′K@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k; in

JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓θ),
〈χ ret,χops〉〉 :: κ)))

@(〈Vfs,〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::W )

= (definition of J−K)
Jlet x←M′ in NK@ (〈Vfs,〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::W )

Case M = do ` V .

Jdo ` VK@ (〈Vfs,〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::↑↓W )

= (definition of J−K)
(λ 〈θ ,〈χ ret,χops〉〉 :: κ.↓χops @ 〈`,〈JVK,〈↓θ ,〈↓χ ret,↓χops〉〉 :: []〉〉@↓κ)

@(〈Vfs,〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::↑↓W )

= (static β -conversion)
↓Vops @ 〈`,〈JVK,〈↓Vfs,〈↓Vret,↓Vops〉〉 :: []〉〉@↓(V1 :: · · · ::Vn ::↑↓W )

= (definition of ↓)
↓Vops @ 〈`,〈JVK,〈↓Vfs,〈↓Vret,↓Vops〉〉 :: []〉〉@ (↓V1 :: · · · ::↓Vn ::↓W )

= (definition of ↓)
↓Vops @ 〈`,〈JVK,〈↓Vfs,〈↓Vret,↓Vops〉〉 :: []〉〉@↓(V1 :: · · · ::Vn ::W )

= (static β -conversion)
(λ 〈θ ,〈χ ret,χops〉〉 :: κ.↓χops @ 〈`,〈JVK,〈↓θ ,〈↓χ ret,↓χops〉〉 :: []〉〉@↓κ)

@(〈Vfs,〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::W )

= (definition of J−K)
Jdo ` VK@ (〈Vfs,〈Vret,Vops〉〉 ::V1 :: · · · ::Vn ::W )
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Case handleδ M with H.

Jhandleδ M with HK@ (V0 :: · · · ::Vn ::↑↓W )

= (definition of J−K)
(λκ.JMK@ (〈↑[],JHKδ 〉 :: κ))@ (V0 :: · · · ::Vn ::↑↓W )

= (static β -conversion)
JMK@ (〈↑[],JHKδ 〉 ::V0 :: · · · ::Vn ::↑↓W )

= (IH)

JMK@ (〈↑[],JHKδ 〉 ::V0 :: · · · ::Vn ::W )

= (static β -conversion)
(λκ.JMK@ (〈↑[],JHKδ 〉 :: κ))@ (V0 :: · · · ::Vn ::W )

= (definition of J−K)
Jhandleδ M with HK@ (V0 :: · · · ::Vn ::W )

Lemma 5 (Forwarding)
If ` /∈ dom(H1) then:

JHops
1 Kδ @〈`,〈Vp,Vrk〉〉@(〈Vfs,JH2Kδ 〉::W) + JHops

2 Kδ @〈`,〈Vp,〈Vfs,JH2Kδ 〉::Vrk〉〉@W

Proof

JHops
1 Kδ @ 〈`,〈Vp,Vrk〉〉@ (〈Vfs,JH2Kδ 〉 :: W)

 +

Mforward((`,Vp,Vrk),〈Vfs,JH2Kδ 〉 :: W)

=

let 〈fs,〈hret,hops〉〉 :: k′ = 〈Vfs,JH2Kδ 〉 :: W in
let rk′ = 〈fs,〈hret,hops〉〉 :: Vrk in
hops @ 〈`,〈Vp,rk′〉〉@ k′

 +

JHops
2 Kδ @ 〈`,〈Vp,〈Vfs,JH2Kδ 〉 :: Vrk〉〉@ W

Lemma 6 (Handling)
If ` /∈ BL(E ) and H` = {`pr 7→ N`} then:

1. Jdo ` VK@ (JE K@ (〈↑[],JHK〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )) +

(JN`K@ 〈Vfs,〈Vret,Vops〉〉 ::W )

