
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Effects for Efficiency
Asymptotic Speedup with First-Class Control

DANIEL HILLERSTRÖM, The University of Edinburgh, UK

SAM LINDLEY, The University of Edinburgh and Imperial College London, UK

JOHN LONGLEY, The University of Edinburgh, UK

As Filinski showed in the 1990s, delimited control operators can express all monadic effects. Plotkin and

Pretnar’s effect handlers offer a modular form of delimited control providing a uniform mechanism for

concisely implementing features ranging from async/await to probabilistic programming.

We study the fundamental efficiency of delimited control. Specifically, we show that effect handlers enable

an asymptotic improvement in runtime complexity for a certain class of programs. We consider the generic
search problem and define a pure PCF-like base language λ

b
and its extension with effect handlers λ

h
. We show

that λ
h
admits an asymptotically more efficient implementation of generic search than any λ

b
implementation

of generic search. We also show that this efficiency gap remains when λ
b
is extended with mutable state.

To our knowledge this result is the first of its kind for control operators.

1 INTRODUCTION
In today’s programming languages we find a wealth of powerful constructs and features — excep-

tions, higher-order store, dynamicmethod dispatch, coroutining, explicit continuations, concurrency

features, Lisp-style ‘quote’ and so on — which may be present or absent in various combinations

in any given language. There are of course many important pragmatic and stylistic differences

between languages, but here we are concerned with whether languages may differ more essentially

in their expressive power, according to the selection of features they contain.

One can interpret this question in various ways. For instance, Felleisen [1991] considers the

question of whether a language L admits a translation into a sublanguage L ′ in a way which

respects not only the behaviour of programs but also aspects of their (global or local) syntactic

structure. If the translation of some L-program into L ′ requires a complete global restructuring,

we may say that L ′ is in some way less expressive than L. In the present paper, however, we

have in mind even more fundamental expressivity differences that would not be bridged even if

whole-program translations were admitted. These fall under two headings.

(1) Computability: Are there operations of type A that are programmable inL but not expressible

at all in L ′?

(2) Complexity: Are there operations programmable in L with some asymptotic runtime bound

(e.g. ‘O(n2)’) that cannot be achieved in L ′?

We may also ask: are there examples of natural, practically useful operations that manifest such

differences? If so, this might be considered as a significant advantage of L over L ′.

If the ‘operations’ we are asking about are ordinary first-order functions— that is, both their inputs

and outputs are of ground type (strings, arbitrary-size integers etc.) — then the situation is easily

summarised. At such types, all reasonable languages give rise to the same class of programmable

functions, namely the Church-Turing computable ones. As for complexity, the runtime of a program

is typically analysed with respect to some cost model for basic instructions (e.g. one unit of time per

array access). Although the realism of such cost models in the asymptotic limit can be questioned

(see, e.g., [Knuth 1997, Section 2.6]), it is broadly taken as read that such models are equally

Authors’ addresses: Daniel Hillerström, The University of Edinburgh, UK, daniel.hillerstrom@ed.ac.uk; Sam Lindley, The

University of Edinburgh and Imperial College London, UK, sam.lindley@ed.ac.uk; John Longley, The University of Edinburgh,

UK, jrl@staffmail.ed.ac.uk.

, Vol. 1, No. 1, Article . Publication date: March 2020.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

:2 Daniel Hillerström, Sam Lindley, and John Longley

applicable whatever programming language we are working with, and moreover that all respectable

languages can represent all algorithms of interest; thus, one does not expect the best achievable

asymptotic run-time for a typical algorithm (say in number theory or graph theory) to be sensitive

to the choice of programming language, except perhaps in marginal cases. (It should be admitted,

however, that proving general theorems to this effect may be harder than one might suppose: see

for example Section 1 of [Pippenger 1996].)

The situation changes radically, however, if we consider higher-order operations: programmable

operations whose inputs may themselves be programmable operations. (At this point, we suppose

that the languages we wish to compare all support higher-order data in some way: in particular,

that their type systems are rich enough to admit encodings of all simple types generated from the

familiar ground types via ‘→’.) Here it turns out that both what is computable and the efficiency

with which it can be computed can be highly sensitive to the selection of language features present.

This is in fact true more widely for abstract data types, of which higher-order types can be seen as

a special case: a higher-order value will of course be represented within the machine as ground

data, but a program within the language typically has no access to this internal representation, and

can interact with the value only by applying it to an argument.

Most work in this area to date has focused on computability differences. One of the best known

examples is the parallel if operation which is computable in a language with parallel evaluation

but not in a typical ‘sequential’ programming language [Plotkin 1977]. It is also well known that

the presence of control features or local state enables observational distinctions that cannot be

made in a purely functional setting: for instance, there are programs involving ‘call/cc’ that detect

the order in which a (call-by-name) ‘+’ operation evaluates its arguments [Cartwright and Felleisen

1992]. Such operations are ‘non-functional’ in the sense that their output is not determined solely

by the extension of their input (seen as a mathematical function N⊥ × N⊥ → N⊥); however, there
are also programs with ‘functional’ behaviour that can be implemented with control or local state

but not without them [Longley 1999]. More recent results have exhibited differences lower down

in the language expressivity spectrum: for instance, in a purely functional setting à la Haskell, the
expressive power of recursion increases strictly with its type level [Longley 2018], and there are

natural operations computable by low-order recursion but not by high-order iteration [Longley

2019]. Much of this territory, including the mathematical theory of some of the natural notions of

higher-order computability that arise in this way, is mapped out by Longley and Normann [2015].

Relatively few results of this character have so far been established on the complexity side.

Pippenger [1996] gives an example of an ‘online’ operation on infinite sequences of atomic symbols

(essentially a function from streams to streams) such that the first n output symbols can be produced

within time O(n) if one is working in an ‘impure’ version of Lisp (in which mutation of ‘cons’ pairs

is admitted), but with a worst-case runtime no better than Ω(n log n) for any implementation

in pure Lisp (without such mutation). This example was reconsidered by Bird et al. [1997] who

showed that the same speedup can be achieved in a pure language by using lazy evaluation. Jones

[2001] explores the approach of manifesting expressivity and efficiency differences between certain

languages (which differ according to both the forms of iteration or recursion they admit and also

the use of higher types that they allow) by artificially restricting attention to ‘cons-free’ programs;

in this setting, the classes of representable first-order functions for the various languages are found

to coincide with some well-known complexity classes.

The purpose of the present paper is to give a clear example of such an inherent complexity

difference higher up in the expressivity spectrum. Specifically, we consider the following generic
search problem, parametric in n: given a boolean-valued predicate P on the space Bn of boolean
vectors of length n, return the number of such vectors p for which P(p) = true. We shall consider

boolean vectors of any length to be represented by the type Nat→ Bool; thus, for each n, we are

, Vol. 1, No. 1, Article . Publication date: March 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Effects for Efficiency :3

asking for an implementation of a certain third-order operation

countn : ((Nat→ Bool) → Bool) → Nat

A naive implementation strategy, supported by any reasonable language, is simply to apply P to

each of the 2
n
vectors in turn. A much less obvious, but still purely ‘functional’, approach due

to Berger [1990] achieves the effect of ‘pruned search’ where the predicate allows it (serving as

a warning that counter-intuitive phenomena can arise in this territory). Nonetheless, under a

mild condition on P (namely that it must inspect all n components of the given vector before

returning), both these approaches will have a Ω(n2n) runtime. Moreover, we shall show that in

a typical call-by-value language without advanced control features, one cannot improve on this:

any implementation of countn must necessarily take time Ω(n2n), even when the predicates P are

chosen to be ‘as simple as possible’. On the other hand, if we extend our language with a feature

such as effect handlers (see Section 2 below), it becomes possible to bring the runtime down to

O(2n): an asymptotic gain of a factor of n.
The idea behind the speedup is easily explained and will already be familiar, at least informally,

to programmers who have worked with multi-shot continuations. Suppose for example n = 3, and

suppose that the predicate P always inspects the components of its argument in the order 0, 1, 2. A
naive implementation of count3 might start by applying the given P to p0 = (true, true, true), and
then to p1 = (true, true, false). Clearly there is some duplication here: the computations of P p0 and
P p1 will proceed identically up to the point where the value of the final component is requested.

What we would like to do, then, is to record the state of the computation of P p0 at just this point,
so that we can later resume this computation with false supplied as the final component value in

order to obtain the value of P p1. (Similarly for all other internal nodes in the evident binary tree

of boolean vectors.) Of course, this ‘backup’ approach would be standardly applied if one were

implementing a bespoke search operation for some particular choice of P (corresponding, say, to

the n-queens problem); but to apply this idea of resuming previous subcomputations in the generic

setting (that is, uniformly in P) requires some special language feature such as effect handlers or

multi-shot continuations. One could also obviate the need for such a feature by choosing to present

the predicate P in some other way, but from our present perspective this would be to move the

goalposts: our intention is precisely to show that our languages differ in an essential way as regards
their power to manipulate data of type (Nat→ Bool) → Bool.
This idea of using first-class control to achieve ‘backtracking’ has been exploited before and is

fairly widely known (see e.g. [Kiselyov et al. 2005]), and there is a clear programming intuition

that this yields a speedup unattainable in languages without such control features. Our main

contribution in this paper is to provide, for the first time, a precise mathematical theorem that pins

down this fundamental efficiency difference, thus giving formal substance to the above-mentioned

intuition. Since our goal is to give a realistic analysis of the efficiency achievable in various settings

without getting bogged down in inessential implementation details, we shall work concretely and

operationally with the languages in question, using a CEK-style abstract machine semantics as our

basic model of execution time, and with some specific programs in these languages. In the first

instance, we formulate our results as a comparison between a purely functional base language (a

version of call-by-value PCF) and an extension with first-class control; we then indicate how these

results can be extended to base languages with other features such as mutable state.

For their convenience as structured delimited control operators we adopt effect handlers as our

universal control abstraction of choice, but our results adapt mutatis mutandis to other first-class

control abstractions such as ‘call/cc’ [Sperber et al. 2009], ‘control’ (F) and ’prompt’ (#) [Felleisen
1988], or ‘shift’ and ‘reset’ [Danvy and Filinski 1990].