[JVK/p,λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
Jreturn yK@ (JE K@ (〈↑[],JHK〉 :: 〈↑s,〈↑hret,↑hops〉〉 ::↑k′))/r]

2. Jdo ` VK@ (JE K@ (〈↑[],JHK†〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )) +

(JN`K@ 〈Vfs,〈Vret,Vops〉〉 ::W )

[JVK/p,λyk.let 〈s,〈hret,hops〉〉 :: k′ = k in
Jreturn yK@ (JE K@ (〈↑s,〈↑hret,↑hops〉〉 ::↑k′))/r]

Proof
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By the definition of J−K on evaluation contexts we can deduce that

JE K@ (〈↑V,JHKδ 〉 ::W ) = 〈↑V1,JH1Kδ1〉 :: · · · :: 〈↑(Vn++V),JHnKδn〉 ::W (A 1)

for some dynamic value terms V1, . . . ,Vn, depths δ1, . . . ,δn, and handlers H1, . . . ,Hn, where
n≥ 1, Hn = H, and ++ is (dynamic) list concatenation.

Jdo ` VK@ (JE K@ (〈↑[],JHK〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W ))

= (definition of J−K)
(λ 〈θ ,〈χ ret,χops〉〉 :: κ ′.↓χops @ 〈`,〈JVK,〈↓θ ,〈↓χ ret,↓χops〉〉 :: []〉〉@↓κ)

@(JE K@ (〈↑[],JHK〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W ))

= (Equation A 1, above)
(λ 〈θ ,〈χ ret,χops〉〉 :: κ ′.↓χops @ 〈`,〈JVK,〈↓θ ,〈↓χ ret,↓χops〉〉 :: []〉〉@↓κ)

@(〈↑V1,JH1Kδ1〉 :: · · · :: 〈↑Vn,JHnKδn〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
JHops

1 Kδ1 @ 〈`,〈JVK,〈V1,JH1Kδ1〉 :: []〉〉@↓(· · · :: 〈↑Vn,JHnKδn〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of ↓)
JHops

1 Kδ1 @ 〈`,〈JVK,〈V1,JH1Kδ1〉 :: []〉〉@ (· · · :: 〈Vn,JHnKδn〉 :: 〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )

 + (` /∈ BL(E ) and repeated application of Lemma 5)
JHops

n Kδ @ 〈`,〈JVK,〈Vn,JHnKδn〉 :: · · · :: 〈V1,JH1Kδ1〉 :: []〉〉@ (〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )

 + (H` = {` p r 7→ N`})
let r = resδ (〈Vn,JHnKδn〉 :: · · · :: 〈V1,JH1Kδ1〉 :: []) in
let 〈fs,〈hret,hops〉〉 :: k′ = 〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W in
(JN`K@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))[JVK/p]

 (U-RESδ : there are two cases yielding different R, see below)

let 〈fs,〈hret,hops〉〉 :: k′ = 〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W in
(JN`K@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))[JVK/p,R/r]

 + (U-SPLIT)

(JN`K@ (〈Vfs,〈Vret,Vops〉〉 ::↑↓W ))[JVK/p,R/r]
= (Lemma 4 (Reflect after reify))

(JN`K@ (〈Vfs,〈Vret,Vops〉〉 ::W ))[JVK/p,R/r]

To complete the proof, we examine the resumption term R generated by the reduction of
the let r = resδ rk in N construct. There are two cases, depending on whether the handler
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is deep or shallow. When the handler is deep, we have:

R = λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
app (〈V1,JH1Kδ1〉 :: · · · :: 〈Vn,JHnKδn〉 :: 〈fs,〈hret,hops〉〉 :: k′) y

= (static β -conversion, and definition of ↓)
λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in

(λκ.app (↓κ) y)@ ((〈↑V1,JH1Kδ1〉 :: · · · :: 〈↑Vn,JHnKδn〉 :: 〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)
= (definition of J−K)

λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
Jreturn yK@ ((〈↑V1,JH1Kδ1〉 :: · · · :: 〈↑Vn,JHnKδn〉 :: 〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)