The rest of the paper is structured as follows.

, Vol. 1, No. 1, Article . Publication date: March 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

:4 Daniel Hillerström, Sam Lindley, and John Longley

• Section 2 provides an introduction to effect handlers as a programming abstraction.

• Section 3 presents a PCF-like language λb and its extension λh with effect handlers.

• Section 4 defines abstract machines for λb and λh, yielding a runtime cost model.

• Section 5 proves formal complexity results for generic search in λb (Ω(n2n)) and λh (O(2n)).
• Section 6 shows that our results scale to richer settings including support for a wider class

of predicates, an extension of the base language with state, and a non-trivial algorithm for

generic search that exploits memoisation to perform pruned search.

• Section 7 evaluates implementations of generic search based on λb and λh in Standard ML.

• Section 8 concludes.

The languages λb and λh are rather minimal versions of previously studied systems — we only

include the machinery needed for illustrating the generic search efficiency phenomenon. Full proofs

of our main complexity results are available in the appendices of the anonymised supplementary

material.

2 EFFECT HANDLERS PRIMER
Effect handlers were originally studied as a theoretical means to provide a semantics for exception

handling in the setting of algebraic effects [Plotkin and Power 2001; Plotkin and Pretnar 2013].

Subsequently they have emerged as a practical programming abstraction for modular effectful

programming [Bauer and Pretnar 2015; Convent et al. 2020; Dolan et al. 2015; Hillerström et al. 2020;

Kammar et al. 2013; Kiselyov et al. 2013; Leijen 2017]. In this section we give a short introduction to

effect handlers. For a thorough introduction to programming with effect handlers, we recommend

the tutorial by Pretnar [2015], and as an introduction to the mathematical foundations of handlers,

we refer the reader to the founding paper by Plotkin and Pretnar [2013] and the excellent tutorial

paper by Bauer [2018].

Viewed through the lens of universal algebra, an algebraic effect is given by a signature Σ of

finitary operation symbols defined over some nonempty carrier set A, along with an equational

theory that describes the properties of the operations [Plotkin and Power 2001]. An example of an

algebraic effect is nondeterminism, whose signature consists of a single nondeterministic choice

operation: Σ := {Branch : 1 → Bool}. The operation takes a single parameter of type unit and

ultimately produces a boolean value. The pragmatic programmatic view of algebraic effects differs

from the original development as no implementation accounts for equations over operations yet.

As a simple example, let us use the operation Branch to model a coin toss. Suppose we have a

data type Toss := Heads | Tails, then we may implement a coin toss as follows.

toss : 1→ Toss
toss ⟨⟩ = if do Branch ⟨⟩ then Heads else Tails

From the type signature it is clear that the computation returns a value of type Toss. It is not clear
from the signature of toss whether it performs an effect. From looking at the definition, it evidently

performs the operation Branch with argument ⟨⟩ using the do-invocation form. The result of the

operation determines whether the computation returns either Heads or Tails. Systems such as

Frank [Convent et al. 2020; Lindley et al. 2017], Helium [Biernacki et al. 2019, 2020], Koka [Leijen

2017], and Links [Hillerström and Lindley 2016; Hillerström et al. 2020] include type-and-effect

systems which track the use of effectful operations, whilst current iterations of systems such as

Eff [Bauer and Pretnar 2015] and Multicore OCaml [Dolan et al. 2015] elect not to include an effect

system. Our language is closer to the latter two.

We may, in the style of Lindley [2014], view an effectful computation as a tree, where the

interior nodes correspond to operation invocations and the leaves correspond to return values. The

computation tree for toss is as follows.

, Vol. 1, No. 1, Article . Publication date: March 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Effects for Efficiency :5

Types A,B,C,D ::= Nat | 1 | A→ B | A × B | A + B
Type Environments Γ ::= · | Γ, x : A
Values V ,W ∈ Val ::= x | n | c | λxA.M | rec f A x .M

| ⟨⟩ | ⟨V ,W ⟩ | (inlV)B | (inrW)A

Computations M,N ∈ Comp ::= V W | let ⟨x, y⟩ = V in N
| case V {inl x 7→ M; inr y 7→ N }
| return V | let x ← M in N

Fig. 1. Syntax of λ
b

Branch

Heads

true

Tails

false

It models interaction with the environment. The operation Branch can be viewed as a query for

which the response is either true or false. The response is provided by an effect handler. As an

example consider the following handler which enumerates the possible outcomes of a coin toss.

handle toss ⟨⟩ with
val x 7→ [x]
Branch ⟨⟩ r 7→ r true ++ r false

The handle-construct generalises the exceptional syntax of Benton and Kennedy [2001]. A handler

has a success clause and an operation clause. The success clause determines how to interpret the

return value of toss, or equivalently how to interpret the leaves of its computation tree. It lifts the

return value into a singleton list. The operation clause determines how to interpret occurrences of

Branch in toss. It provides access to the argument of Branch (which is unit) and its resumption, r .
The resumption is a first-class delimited continuation which captures the remainder of the toss
computation from the invocation of Branch up to its nearest enclosing handler.

Applying r to true resumes evaluation of toss via the true branch, returning Heads and causing

the success clause of the handler to be invoked; thus the result of r true is [Heads]. Evaluation
continues in the operation clause, meaning that r is applied again, but this time to false, which
causes evaluation to resume in toss via the false branch. By the same reasoning, the value of r false
is [Tails], which is concatenated with the result of the true branch; hence the handler ultimately

returns [Heads, Tails].

3 CALCULI
In this section, we present our base language λb and its extension with effect handlers λh.

3.1 Base Calculus
The base calculus λb is a fine-grain call-by-value [Levy et al. 2003] variation of PCF [Plotkin 1977].

Fine-grain call-by-value is similar to A-normal form [Flanagan et al. 1993] in that every intermediate

computation is named, but unlike A-normal form is closed under reduction.

The syntax of λb is given in Figure 1. The ground types are Nat and 1 which classify natural

number values and the unit value, respectively. We write groundA to assert that type A is a ground

type. The function type A→ B represents functions that map values of type A to values of type

B. The binary product type A × B represents a pair of values whose first and second components

have types A and B respectively. The sum type A× B represents tagged values of either type A or B.
Type environments Γ map term variables to their types.

, Vol. 1, No. 1, Article . Publication date: March 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

:6 Daniel Hillerström, Sam Lindley, and John Longley

Values
T-Var

x : A ∈ Γ

Γ ⊢ x : A

T-Unit

Γ ⊢ ⟨⟩ : 1

T-Nat

n ∈ N

Γ ⊢ n : Nat

T-Const

c : A→ B

Γ ⊢ c : A→ B

T-Lam

Γ, x : A ⊢ M : C

Γ ⊢ λxA.M : A→ C

T-Rec

Γ, f : A→ C, x : A ⊢ M : C

Γ ⊢ rec f A→C x .M : A→ C

T-Prod

Γ ⊢ V : A Γ ⊢ W : B

Γ ⊢ ⟨V ,W ⟩ : A × B

T-Inl

Γ ⊢ V : A

Γ ⊢ (inlV)B : A + B

T-Inr

Γ ⊢ W : B

Γ ⊢ (inrW)A : A + B

Computations
T-App

Γ ⊢ V : A→ B Γ ⊢ W : A

Γ ⊢ V W : B

T-Split

Γ ⊢ V : A × B Γ, x : A, y : B ⊢ N : C

Γ ⊢ let ⟨x, y⟩ = V in N : C

T-Case

Γ ⊢ V : A + B Γ, x : A ⊢ M : C Γ, y : B ⊢ N : C

Γ ⊢ case V {inl x 7→ M; inr y 7→ N } : C

T-Return

Γ ⊢ V : A

Γ ⊢ return V : A

T-Let

Γ ⊢ M : A Γ, x : A ⊢ N : C

Γ ⊢ let x ← M in N : C

Fig. 2. Typing Rules for λ
b

We let n range over natural numbers and c range over primitive operations on natural numbers

(+,−,=). We generally use lowercase letters x, y, z andmore to denote term variables. By convention

we use f , g, and h for variables of function type, i and j for variables of type Nat, and r and k
to denote resumptions and continuations, with the exception that we will use uppercase P to

denote predicates. Value terms comprise variables (x), the unit value (⟨⟩), natural number literals

(n), primitive constants (c), lambda abstraction (λxA.M), recursion (rec f A x .M), pairs (⟨V ,W ⟩),
left ((inl V)B) and right ((inrW)A) injections. We will occasionally blur the distinction between

object and meta language by writing A for the meta level type of closed value terms of type A. All
elimination forms are computation terms. Abstraction is eliminated using application (V W). The

product eliminator (let ⟨x, y⟩ = V in N) splits a pair V into its constituents and binds them to

x and y, respectively. Sums are eliminated by a case split (case V {inl x 7→ M; inr y 7→ N }). A
trivial computation (return V) returns value V . The sequencing expression (let x ← M in N)
evaluates M and binds the result value to x in N .

The typing rules are given in Figure 2. We require two typing judgements: one for values and

the other for computations. The judgement Γ ⊢ □ : A states that a □-term has type A under type

environment Γ, where □ is either a value term (V) or a computation term (M). The constants have

the following types.

{(+), (−)} : ⟨Nat,Nat⟩ → Nat (=) : ⟨Nat,Nat⟩ → Bool

We give a small-step operational semantics for λb with evaluation contexts in the style of Felleisen

[1987]. The reduction rules are given in Figure 3. We write M[V/x] for M with V substituted for x

, Vol. 1, No. 1, Article . Publication date: March 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Effects for Efficiency :7

S-App (λxA.M)V { M[V/x]
S-App-Rec (rec f A x .M)V { M[(rec f A x .M)/f ,V/x]
S-Const c V { return (⌜c⌝ (V))
S-Split let ⟨x; y⟩ = ⟨V ;W ⟩ in N { N [V/x,W/y]
S-Case-inl case (inlV)B {inl x 7→ M; inr y 7→ N } { M[V/x]
S-Case-inr case (inrV)A {inl x 7→ M; inr y 7→ N } { N [V/y]
S-Let let x ← return V in N { N [V/x]
S-Lift E[M]{ E[N], if M { N

Evaluation contexts E ::= [] | let x ← E in N

Fig. 3. Contextual Small-Step Operational Semantics

and ⌜c⌝ for the usual interpretation of constant c as a meta-level function on closed values. The

reduction relation { is defined on computation terms. The statement M { N reads: term M
reduces to term N in one step. We write R+ for the transitive closure of relation R and R∗ for the
reflexive, transitive closure of relation R. We write R/S for the quotient of relation R by relation S.