= (Equation A 1)
λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in

Jreturn yK@ (JE K@ (〈↑[],JHnKδn〉 :: 〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))

When the handler is shallow, we have:

R = λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
app (〈V1,JH1Kδ1〉 :: · · · :: 〈Vn++ fs,〈hret,hops〉〉 :: k′) y

= (static β -conversion, and definition of ↓)
λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in

(λκ.app (↓κ) y)@ ((〈↑V1,JH1Kδ1〉 :: · · · :: 〈↑(Vn++ fs),〈↑hret,↑hops〉〉 ::↑k′)
= (definition of J−K)

λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
Jreturn yK@ ((〈↑V1,JH1Kδ1〉 :: · · · :: 〈↑(Vn++ fs),〈↑hret,↑hops〉〉 ::↑k′)

= (Equation A 1)
λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in

Jreturn yK@ (JE K@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))

Theorem 6 (Simulation)

If M N then JMK@ (〈Vfs,〈Vret,Vops〉〉 ::W ) + JNK@ (〈Vfs,〈Vret,Vops〉〉 ::W ).

Proof

The proof is by induction on the derivation of the reduction relation ( ).
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Case S-APP: (λxA.M)V M[V/x].

J(λxA.M)VK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λκ.JλxA.MK@ JVK@↓κ)@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
JλxA.MK@ JVK@↓(〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of ↓)
JλxA.MK@ JVK@ (〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )

= (definition of J−K)
(λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k inJMK@ (〈↑fs,〈↑hret,↑hops〉〉 :: ↑k))

@JVK@ (〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )

 + (dynamic β -reduction and pattern matching, and structure of continuations)
JMK[JVK/x]@ (〈Vfs,〈Vret,Vops〉〉 ::↑↓W )

= (Lemma 2 (Substitution))
JM[V/x]K@ (〈Vfs,〈Vret,Vops〉〉 ::↑↓W )

= (Lemma 4 (reflect after reify))
JM[V/x]K@ (〈Vfs,〈Vret,Vops〉〉 ::W )

Case S-TYAPP: (ΛαK .M)T M[T/α].

J(ΛαK .M)TK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λκ.JΛαK .MK@ 〈〉@↓κ)@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
JΛαK .MK@ JVK@ 〈〉@↓(〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of ↓)
JΛαK .MK@ JVK@ 〈〉@ (〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )

= (definition of J−K)
(λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JMK@ (〈↑fs,〈↑hret,↑hops〉〉 :: ↑k))

@〈〉@ (〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )

 + (dynamic β -reduction and pattern matching, and structure of continuations)
JMK@ (〈Vfs,〈Vret,Vops〉〉 ::↑↓W )

= (Lemma 8 (Type Erasure))
JM[T/α]K@ (〈Vfs,〈Vret,Vops〉〉 ::↑↓W )

= (Lemma 4 (reflect after reify))
JM[T/α]K@ (〈Vfs,〈Vret,Vops〉〉 ::W )

Case S-REC: (recgx.M)V M[(recgx.M)/g,V/x]. Similar to the previous two cases.
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Case S-SPLIT: let 〈`= x;y〉= 〈`= V;W〉 in N N[V/x,W/y].

Jlet 〈`= x;y〉= 〈`= V;W〉 in NK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λκ.let 〈`,〈x,y〉〉= 〈`,〈JVK,JWK〉〉 in JNK@ κ)@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
let 〈`,〈x,y〉〉= 〈`,〈JVK,JWK〉〉 in JNK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

 + (U-SPLIT)

(JNK@ (〈Vfs,〈Vret,Vops〉〉 ::W ))[JVK/x,JWK/y]
= (Lemma 2 (Substitution))

JN[V/x,W/y]K@ (〈Vfs,〈Vret,Vops〉〉 ::W )

Case S-CASE1 and S-CASE2: Similar to the previous case.