Syntactic sugar. For convenience we often write code in direct-style assuming the standard left-

to-right call-by-value elaboration into fine-grain call-by-value [Flanagan et al. 1993]. For example,

the expression f (hw) + g ⟨⟩ is syntactic sugar for:

let x ← hw in let y ← f x in let z ← g ⟨⟩ in y + z

We use the standard encoding of booleans as sums:

Bool := 1 + 1 true := inl ⟨⟩ false := inr ⟨⟩

if V then M else N := case V {inl ⟨⟩ 7→ M; inr ⟨⟩ 7→ N }

We also define sequencing of computations in the standard way.

M;N := let x ← M in N , where x < FV (N)

We make use of standard syntactic sugar for pattern matching. For instance, for suspended

computations we write

λ⟨⟩.M := λx1.M, where x < FV (M)

and more generally if the binder has a type other than 1, then we write

λ_A.M := λxA.M, where x < FV (M)

We elide type annotations when clear from context.

3.2 Handler Calculus
We now define λh as an extension of λb. First we define notation for operation symbols, signatures,

and handler types.

Operation symbols ℓ ∈ L

Signatures Σ ::= · | {ℓ : A→ B} ∪ Σ
Handler types F ::= C ⇒ D

We assume a countably infinite set of operation symbols L. An effect signature Σ is a map from

operation symbols to their types, thus we assume that each operation symbol in a signature is

distinct. An operation type A → B denotes an operation that takes an argument of type A and

returns a result of type B. We write dom(Σ) ⊆ L for the set of operation symbols in a signature Σ.
An effect handler type C ⇒ D classifies effect handlers that transform computations of type C into

computations of type D. Following Pretnar [2015], we assume a global signature for every program.

, Vol. 1, No. 1, Article . Publication date: March 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

:8 Daniel Hillerström, Sam Lindley, and John Longley

Computations
T-Do

(ℓ : A→ B) ∈ Σ Γ ⊢ V : A

Γ ⊢ do ℓ V : B

T-Handle

Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

Handlers
T-Handler

Hval = {val x 7→ M}
[H ℓ = {ℓ p r 7→ Nℓ}]ℓ∈dom(Σ)

[Γ, p : Aℓ , r : Bℓ → D ⊢ Nℓ : D](ℓ:Aℓ→Bℓ)∈Σ
Γ, x : C ⊢ M : D

Γ ⊢ H : C ⇒ D

Fig. 4. Additional Typing Rules for λ
h

The typing rules for λh are those of λb (Figure 2) plus three additional rules for operations,

handling, and handlers given in Figure 4. The T-Do rule ensures that an operation invocation is

only well-typed if the operation ℓ appears in the effect signature Σ and the argument typeAmatches

the type of the provided argument V . The result type B determines the type of the invocation.

The T-Handle rule is straightforward. The T-Handler rule ensures that the bodies of the success

clause and the operation clauses all have the output type D. The type of x in the value clause

must match the input type C. The type of the parameter p (Aℓ) and resumption r (Bℓ → D) in
operation clause H ℓ

is determined by the signature for ℓ; the return type of r is D, as the body
of the resumption will itself be handled by H . We write H ℓ

and Hval
for projecting success and

operation clauses.

H ℓ
:= {ℓ p r 7→ M}, where {ℓ p r 7→ M} ∈ H

Hval
:= {val x 7→ M}, where {val x 7→ M} ∈ H

We extend the operational semantics to λh. Specifically, we add two new reduction rules: one for

handling return values and another for handling operation invocations.

S-Ret handle (return V) with H { N [V/x], where Hval = {val x 7→ N }
S-Op handle E[do ℓ V] with H { N [V/p, λy.handle E[return y] with H/r],

where H ℓ = {ℓ p r 7→ N }

The first rule invokes the success clause. The second rule handles an operation via the corresponding

operation clause. If we were to naively extend evaluation contexts with the handle construct then

our semantics would become nondeterministic, as it may pick an arbitrary handlers in scope. In

order to ensure that the semantics is deterministic, we instead add a distinct form of evaluation

context for effectful computation, which we call handler contexts.

Handler contexts H ::= [] | handle H with H | let x ←H in N

We replace the S-Lift rule with a corresponding rule for handler contexts.

H[M] { H[N], if M { N

The separation between pure evaluation contexts E and handler contextsH ensures that the S-Op

rule always selects the innermost handler.

We now characterise normal forms and state the standard type soundness property of λh.

Definition 3.1 (Computation normal forms). We say that a computation term N is normal with

respect to ℓ ∈ Σ, if N is either of the form return V , or E[do ℓW].

Theorem 3.2 (Type Soundness). If ⊢ M : C, then either there exists ⊢ N : C such that M {∗ N
and N is normal, or M diverges.

, Vol. 1, No. 1, Article . Publication date: March 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Effects for Efficiency :9

4 ABSTRACT MACHINE SEMANTICS
Thus far we have introduced the base calculus λb and its extension with effect handlers λh. For
each calculus we have given a small-step operational semantics which uses a substitution model

for evaluation. Whilst this model is semantically pleasing, it falls short of providing a realistic

account of practical computation as substitution is an expensive operation. We now develop a more

practical model of computation based on an abstract machine semantics.

4.1 Base Machine
We choose a CEK-style abstract machine semantics [Felleisen and Friedman 1987] for λbbased on

that of Hillerström et al. [2020]. The CEK machine operates on configurations which are triples of

the form ⟨M | γ | σ ⟩. The first component contains the computation currently being evaluated. The

second component contains the environment γ which binds free variables. The third component

contains the continuation which instructs the machine how to proceed once evaluation of the

current computation is complete. The syntax of abstract machine states is as follows.

Configurations C ∈ Conf ::= ⟨M | γ | σ ⟩
Environments γ ∈ Env ::= ∅ | γ [x 7→ v]
Machine values v,w ∈ Mval ::= x | n | c | ⟨⟩ | ⟨v,w⟩

| (γ , λxA.M) | (γ , rec f xA.M) | (inl v)B | (inrw)A

Pure continuations σ ∈ PureCont ::= [] | (γ , x,N) :: σ

Values consist of function closures, constants, pairs, and left or right tagged values. We refer to

continuations of the base machine as pure. A pure continuation is a stack of pure continuation

frames. A pure continuation frame (γ , x,N) closes a let-binding let x ← [] in N over environment

γ . We write [] for an empty pure continuation and ϕ :: σ for the result of pushing the frame ϕ onto

σ . We use pattern matching to deconstruct pure continuations.

The abstract machine semantics is given in Figure 5. The transition relation (−→) makes use of the

value interpretation (J−K) on value terms and machine values. The machine is initialised by placing

a term in a configuration alongside the empty environment (∅) and identity pure continuation ([]).

The rules (M-App), (M-Rec), (M-Const), (M-Split), (M-CaseL), and (M-CaseR) eliminate values.

The (M-Let) rule extends the current pure continuation with let bindings. The (M-RetCont) rule

extends the environment in the top frame of the pure continuation with a returned value. Given an

input of a well-typed closed computation term ⊢ M : A, the machine will either diverge or return a

value of type A. A final state is given by a configuration of the form ⟨return V | γ | []⟩ in which

case the final return value is given by the denotation JV Kγ of V under environment γ .

Correctness. The base machine faithfully simulates the operational semantics for λb; most tran-

sitions correspond directly to β-reductions, but M-Let performs an administrative step to bring

the computation M into evaluation position. We formally state and prove the correspondence in

Appendix A, relying on an inverse map L−M from configurations to terms [Hillerström et al. 2020].

4.2 Handler Machine
We now enrich the λb machine to a λh machine. We extend the syntax as follows.

Configurations C ∈ Conf ::= ⟨M | γ | κ⟩
Continuations κ ∈ Cont ::= [] | (σ , χ) :: κ
Handler closures χ ∈ HClo ::= (γ ,H)
Machine values v,w ∈ Mval ::= · · · | χ

The notion of configurations changes slightly in that the continuation component is replaced by a

generalised continuation κ ∈ Cont [Hillerström et al. 2020]; a continuation is now a list of pairs

containing a pure continuation (as in the base machine) and a handler closure (χ). A handler closure

, Vol. 1, No. 1, Article . Publication date: March 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

:10 Daniel Hillerström, Sam Lindley, and John Longley

Transition relation
M-App ⟨V W | γ | σ ⟩ −→ ⟨M | γ ′[x 7→ JW Kγ] | σ ⟩,

if JV Kγ = (γ ′, λxA.M)
M-Rec ⟨V W | γ | σ ⟩ −→ ⟨M | γ ′[f 7→ (γ ′, rec f x .M),

x 7→ JW Kγ] | σ ⟩,
if JV Kγ = (γ ′, rec f xA.M)

M-Const ⟨V W | γ | σ ⟩ −→ ⟨return (⌜c⌝ (JV Kγ)) | γ | σ ⟩,
if JV Kγ = c

M-Split ⟨let ⟨x, y⟩ = V in N | γ | σ ⟩ −→ ⟨N | γ [x 7→ v, y 7→ w] | σ ⟩,
if JV Kγ = ⟨v;w⟩

M-CaseL

⟨case V {inl x 7→ M;

inr y 7→ N } | γ | σ ⟩ −→ ⟨M | γ [x 7→ v] | σ ⟩,

if JV Kγ = inl v

M-CaseR

⟨case V {inl x 7→ M;

inr y 7→ N } | γ | σ ⟩ −→ ⟨N | γ [y 7→ v] | σ ⟩,

if JV Kγ = inr v
M-Let ⟨let x ← M in N | γ | σ ⟩ −→ ⟨M | γ | (γ , x,N) :: σ ⟩
M-RetCont ⟨return V | γ | (γ ′, x,N) :: σ ⟩ −→ ⟨N | γ ′[x 7→ JV Kγ] | σ ⟩