Case S-LET: let x← return V in N N[V/x].

Jlet x← return V in NK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λ 〈θ ,〈χ ret,χops〉〉 :: κ.

Jreturn VK@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓θ),〈χ ret,χops〉〉 :: κ))

@(〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
Jreturn VK@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in

JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs),〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λκ.app (↓κ) JVK)@ (〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in

JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs),〈Vret,Vops〉〉 ::W )

= (static β -conversion)
app (↓(〈↑((λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in

JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs),〈Vret,Vops〉〉 ::W )) JVK
= (definition of ↓)

app (〈(λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)) ::↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )) JVK

 (U-KAPPCONS)

(λxk.let 〈fs,〈hret,hops〉〉 :: k′ = k in
JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))@ JVK@ (〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )

 + (U-APP, U-SPLIT)

JNK[JVK/x]@ (〈Vfs,〈Vret,Vops〉〉 ::↑↓W )

= (Lemma 4 (reflect after reify))
JNK[JVK/x]@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (Lemma 2 (substitution))
JN[V/x]K@ (〈Vfs,〈Vret,Vops〉〉 ::W )
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Case S-RET: handleδ (return V) with H N[V/x], where Hret = {return x 7→ N}.

Jhandleδ (return V) with HK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λκ.Jreturn VK@ (〈↑[],JHKδ 〉 :: κ))@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
Jreturn VK@ (〈↑[],JHKδ 〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λκ.app (↓κ) JVK)@ (〈↑[],JHKδ 〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
app (↓(〈↑[],JHKδ 〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )) JVK

= (definition of JHKδ and ↓)
app (〈[],〈JHretK,JHopsKδ 〉〉 :: 〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W ) JVK

 (U-KAPPNIL)

JHretK@ JVK@ (〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )

= (definition of J−K)
(λxk.let〈fs,〈hret,hops〉〉 :: k′ = k in JNK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))

@JVK@ (〈↓Vfs,〈↓Vret,↓Vops〉〉 ::↓W )

 + (U-APP, U-SPLIT)

JNK[JVK/x]@ (〈Vfs,〈Vret,Vops〉〉 ::↑↓W )

= (Lemma 4 (reflect after reify))
JNK[JVK/x]@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (Lemma 2 (substitution))
JN[V/x]K@ (〈Vfs,〈Vret,Vops〉〉 ::W )
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Case S-OP: handle E [do `V]with H N`[V/p,λy.handle E [return y]with H/r], where
` 6∈ BL(E ) and H` = {` p r 7→ N`}.

Jhandle E [do ` V] with HK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λκ.JE [do ` V]K@ (〈↑[],〈↑JHretK,↑JHopsK〉〉 :: κ))@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
JE [do ` V]K@ (〈↑[],〈↑JHretK,↑JHopsK〉〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )

= (Lemma 3 (Decomposition))
Jdo ` VK@ (JE K@ (〈↑[],〈↑JHretK,↑JHopsK〉〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W ))

 + (Lemma 6 (Handling))
JN`K[JVK/p,λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in Jreturn yK@ (JE K@ (〈↑[],JHK〉 :: 〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))/r]

@(〈Vfs,〈Vret,Vops〉〉 ::W )

= (Lemma 3 (Decomposition))
JN`K[JVK/p,λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JE [return y]K@ (〈↑[],JHK〉 :: 〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)/r]

@(〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion and definition of J−K)
JN`K[JVK/p,λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in Jhandle E [return y] with HK@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)/r]

@(〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
JN`K[JVK/p,Jλy.handle E [return y] with HK/r]@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (Lemma 2 (Substitution))
JN`[V/p,λy.handle E [return y] with H/r]K@ (〈Vfs,〈Vret,Vops〉〉 ::W )

Case S-OP†: handle† E [do ` V] with H N`[V/p,λy.E [return y]/r], where ` 6∈ BL(E )

and H` = {` p r 7→ N`}.