Value interpretation

JxKγ = γ (x)
J⟨⟩Kγ = ⟨⟩

JnKγ = n
JcKγ = c

JλxA.MKγ = (γ , λxA.M)
Jrec f xA.MKγ = (γ , rec f xA.M)

J⟨V ;W ⟩Kγ = ⟨JV Kγ ; JW Kγ ⟩ J(inlV)BKγ = (inl JV Kγ)B

J(inrV)AKγ = (inr JV Kγ)A

Fig. 5. Abstract Machine Semantics for λ
b

Transition relation
M-Resume ⟨V W | γ | κ⟩ −→ ⟨return W | γ | (σ , χ) :: κ⟩,

if JV Kγ = (σ , χ)A

M-Let ⟨let x ← M in N | γ | (σ , χ) :: κ⟩ −→ ⟨M | γ | ((γ , x,N) :: σ , χ) :: κ⟩
M-RetCont ⟨return V | γ | ((γ ′, x,N) :: σ , χ) :: κ⟩ −→ ⟨N | γ ′[x 7→ JV Kγ] | (σ , χ) :: κ⟩
M-Handle ⟨handle M with H | γ | κ⟩ −→ ⟨M | γ | ([], (γ ,H)) :: κ⟩
M-RetHandler ⟨return V | γ | ([], (γ ′,H)) :: κ⟩ −→ ⟨M | γ ′[x 7→ JV Kγ] | κ⟩,

if Hval = {val x 7→ M}
M-Handle-Op ⟨do ℓ V | γ | (σ , (γ ′,H)) :: κ⟩ −→ ⟨M | γ ′[p 7→ JV Kγ ,

r 7→ (σ , (γ ′,H))] | κ⟩,
if ℓ : A→ B ∈ Σ
and H ℓ = {ℓ p r 7→ M}

Fig. 6. Abstract Machine Semantics for λ
h

consists of an environment and a handler definition, where the former binds the free variables

that occur in the latter. The identity continuation is an empty pure continuation paired with the

identity handler closure:

κ0 := [([], (∅, {val x 7→ x}))]

Machine values are augmented to include handler closures, as an operation invocation causes the

topmost handler closure of the machine continuation to be reified (and bound to the resumption

parameter in the operation clause).

, Vol. 1, No. 1, Article . Publication date: March 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Effects for Efficiency :11

The handler machine adds transition rules for handlers, and modifies (M-Let) and (M-RetCont)

from the base machine to account for the richer continuation structure. Figure 6 depicts the new

and modified rules. The (M-Handle) rule pushes a handler closure along with an empty pure

continuation onto the continuation stack. The (M-RetHandler) rule transfers control to the

success clause of the current handler once the pure continuation is empty. The (M-Handle-Op)

rule transfers control to the matching operation clause on the topmost handler, and during the

process it reifies the handler closure. Finally, the (M-Resume) rule applies a reified handler closure,

by pushing it onto the continuation stack. The handler machine has two possible final states: either

it yields a value or it gets stuck on an unhandled operation.

Correctness. The handler machine faithfully simulates the operational semantics of λh. Extending
the result for the base machine, we formally state and prove the correspondence in Appendix B.

4.3 Realisability and Asymptotic Complexity
As witnessed by the work of Hillerström and Lindley [2018] the machine structures are readily real-

isable using standard persistent functional data structures. Pure continuations on the base machine

and generalised continuations on the handler machine can be implemented using linked lists with a

time complexity of O(1) for the extension operation (_ :: _). The topmost pure continuation on the

handler machine may also be extended in time O(1), as extending it only requires reaching under

the topmost handler closure. Environments, γ , can be realised using a map, with a time complexity

of O(log |γ |) for extension and lookup [Okasaki 1999].

The worst-case time complexity of the transition relation is exhibited by rules which involve

operations on the environment, since any other operation is constant time, hence the worst-time

complexity of a transition isO(log |γ |). The value interpretation function J−Kγ is defined structurally

on values. Its worst-time complexity is exhibited by a nesting of pairs of variables J⟨x1, . . . , xn⟩Kγ
which has complexity O(n log |γ |).

Continuation copying. On the handler machine the topmost continuation frame can be copied in

constant time due to the persistent runtime and the layout of machine continuations. An alternative

design would be to make the runtime non-persistent, as in MLton [2020], in which case copying a

continuation frame ((σ , (γ , _)) :: _) would be a O(|σ | + |γ |) time operation.

Primitive operations on naturals. Our model assumes that arithmetic operations on arbitrary

natural numbers take O(1) time. This is common practice in the study of algorithms when the main

interest lies elsewhere (see [Cormen et al. 2009, Section 2.2]). If desired, one could adopt a more

refined cost model that accounted for the bit-level complexity of arithmetic operations; however,

doing so have essentially the same impact on both of the situations we are wishing to compare,

and thus would add nothing but noise to the overall analysis.

5 EFFICIENT GENERIC SEARCH
We now come to the crux of the paper. In this section we prove that λh accommodates some

programmable operations with an asymptotic runtime bound that cannot be achieved in λb. Whilst

the positive half of this claim essentially consolidates a known piece of folklore, the negative half

appears to be a genuinely new result. To obtain our results, it suffices to find just one efficient

program in λh and show that no equivalent program in λb can achieve the same asymptotic

complexity. We take generic search as our example.

Generic search is a modular search procedure that finds solutions to a given search problem P .
Generic search is agnostic to the specific instantiation of P , and as a result is applicable across a

wide spectrum of domains. Classic examples such as Sudoku solving [Bird 2006] and the n-queens

, Vol. 1, No. 1, Article . Publication date: March 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

:12 Daniel Hillerström, Sam Lindley, and John Longley

problem [Bell and Stevens 2009] can be cast as instances of generic search. Other instantiations

include problems from game theory such as computing Nash equilibria, problems from graph theory

such as graph colouring, and problems from real analysis such as real number integration [Daniels

2016; Simpson 1998].

To simplify the presentation, we compute the number of solutions (generic count), rather than

materialising all solutions (generic search). With little extra effort one can tweak the development to

compute exact solutions. Informally, a generic count program takes as input a predicate and returns

the number of times the predicate yields true. A predicate returns a boolean value which signifies

whether its input satisfies the predicate. As input a predicate takes a bit vector of length n > 0,

which we represent as a first-order function Nat→ Bool. Ultimately we ask for implementations

of a program, count, whose type is

countn : ((Natn → Bool) → Bool) → Nat

where Natn admits elements of the set Nn := {0, . . . , n − 1}. We often omit the n index when

clear from context; in particular it does not appear explicitly in the types of our programs as our

formalism does not support dependent types.

Before giving the necessary formal machinery to state and prove the result, we first introduce

the concepts informally.

5.1 Predicates and Points
Higher-order functions are the key to our modular formulation of generic search. We define a

predicate of size n as a closed value of the following type

Predicaten := Pointn → Bool

where n is a natural number, and a point is also a closed value of the following type

Pointn := Natn → Bool

Intuitively, a point implements a vector of boolean values where the natural number argument

serves as an index into the vector. A point need not be a total function; indeed points we concern

ourselves with are typically partial.

Examples. Let us consider some simple examples of predicates and points. As a first example

consider the constant point, ptrue := λ_.true. A slightly more interesting point is

p2 := λi.if i = 0 then true else if i = 1 then false else ⊥ i

where ⊥ := rec f i.f i is the always-diverging point.
Now let us move onto some example predicates. We can give a whole family of constant true

predicates. For example tt0 returns true irrespective of its point.

tt0 := λp.true

We can define a variation, tt2, which inspects two components of its point, but still returns true.

tt2 := λp.p 1; p 0; true

This predicate is slightly more interesting than tt0 as it is defined only for points defined on Natn
for n ≥ 2. A predicate may inspect the same component of its point more than once

red1 := λp.p 0; p 0

thus performing redundant work. Another class of predicates are divergent predicates such as

div1 := rec div p.if p 0 then div p else false

, Vol. 1, No. 1, Article . Publication date: March 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Effects for Efficiency :13

!true

(a) tt0

?0

?0

..
.

!false

!false

(b) div1

?0

?1

!false !true

?1

!true !false

(c) odd2

Fig. 7. Example Decision Tree Models

which diverges whenever the 0-th index of the point yields true. Thus both div1 ptrue and div1 p2
never terminate. Finally, let us consider a predicate which determines whether a point contains an

odd number of true components

oddn := λp.fold ⊗ false (map p [0, . . . , n − 1])

where fold and map are the standard combinators on lists and ⊗ is exclusive-or. This predicate is

only well-defined for n > 0. Applying odd2 to p2 yields true; applying it to ptrue yields false.

Predicate Models. In essence a predicate is a decision procedure, which participates in a ‘dialogue’

with a supplied point p : Pointn. The predicate may query (i.e. invoke) the components of p, and
p then responds (i.e. returns). Ultimately this dialogue may answer whether the point satisfies

the predicate. We can model the behaviour of a predicate as an unrooted binary decision tree

characterising the predicate’s interaction with p, where each interior node is labelled with a query

?i (for i ∈ Nn) whose left subtree corresponds to p i being true and whose right subtree corresponds
to p i being false, and each leaf is labelled with an answer !true or !false according to whether

p satisfies the predicate. The trees are unrooted to account for the computation that occurs in

between the application of a predicate to p and the first query or answer.

Figure 7 depicts models of some of the example predicates given above. The model of tt0 is

simply an unrooted leaf (Figure 7a). The model of div1 is an infinite left-branching tree (Figure 7b).

The model of odd2 is a complete binary tree (Figure 7c). A further example is the model of the

unconditionally divergent predicate div := rec div p.div p, which is empty.

Restrictions. In order to obtain a meaningful complexity result we must constrain the predicates

of interest. At one extreme, counting the size of a divergent predicate like div is meaningless. At the

other extreme, a constant predicate like tt0 exhibits no interesting computational characteristics;

other constant predicates likett2 inspect their provided point. Predicates like red1 perform redundant

work. Such redundancy can be eliminated via insertion of a local let binding.

Thus we restrict attention to predicates that for n > 0:

(1) terminate when applied to any point p; and
(2) inspect each bit 0 < i < n of p exactly once.

Of the examples so far, the ones satisfying these conditions are tt2 and oddn. Predicates satisfying 1
and 2 are exactly those whose models form complete binary trees (as in Figure 7c), which we call

n-standard. We provide a rigorous definition of n-standard predicates in Section 5.3. To satisfy 1,

we also require that points terminate on their defined domain Natn. We call a point that is defined

on 0 < i < n an n-point.

, Vol. 1, No. 1, Article . Publication date: March 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

:14 Daniel Hillerström, Sam Lindley, and John Longley

5.2 Effectful Generic Counting
Having introduced predicates and points informally, we move onto presenting our effectful imple-

mentation of count. Our implementation is a variation of the example handler for nondeterministic

computation that we gave in Section 2. The main idea is to implement points as nondeterministic

computations using the Branch operation such that the handler may respond to every query twice

by invoking the provided resumption with true and subsequently false. The key insight is that

the resumption restarts computation at the invocation site of Branch, which means that prior

computation need not be repeated. In other words, the resumption ensures that common bits of

computations prior to any query are shared between both branches.

We fix the effect signature Σ := {Branch : 1→ Bool}. The algorithm is then as follows.

effcount : ((Nat→ Bool) → Bool) → Nat
effcount P := handle P (λ_.do Branch ⟨⟩) with

val b 7→ if b then return 1 else return 0

Branch ⟨⟩ r 7→ let xtrue ← r true in
let xfalse ← r false in xtrue + xfalse

The handler applies predicate P to a single point defined using Branch. The boolean return value

is interpreted as a single solution, whilst Branch is interpreted by alternately supplying true and
false to the resumption and summing the results. A curious detail about effcount is that it works
for all n-standard predicates without having to know the exact value of n. This is because the point
(λ_.do Branch ⟨⟩) represents the superposition of all possible points. The sharing enabled by the

use of the resumption is exactly the ‘magic’ we need to make it possible to implement generic

counting more efficiently in λh than in λb.

5.3 Predicates, Points, and their Models, Formally
We now formalise the notions of n-standard predicates, points, and their models. For simplicity,

we formalise these concepts using the operational semantics and abstract machine for the base

language λb; this means that the above concepts will be defined only for predicates expressible in

λb. There is in principle no strong need for this restriction — with a little extra effort, corresponding

concepts can be defined for λh predicates, and our efficiency result for effcount will be applicable
to these too — but we choose to avoid this inessential complication.

We begin by formalising the decision tree model of predicates. We first introduce the label set,

Lab, consisting of queries and answers.

Notation. We write bs ⊏ bs′ to mean that list bs is a prefix of list bs′.

Definition 5.1 (label set). The label set Lab consists of queries parameterised by a natural number

and answers parameterised by a boolean.

Lab := {?n | n ∈ N} ∪ {!true, !false}

We model a decision tree as a partial function from lists of booleans to labels; each boolean list

specifies a cursor into the tree as a path from the root of the tree.

Definition 5.2 ((untimed) decision tree). A decision tree is a partial function t : B∗ ⇀ Lab from
lists of booleans to node labels with the following properties:

• The domain of t, dom(t), is prefix closed.
• If t(bs) = !b then t(bs′) is undefined for all bs′ ⊐ bs. In other words answer nodes are always

leaves.

Timed decision trees are decorated with timing data that records the number of machine steps.

, Vol. 1, No. 1, Article . Publication date: March 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Effects for Efficiency :15

Definition 5.3 (timed decision tree). A timed decision tree is a partial function t : B∗ ⇀ Lab ×Nat
such that its first projection bs 7→ t(bs).1 is a decision tree. We write labs(t) for the first projection
(bs 7→ t(bs).1) and steps(t) for the second projection (bs 7→ t(bs).2) of a timed decision tree.

We now relate predicates to decision trees by way of an interpretation of configurations as

decision trees.

Notation. We write a ≃ b for Kleene equality: either both a and b are undefined or both are

defined and a = b.

Definition 5.4. The timed decision tree of a configuration is defined by the following equations

T(⟨return true | γ | []⟩) [] = (!true, 0)
T (⟨return false | γ | []⟩) [] = (!false, 0)

T (⟨p V | γ | σ ⟩) [] = (?JV Kγ , 0)

T (⟨p V | γ | σ ⟩) (b :: bs) ≃ T (⟨return b | γ | σ ⟩) bs
T(⟨M | γ | σ ⟩) bs ≃ I(T (⟨M ′ | γ ′ | σ ′⟩) bs),

if ⟨M | γ | σ ⟩ −→ ⟨M ′ | γ ′ | σ ′⟩

where I(ℓ, s) = (ℓ, s+1) and p is a distinguished free variable such that in all of the above equations

γ (p) = γ ′(p) = p. The decision tree of a computation term is obtained by placing it in the initial

configuration: T(M) := T(⟨M, ∅[p 7→ p],κ0⟩). The decision tree of a predicate P is T(P p). Since p
is a distinguished variable, we often omit it and write T(P) for T(P p).

We can define a construction procedure, U, for untimed decision trees using T as follows:

U(P) := bs 7→ T (P)(bs).1.

Definition 5.5 (n-standard trees and n-standard predicates). For any n > 0 a decision tree t is said
to be n-standard if:

• the domain of t consists of all the lists whose length is at most n, i.e., dom(t) = {bs : B∗ |
|bs | ≤ n};
• every leaf node in t is an answer node, i.e., for all bs ∈ dom(t) if |bs | = n then t(bs) =
!b, for some b ∈ B; and
• there are no repeated queries along any path in t: for all bs, bs′ ∈ dom(t), j ∈ N, if bs ⊑ bs′

and t(bs) = t(bs′) = ?j then bs = bs′.
A timed decision tree t is n-standard if its underlying untimed decision tree (bs 7→ t(bs).1) is. A
predicate P is said to be n-standard if its decision tree T(P) is an n-standard tree.

As alluded to in Section 5.1 n-standard decision tree models are exactly those that form a complete

binary tree such that each path contains no repeated queries. The third condition in the definition

requires only that there are no repeated queries along any path in the model; it does not impose a

particular ordering on those queries.

We nowmove onto formalising points. Our model of points is only used for extensional reasoning

about programs in the λb-language as we can reason intensionally about the single point used by

effcount in the λh-language. As remarked in Section 5.1, points may in general be partial, however,

the points that we shall consider all have the property that they terminate whenever applied to an

element of their defined domain (Natn for some n > 0).

Definition 5.6 (n-points). For any n > 0 a closed value p : Pointn is said to be an n-point if
∀i ∈ Nn.p i {∗ return true ∨ p i {∗ return false.

A semantic n-point π is the denotation of an n-point p, i.e. a mathematical function Nn → Bool.
For any n-point p its corresponding semantic n-point is given by π = PJpK, where PJ−K is the
realisation of the operational behaviour of p

PJ−K : Pointn → (Nn → B)
PJpK := i ∈ Nn 7→ p i

, Vol. 1, No. 1, Article . Publication date: March 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

:16 Daniel Hillerström, Sam Lindley, and John Longley

Moreover, any two n-points p0 and p1 are said to be distinct if their corresponding semantic n-points
differ, i.e.:

∃i ∈ Nn.PJP0K i , PJP1K i
5.4 Specification of Generic Counting
We now formally define generic counting.

Definition 5.7. A counting function is a partial function of type B∗ ⇀ N.

As with the decision tree functions, the list argument to a counting function serves as a cursor

into the model of the predicate. However, in this case, the function computes the sum of the true
answers in the subtree pointed to by the cursor. Thus in order to compute the sum of all true
answers we apply the counting function to the empty list. The following definition provides a

procedure for constructing a counting function for any predicate.

Definition 5.8. The counting function for a configuration is defined by the following equations.

C(⟨return true | γ | []⟩) [] = 1

C(⟨return false | γ | []⟩) [] = 0

C(⟨p V | γ | σ ⟩) [] = C(⟨return true | γ | σ ⟩) [] + C(⟨return false | γ | σ ⟩) []
C(⟨p V | γ | σ ⟩) (b :: bs) ≃ C(⟨return b | γ | σ ⟩) bs

C(⟨M | γ | σ ⟩) bs ≃ C(⟨M ′ | γ ′ | σ ′⟩) bs, if ⟨M | γ | σ ⟩ −→ ⟨M ′ | γ ′ | σ ′⟩

where p is a distinguished free variable such that in all of the above equations γ (p) = γ ′(p) = p. As
with T , we write C(P) for C(P p).

Definition 5.9 (generic count program). A program C : ((Nat→ Bool) → Bool) → Nat is said to

be an n-count program if for every n-standard predicate P
C P {+ return C(P)([])

The restriction to n-standard predicates might at first seem rather tiresome and unnatural, but

in the context of our work it has two motivations. First, it allows us to present the essence of our

effectful generic counting algorithm in its simplest, cleanest form (compare the effcount program
given above with the more widely applicable versions in Section 6.1 below). Second, it will enable us

in Section 5.6 to present our main negative result in a particularly sharp form: in the base language

λb, no n-count program can compete with effcount even on n-standard predicates.

5.5 Complexity of Effectful Generic Counting
In this section we formulate correctness and asymptotic bounds for running the effectful generic

counting program effcount on a predicate P . Full proofs are in Appendix C.

A key feature of the proof is that we must alternate between intensional and extensional modes

of reasoning. As effcount is a fixed program, we can reason intensionally about its behaviour and

thereby directly observe machine transitions. But we must also consider the transitions of P . Since
the code for P is unknown we cannot employ the same reasoning technique. Instead, we reason

extensionally by making use of the fact that the timed decision tree model of P contains the exact

number of transitions that P performs in each branch of computation.