Jhandle† E [do ` V] with HK@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
(λκ.JE [do ` V]K@ (〈↑[],〈↑JHretK,↑JHopsK†〉〉 :: κ))@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (static β -conversion)
JE [do ` V]K@ (〈↑[],〈↑JHretK,↑JHopsK†〉〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W )

= (Lemma 3 (Decomposition))
Jdo ` VK@ (JE K@ (〈↑[],〈↑JHretK,↑JHopsK†〉〉 :: 〈Vfs,〈Vret,Vops〉〉 ::W ))

 + (Lemma 6 (Handling))
JN`K[JVK/p,λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in Jreturn yK@ (JE K@ (::〈↑fs,〈↑hret,↑hops〉〉 ::↑k′))/r]

@(〈Vfs,〈Vret,Vops〉〉 ::W )

= (Lemma 3 (Decomposition))
JN`K[JVK/p,λyk.let 〈fs,〈hret,hops〉〉 :: k′ = k in JE [return y]K@ (〈↑fs,〈↑hret,↑hops〉〉 ::↑k′)/r]

@(〈Vfs,〈Vret,Vops〉〉 ::W )

= (definition of J−K)
JN`K[JVK/p,Jλy.E [return y]K/r]@ (〈Vfs,〈Vret,Vops〉〉 ::W )

= (Lemma 2 (Substitution))
JN`[V/p,λy.E [return y]/r]K@ (〈Vfs,〈Vret,Vops〉〉 ::W )
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B Proof of Simulation for Parameterised Handlers by Deep Handlers

Theorem 8 (Simulation of Parameterised Handlers by Deep Handlers)
If M N then PJMK +

cong PJNK.

Proof of Theorem 8
Proof by induction on M. We show only the two interesting cases.

Case M = handle‡ return V with H(q←W) M[V/x,W/q], where Hret = {return x 7→
x}.

PJhandle‡ return V with H(q←W)K
= (definition of PJ−K)

(handle return PJVK with PJHKq) PJWK
 (by S-RET with PJHretKq = {return x 7→ λq.PJMK})

(λq.PJMK[PJVK/x]) PJWK
 (by S-APP)

PJMK[PJVK/x,PJWK/q]
=

PJM[V/x,W/q]K

Case M =handle‡ E [do ` V]with H(q←W) M[V/p,W/q,λ 〈x,q′〉.handle‡ E [return x]with H(q←
q′)/r], where H` = {` p r 7→M}.

PJhandle‡ E [do ` V] with H(q←W)K
= (definition of PJ−K)

(handle E [do ` PJVK] with PJHKq) PJWK
 (by S-OP with PJH`Kq = {` p r 7→ λq.let r′← λ 〈x,q′〉.r x q in PJMK[r′/r]})

((λq.let r′← λ 〈x,q′〉.r x q in PJMK[r′/r])[PJVK/p,λx.handle E [return x] with PJHKq) PJWK
= (definition of [−])

(λq.let r′← λ 〈x,q′〉.(λx.handle E [return x] with PJHKq) x q′ in PJMK[PJVK/p,r′/r])
 (by S-APP)

let r′← λ 〈x,q′〉.r x q′ in PJMK[r′/r,PJVK/p,PJVK/q]
 (by S-LET)

PJMK[PJVK/p,PJWK/q,λ 〈x,q′〉.(λx.handle E [return x] with PJHKq) x q′/r]
 cong (by S-APP)

PJMK[PJVK/p,PJWK/q,λ 〈x,q′〉.(handle E [return x] with PJHKq) q′/r]
= (by definition of PJ−K)

PJMK[PJVK/p,PJWK/q,λ 〈x,q′〉.PJhandle‡ E [return x] with H(q← q′)K/r]
=

PJM[V/p,W/q,λ 〈x,q′〉.handle‡ E [return x] with H(q← q′)/r]K