Theorem 5.10. For all n > 0 and any n-standard predicate P it holds that
(1) The program effcount is a generic counting program.
(2) The runtime complexity of effcount P is given by:

|bs | ≤n∑
bs∈B∗

steps(T (P))(bs) + O(2n)

, Vol. 1, No. 1, Article . Publication date: March 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Effects for Efficiency :17

Proof. Both items can be proved by downwards induction on the length of bs and alternating,

as needed, between intensional reasoning about reduction steps within effcount and extensional

reasoning about reduction steps for P . We give the full details in Appendix C.

□

The above formula can clearly be simplified for certain reasonable classes of predicates. For

instance, suppose we fix some constant c ∈ N, and let Pn,c be the class of all n-standard predicates P
for which all the edge times steps(T (P))(bs) are bounded by c. (Clearly, many reasonable predicates

will belong to Pn,c for some modest value of c.) Since the number of sequences bs in question is

less than 2
n+1

, we may read off from the above formula that for predicates in Pn,c , the runtime

complexity of effcount is O(2n).
As a related aside, one might also ask about the execution time for an implementation of λh

that performs genuine copying of continuations, as in systems such as MLton [2020]. We will not

present the details of such an implementation, but it is informally clear that our O(2n) bound would

still apply as long as the continuations associated with internal nodes of T(P) never becomes too

large. Specifically, we might consider a class Qn,c,k of n-standard predicates P for which the edge

times in T(P) never exceed c and the sizes of the continuations never exceed k. (Once again, for
reasonable c and k this gives us a respectable class of predicates.) Then it is intuitively clear that

for such predicates, the total continuation-copying time will be O(2n), so that the overall runtime

will still be O(2n).

5.6 Pure Generic Counting
We have shown that there is an implementation of count in λh with a runtime bound of O(2n) for

certain well-behaved predicates. We now prove that no implementation of count in λb can match

this: in fact, we establish a lower bound of Ω(n2n) for the runtime of count on any n-standard
predicate. Later, we shall extend our result to richer languages incorporating state or exceptions.

This mathematically rigorous characterisation of the efficiency gap between languages with and

without first-class control constructs is the central contribution of the paper.

One might ask at this point whether the claimed lower bound could not be obviated by means of

some known continuation passing style (CPS) or monadic transform of effect handlers [Hillerström

et al. 2017; Leijen 2017]. This can indeed be done, but only by dint of changing the type of our

predicates P —which, as noted in the introduction, would defeat the purpose of our present enquiry.

Our intention is precisely to investigate the relative power of various languages for manipulating

predicates that are presented to us in a certain way which we do not have the luxury of choosing.

To get a feel for the issues that our proof must address, let us consider how one might go about

constructing a count program in λb. The naive approach, of course, would be simply to apply the

given predicate P to all 2
n
possible n-points in turn, keeping a count of those on which P yields true.

It is a routine exercise to implement this approach in λb, yielding (parametrically in n) a program

naivecountn : ((Natn → Bool) → Bool) → Nat

Since the evaluation of an n-standard predicate on an individual n-point p must clearly take time

Ω(n), we have that the evaluation of naivecountn on any n-standard predicate P must take time

Ω(n2n). If P is not n-standard, the Ω(n) lower bound need not apply, but we may still say that the

evaluation of naivecountn on any predicate P (at level n) must take time Ω(2n).
One might at first suppose that both these properties are inevitable for any implementation of

count within λb, or indeed any purely functional language: surely, the only way to learn something

about the behaviour of P on every possible n-point is to apply P to each of these points in turn? It

turns out, however, that the Ω(2n) lower bound can sometimes be circumvented by implementations

that cleverly exploit nesting of calls to P . The germ of the idea may be illustrated within λb itself.

, Vol. 1, No. 1, Article . Publication date: March 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

:18 Daniel Hillerström, Sam Lindley, and John Longley

Suppose that we first construct some program

bestshotn : ((Natn → Bool) → Bool) → (Natn → Bool)

which, given a predicate P , returns some n-point p such that P p evaluates to true whenever this is

possible (i.e. whenever some such point exists). If P returns false on every n-point, we require simply

that bestshotn P returns some arbitrary n-point. (In other words, bestshotn embodies Hilbert’s

choice operator ε on predicates.) It is once again routine to construct such a program by naive

means; and we may moreover assume that for any P , the evaluation of bestshotn P takes only

constant time, all the real work being deferred until the argument of type Natn is supplied.
Now consider the following program:

lazycountn := λP . if P (bestshotn P) then naivecountn P else return 0

Here the term P (bestshotn P) serves to test whether there exists an n-point satisfying P : if there
is not, our count program may return 0 straightaway. It is thus clear that lazycountn is a correct
implementation of generic counting, and also that if P is the predicate λp.false then lazycountn P
will return 0 within O(1) time, thus violating the Ω(2n) lower bound suggested above.

This might seem a rather footling point, as lazycountn offers this efficiency gain only on (some

implementations of) the everywhere false predicate. However, by means of a recursive application

of such a nesting trick, we may arrive at a generic count program that spectacularly defies the

Ω(2n) lower bound for an interesting class of (non-n-standard) predicates, and indeed proves quite

viable for counting solutions to ‘n-queens’ and similar problems. We shall refer to this program

BergerCount, since it is modelled largely on Berger’s PCF implementation of the so-called fan
functional ([Berger 1990]; see also [Longley and Normann 2015]). This program is of some interest

in its own right, and will be briefly presented in Section 6.3. As we shall see, BergerCount actually
requires a mild extension of λb with a ‘memoisation’ primitive to achieve the effect of call-by-need

evaluation; but such a language can still be seen as purely ‘functional’ in the same sense as Haskell.

In the meantime, however, the moral is that the use of nesting can lead to surprising phenomena

which sometimes defy intuition (Escardó [2007] gives some striking further examples of this). What

we now wish to show is that for n-standard predicates, the naive lower bound of Ω(n2n) cannot in
fact be circumvented; the example of BergerCount both highlights the need for a rigorous proof of

this and tells us that our argument will need to pay particular attention to the possibility of nesting.

We now proceed to the proof itself. In the interests of clarity, we first present a proof in the basic

setting of λb; later we will see how the approach scales to languages with state (Section 6.2).

As a modest first step, we note that where lower bounds are concerned, it will suffice to work with

the small-step operational semantics of λb rather than the more elaborate abstract machine model

employed in Section 4.1. This is because, as observed in Section 4.1, there is a tight correspondence

between these two execution models such that for the evaluation of any closed term, the number of

abstract machine steps is always at least the number of small-step reductions. Thus, if we are able

to show that the number of small-step reductions for any count program in λb on any n-standard
predicate is Ω(n2n), this will establish the desired lower bound on the runtime.

We now establish a key lemma, which vindicates the naive intuition that in the n-standard case,

the only way to discover the correct value for count P is to perform 2
n
separate applications P p

(albeit allowing for the possibility that these applications need not be performed ‘in turn’ but might

be nested in some complex way). We outline the proof here; full details are in Appendix D.

Lemma 5.11 (No shortcuts). If C is an n-count program and P is an n-standard predicate, then C
applies P to at least 2n distinct n-points. More formally, for any of the 2n possible semantic n-points
π : Nn → B, there is a term E[P p] appearing in the small-step reduction of C P such that p is a closed
value (hence an n-point) and PJpK = π .

, Vol. 1, No. 1, Article . Publication date: March 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Effects for Efficiency :19

Proof. Suppose C and P are as above, and suppose for contradiction that π is some semantic

n-point such that no corresponding application P p ever arises in the course of computing C P . Let
t be the untimed decision tree for P . Now consider the leaf node in t corresponding to the point π ,
and let t ′ be the tree obtained from t ′ by simply negating the boolean value at this leaf node. It is

then a fairly simple matter to construct a predicate P ′ whose decision tree is t ′.
Since the numbers of true-leaves in t and t ′ differ by 1, it is clear that if C is indeed a correct

n-count program, then the values returned by C P and C P ′ will have an absolute difference of 1.

On the other hand, we will argue that if the computation of C P never actually ‘visits’ the leaf node

in question, then C is unable to detect any difference between P and P ′.
The situation here is reminiscent of Milner’s context lemma for PCF [Milner 1977], which (loosely)

says that essentially the only way to observe a difference between two programs is to apply them to

some argument on which they differ. Traditional proofs of the context lemma reason by induction

on length of reduction sequences, and our present proof is modelled on these. Specifically, one

proves the following by induction on m:

Suppose C P {∗ E[P p[P]] where E is an evaluation context, and the context p[−]
abstracts all occurrences of P that are residuals of the key occurrence in C P . If
P p[P] {m return V , then also P ′ p[P ′] {∗ return V .

To show this, we note that the tree t provides an analysis of the reduction behaviour of P p[P],
and this behaviour can be seen to be mimicked by P ′ p[P ′] using the induction hypothesis together

with the fact that P ′ has tree t ′ and p[P] does not denote the point π .
From the above claim one may now read off that if C P {∗ return c then also C P ′ {∗ return c.

This gives the desired contradiction, as we have already noted that these valuesmust be different. □

Corollary 5.12. Suppose C and P are as in the preceding Lemma. For any semantic n-point π , the
reduction sequence for C P contains at least n occurrences of terms F [p i], where F [−] is an evaluation
context, p is an n-point denoting π , and i is a natural number value.

Proof. Let π be any semantic n-point. By the previous lemma, the reduction sequence for C P
contains some term E[P p] where p is an n-point denoting π ; and the n-standardness of P tells us

that the reduction sequence for P p contains n occurrences of terms G[p i] where i is a natural
number value and G is an evaluation context. Hence the reduction sequence for C P contains n
occurrences of terms F [p i] ≡ E[G[p i]]. □

The desired lower bound now follows. Since our n-points p are assumed to be values, it is clearly

impossible for the same term to be of the form E[p i] and E ′[p′ i′] for two distinct n-points p, p′ and
evaluation contexts E, E ′. It is therefore immediate from our corollary that the reduction sequence

for C P consists of at least n2n distinct terms, i.e. the reduction has length ≥ n2n.

Theorem 5.13. If C is an n-count program and P is any n-standard predicate, then the evaluation
of C P must take time Ω(n2n). □

As we shall see, the above argument goes through with just minor adjustments for an extension

of λb with exceptions, and also for a language containing the memoisation primitive required for

BergerCount. For a stateful language, however, some further ingredients are required: we will

return to this in Section 6.

6 EXTENSIONS AND VARIATIONS
Our complexity result is robust in that continues to hold in more general settings. We outline here

how it generalises beyond n-standard predicates and to richer base languages.

, Vol. 1, No. 1, Article . Publication date: March 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

:20 Daniel Hillerström, Sam Lindley, and John Longley

6.1 Beyond n-Standard Predicates
The n-standard restriction on predicates serves to make the efficiency phenomenon stand out as

clearly as possible. However, we can relax the restriction by tweaking effcount to handle repeated

queries and missing queries. The trade off is that the analysis of effcount becomes more involved.

The key to relaxing the n-standard restriction is the use of state to keep track of which queries

have been computed. We can give stateful implementations of effcount without changing its type
signature by using parameter-passing [Kammar et al. 2013; Pretnar 2015] to internalise state within

a handler. Parameter-passing abstracts every handler clause such that the current state is supplied

before evaluation of a clause continues and the state is threaded through resumptions: a resumption

becomes a two-argument curried function r : B→ S → D, where the first argument of type B is

the return type of the operation and the second argument is the updated state of type S.

Repeated queries. We can generalise effcount to handle repeated queries by memoising previous

answers. First, we generalise the type of Branch such that it carries an index of a query.

Branchn : Natn → Bool

We assume a family of natural number to boolean maps, Mapn with the following interface.

emptyn : Mapn
addn : ⟨Natn,Bool⟩ → Mapn → Mapn

lookupn : Natn → Mapn → 1 + Bool

Invoking the lookup function lookup i map returns inl ⟨⟩ if i is not present in map, and inr ans if
i is present, where ans : Bool is the value associated with i. We can realise suitable maps in λb such
that the time complexity of addn and lookupn is O(log n) [Okasaki 1999].

We can now use parameter-passing to support repeated queries as follows.

effcount′n : ((Natn → Bool) → Bool) → Nat
effcount′n P := let h← handle P (λi.do Branchn i) with

val b 7→ λs.if b then return 1 else return 0

Branchn i r 7→ λs.case lookupn i s {
inl ⟨⟩ 7→ let xtrue ← r true (addn ⟨i, true⟩ s) in

let xfalse ← r false (addn ⟨i, false⟩ s) in
return (xtrue + xfalse);

inr b 7→ r b s }
in h emptyn

The state parameter s memoises query results, thus avoiding double-counting and enabling

effcount′n to work correctly for predicates performing the same query multiple times.

Missing queries. Similarly, we can use parameter-passing to support missing queries.

effcount′′n : ((Natn → Bool) → Bool) → Nat
effcount′′n P := let h← handle P (λi.do Branch ⟨⟩) with

val b 7→ λd.let result ← if b return 1 else return 0 in
return result × 2n−d

Branch ⟨⟩ r 7→ λd.let xtrue ← r true (d + 1) in
let xfalse ← r false (d + 1) in
return (xtrue + xfalse)

in h 0

The parameter d keeps track of the current depth and the returned result is scaled up by 2
n−d

accounting for the unexplored part of the current subtree. This enables effcount′′n to operate

correctly on predicates that inspect n points at most once. We leave it as an exercise for the reader

, Vol. 1, No. 1, Article . Publication date: March 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Effects for Efficiency :21

to combine effcount′n and effcount′′n in order to obtain a generic count function that handles both

repeated queries and missing queries.

6.2 Extending λb with State
Mutable state is a staple ingredient of many practical programming languages. We now outline

how our main lower bound result can be extended to a language with state. We will not give full

details, but merely point out the respects in which our previous treatment needs to be modified.

We have in mind an extension of λb with ML-style reference cells: we extend our grammar

for types with the new type for references A ::= Ref A, and that for computation terms with the

new forms for creating references (letref x = V in N), dereferencing (!x), and destructive update

(x := V), with the familiar typing rules. We also add a new kind of value, namely locations lA, of
type Ref A. We adopt a simple Scott-Strachey model of store [Scott and Strachey 1971]: a location

will be simply a natural number decorated with a type, and the execution of a stateful program

will allocate locations in the order 0, 1, 2, . . ., assigning types to them as it does so. A store s will
be simply a type-respecting mapping from some set of locations {0, . . . , l − 1} to values. For the

purposes of small-step operational semantics, a configuration will be a triple (M, l, s), where M is

a computation, l is a ‘location counter’, and s is a store with domain {0, . . . , l − 1}. A reduction

relation{ on configurations is defined in a familiar way (again we omit the details). We shall refer

to the resulting stateful language as λs.
Certain aspects of our setup require care in the presence of state. For instance, there is in general

no unique way to assign an (untimed) decision tree to a closed value P : Predicaten, since the
behaviour of P on a value p : Pointn may depend both on the initial state when P is invoked, and

on the ways in which the associated computations p V {∗ return W modify the state. In this

situation, there is not even a clear specification for what an n-count program ought to do.

The simplest way to circumvent this difficulty is to define a predicate to be a closed value

P : Predicaten within the sublanguage λb. For such predicates, the notions of decision tree, counting

function and n-standardness are unproblematic. Our result will establish a runtime lower bound of

Ω(n2n) for count programs C ∈ λs applied only to predicates P of this kind.

On the other hand, since C itself may be stateful, we cannot exclude the possibility that C P will

apply P to terms p that are themselves stateful. Such a term p will no longer unambiguously denote

some semantic point π , and this means the proof of Section 5.6 will not go through as it stands.

To adapt our proof to the setting of λs, a little more machinery will be helpful. If C is an n-count
program and P an n-standard predicate, we expect that the evaluation of C P will at various points

feature terms E[P p] which are then reduced in subsequent steps to some E[return W], via a
reduction sequence which, modulo E[−], has the following form:

P p {∗ E0[p i0] {∗ E0[return b0] {∗ · · · {∗ En−1[p in−1] {∗ En−1[return bn−1] {∗ return W

(For notational clarity, we suppress mention of the location and store components here.) Informally,

one can think of this as a dialogue in which control passes back and forth between P and p. We

shall refer to the portions Ej[p ij] {∗ Ej[return bj] of the above reduction as p-sections, and to the
remaining portions (including the first and the last) as P-sections. We refer to the totality of these

P-sections and p-sections as the thread arising from the given occurrence of the application P p.
An important point to note is that since p may contain other occurrences of P , it is quite possible
for the p-sections above to contain further threads corresponding to other applications P p′.
Since P is n-standard, we know that each thread will consist of n + 1 P-sections separated by n

p-sections. Indeed, it is clear that this computation traces the path b0 . . . bn−1 through the decision

tree for P , with i0, . . . , in−1 the corresponding internal node labels. We may now construe b0 . . . bn−1

, Vol. 1, No. 1, Article . Publication date: March 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

:22 Daniel Hillerström, Sam Lindley, and John Longley

as a semantic point π : Nn → B, and call it the semantic point associated with (the thread arising

from) the application occurrence P p.
The following lemma now serves as a surrogate for Lemma 5.11:

Lemma 6.1. Let P be an n-standard predicate. For any semantic point π : Nn → B, the evaluation
of C P involves an application occurrence P p associated with π .

The proof of this lemma is not too different from that of Lemma 5.11: if π were a point with no

associated thread, there would be an unvisited leaf in the decision tree, and we could manufacture

an n-standard predicate P ′ whose tree differed from that of P only at this leaf. We can then show,

by induction on length of reductions, that any portion of the evaluation of C P can be suitably

mimicked with P replaced by P ′. Naturally, this idea now needs to be formulated at the level of

configurations rather than plain terms: in the course of reducing (C P, 0, []), we may encounter

configurations (M, l, s) in which residual occurrences of P have found their way into s as well as M ,

so in order to replace P by P ′ we must abstract on all these occurrences via an evident notion of

configuration context. With this adjustment, however, the argument of Lemma 5.11 goes through.

Since each thread involves at least the n terms Ej[p ij], our proof of the Ω(n2n) bound is complete

provided we can show that no two threads overlap: more precisely, none of the above terms Ej[p ij]
can belong to the P-section of more than one thread. The difficulty here is that because syntactic

points no longer have unambiguous denotations, the relevant π can no longer be simply read off

from p: indeed, it is entirely possible that our computation may involve two instances of the same

application P p giving rise to entirely different threads owing to the presence of state. Fortunately,

however, we may reason as follows.

Let us suppose that P p and P p′ are any two application occurrences arising in the evaluation of

C P , with P p appearing before P p′, and suppose these respectively give rise to threads T , T ′. We

wish to show that the P-sections of T do not overlap with those of T ′. There are three cases:

• If T ′ does not start until after T has finished, then of course T , T ′ are disjoint.
• If T ′ starts within some p-section Ej[p ij] {∗ Ej[return bj] of T , then it is not hard to see

that T ′ must also end within this same p-section, as the evaluation of P p′ forms part of the

evaluation of p ij .
• It is not possible for T ′ to start within a P-section of T . This follows from the fact that a

‘residual occurrence’ of P (that is, one arising as a residual of the P in C P) cannot itself
contain other residual occurrences of P ; thus, for any term arising from the reduction of P p
(discounting P p itself), every residual occurrence of P occurs within some p.

Arguing along such lines, one can show that any two threads are indeed ‘disjoint’, in such a way

that there must be at least n2n steps in the overall reduction sequence.

6.3 Berger Count
We now briefly outline the BergerCount program alluded to in Section 5.6, in order to fill out our

overall picture of the relationship between language expressivity and potential program efficiency.

Berger’s original program [Berger 1990] introduced a remarkable search operator for predicates

on infinite streams of booleans, and has played an important role in higher-order computability

theory [Longley and Normann 2015]. What we wish to highlight here is that if one applies the algo-

rithm to predicates on finite boolean vectors, the resulting program, though no longer interesting

from a computability perspective, still holds some interest from a complexity standpoint: indeed, it

yields what seems to be the best available implementation of generic counting within a PCF-style

‘functional’ language (provided one accepts the use of a primitive for call-by-need evaluation).

, Vol. 1, No. 1, Article . Publication date: March 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Effects for Efficiency :23

We give the gist of an adaptation of Berger’s search algorithm on finite spaces.

bestshotn : Predicaten → Pointn
bestshotn P := bestshot′n P []

bestshot′n : Predicaten → List Bool→ Pointn
bestshot′n P start := let f ← memoise (λ⟨⟩.bestshot′′n P start) in

return (λi.if i < |start | then start.i else (f ⟨⟩).i)

bestshot′′n : Predicaten → List Bool→ List Bool
bestshot′′n P start := if |start | = n then return start

else let f ← bestshot′n P (append start [true]) in
if P f then return [f 0, . . . , f (n − 1)]
else bestshot′′n P (append start [false])

The function bestshotn will return a point satisfying the given predicate P if there is one, or the

dummy point λi.false if there is none. This is implemented by means of two mutually recursive

auxiliary functions whose workings are admittedly hard to elucidate in a few words. The function

bestshot′n is a generalisation of bestshotn that makes a best shot at finding a point p satisfying P
and matching some specified list start in some initial segment of its components [p 0, . . . , p (i − 1)].
This works ‘lazily’, drawing its values from start wherever possible, and performing an actual

search only when required. This actual search is undertaken by bestshot′′n , which proceeds by

first searching for a solution that extends the specified list with true; but if no such solution is

forthcoming, it settles for false as the next component of the point being constructed. The whole

procedure relies on a subtle combination of laziness, recursion and implicit nesting of calls to P
which means that the search is self-pruning in regions of the binary tree where P only demands

some initial segment p 0,. . . ,p (i − 1) of its argument p.
The above program makes use of an operation

memoise : (1→ List Bool) → (1→ List Bool)

which transforms a given thunk into an equivalent ‘memoised’ version, i.e. one that caches its

value after its first invocation and immediately returns this value on all subsequent invocations.

Such an operation may readily be implemented in λs, or alternatively may simply be added as a

primitive in its own right (we omit the details). The latter has the advantage that it preserves the

purely ‘functional’ character of the language, in the sense that every program is observationally

equivalent to a λb program, namely the one obtained by replacing memoise by the identity.

We now show how the above idea may be exploited to yield a generic count program (this part

of our work appears to be new).

BergerCountn : Predicaten → Nat
BergerCountn P := count′n P [] 0

count′n : Predicaten → List Bool→ Nat→ Nat
count′n P start acc := if |start | = n then acc + (if P(λi.start.i) then return 1 else return 0)

else let f ← bestshot′n P start |start | in
if P f then count′′n start [f 0, . . . , f (n − 1)] acc else return acc

count′′n : Predicaten → List Bool→ List Bool→ Nat→ Nat
count′′n P start leftmost acc := if |start | = n then acc + 1

else let b← leftmost.|start | in
let acc′ ← count′′n (append start [b]) leftmost acc in
if b then count′n (append start [false]) acc′ else return acc′

Again, BergerCountn is implemented by means of two mutually recursive auxiliary functions. The

function count′n counts the solutions to P that start with the specified list of booleans, adding their

number to a previously accumulated total given by acc. The function count′′n does the same thing,

, Vol. 1, No. 1, Article . Publication date: March 2020.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

:24 Daniel Hillerström, Sam Lindley, and John Longley

Queens Integration
First solution All solutions Id Squaring Logistic

Parameter 20 24 28 8 10 12 20 14 17 20 1 2 3 4 5

Naïve ∞ ∞ ∞ 274.18 ∞ ∞ 17.17 50.61 65.8 80.58 ∞ ∞ ∞ ∞ ∞

Berger 9.29 12.69 ∞ 2.11 2.81 3.41 5.59 23.30 25.65 27.50 26.10 33.27 34.02 32.76 31.00

Pruned 2.03 2.37 2.66 1.29 1.42 1.52 2.27 4.39 5.00 5.08 4.80 6.25 7.18 8.09 8.80

Bespoke 0.13 0.12 0.12 0.15 0.05 0.04

Table 1. Runtimes Relative to the Effectful Implementation

but exploiting the knowledge that a best shot at the ‘leftmost’ solution to P within this subtree has

already been computed. (We are visualising n-points as forming a binary tree with true to the left

of false at each fork.) Thus, count′′n will not re-examine the portion of the subtree to the left of this

candidate solution, but rather will start at this solution and work rightward.

This gives rise to an n-count program that can work efficiently on predicates that tend to ‘fail

fast’: more specifically, predicates P that inspect the components of their argument p in order p 0,

p 1, p 2, . . . , and which are frequently able to return false after inspecting just a small number of

these components. Generalising our program from binary to k-ary branching trees, we see that

the n-queens problem provides a typical example: most points in the space can be seen not to be

solutions by inspecting just the first few components. Our experimental results in Section 7 attest

to the viability of this approach and its overwhelming superiority over the naive functional method.

By contrast, the above program is not able to take advantage of parts of the tree where our

predicate ‘succeeds fast’, i.e. returns true after seeing only a few components. Unlike the effectful

count program of Section 5.2, which may sometimes add 2
n−d

to the count in a single step, the

Berger approach can only count solutions one at a time. Thus, any evaluation of countn P that

returns a natural number c must take time Ω(c). These observations informally indicate the likely

extent of the efficiency gap between effectful and purely functional computation when it comes to

non-n-standard predicates.

7 EXPERIMENTS
The theoretical efficiency gap between realisations of λb and λh manifests in practice. We have

observed it empirically on instantiations of n-queens and exact real number integration, which

can be cast as generic search. Table 1 shows the speedup of using an effectful implementation

of generic search over various pure implementations. We discuss the benchmarks and results in

further detail below.

Methodology. We evaluated an effectful implementation of generic search against three “pure”

implementations which are realisable in λb extended with mutable state:

• Naïve: a simple, and rather naïve, functional implementation;

• Pruned: a generic search procedure with space pruning based on Longley’s technique [Longley

1999] (uses local state);

• Berger: a lazy pure functional generic search procedure based on Berger’s algorithm.

Each benchmark was run 11 times. The reported figure is the median runtime ratio between

the particular implementation and the baseline effectful implementation. Benchmarks that failed

to terminate within a threshold (1 minute for single solution, 8 minutes for enumerations), are

reported as ∞. The experiments were conducted in SML/NJ v110.78 with factory settings on an

Intel Xeon CPU E5-1620 v2 @ 3.70GHz powered workstation running Ubuntu 16.04. The effectful

, Vol. 1, No. 1, Article . Publication date: March 2020.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Effects for Efficiency :25

implementation uses an encoding of delimited control akin to effect handlers based on top of

SML/NJ’s call/cc.

Queens. We phrase the n-queens problem as a generic search problem. As a control we include a

bespoke implementation hand-optimised for the problem. We perform two experiments: finding

the first solution for n ∈ {20, 24, 28} and enumerating all solutions for n ∈ {8, 10, 12}. The speedup
over the naïve implementation is dramatic, but less so over the Berger procedure. The pruned

procedure is more competitive, but still slower than the baseline. Unsurprisingly, the baseline is

slower than the bespoke implementation.

Exact Real Integration. The integration benchmarks are adapted from Simpson [1998]. We inte-

grate three different functions with varying precision in the interval [0, 1]. For the identity function
(Id) at precision 20 the speedup relative to Berger is 5.59×. For the squaring function the speedups

are larger at higher precisions: at precision 14 the speedup is 4.39× over the pruned integrator,

whilst it is 5.08× at precision 20. The speedups are more extreme against the naïve and Berger

integrators. We also integrate the logistic map x 7→ 1 − 2x2 at a fixed precision of 15. We make

the function harder to compute by iterating it up to 5 times. Between the pruned and effectful

integrator the speedup ratio increases as the function becomes harder to compute.

8 CONCLUSIONS AND FUTUREWORK
We presented a PCF-inspired language λb and its extension with effect handlers λh. We proved that

λh exhibits an asymptotically more efficient implementation of generic search than any possible

implementation in λb. We observed its effect in practice on several benchmarks. We also proved

that our Ω(n2n) lower bound applies to a language λs which extends λb with state.

We have also verified that the same lower bound applies to a language λe which extends λb with
(Benton-Kennedy style [Benton and Kennedy 2001]) exceptions and handlers — and even for the

combined language λse with both state and exceptions. As was the case for λs, it is helpful to insist

here that our predicates themselves are terms of λb. However, the adaptations of our proof method

required for λe are less interesting and far-reaching than those for λs so we do not present them

here. We also remark informally that λse seems to bring us close to the expressive power of real

languages such as Standard ML, Java, and Python, strongly suggesting that the speedup we have

discussed is unattainable in these language.

The result extends to other control operators by appeal to existing results on interdefinability of

handlers and other control operators [Forster et al. 2019; Piróg et al. 2019]. The result no longer

applies directly if we add an effect type system to λh, as the implementation of the counting program

would require a change of type for predicates to reflect the ability to perform effectful operations.

In future we plan to investigate how to account for effect type systems.

One might object that the efficiency gap we have analysed is of merely theoretical interest,

since an Ω(2n) runtime is already ‘infeasible’. What we claim, however, is that what we have

presented is an example of a much more pervasive phenomenon, and our generic counting example

serves merely as a convenient way to bring this phenomenon into sharp formal focus. Suppose, for

example, that our programming task was not to count all solutions to P , but to find just one of them.

It is informally clear that for many kinds of predicates this would in practice be a feasible task, and

also that we could still gain our factor n speedup here by working in a language with first-class

control. However, such an observation appears less amenable to a clean mathematical formulation,

as the runtimes in question are highly sensitive to both the particular choice of predicate and the

search order employed.

, Vol. 1, No. 1, Article . Publication date: March 2020.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

:26 Daniel Hillerström, Sam Lindley, and John Longley

ACKNOWLEDGMENTS
Wewould like to thank JamesMcKinna for insightful discussions about this work. Daniel Hillerström

was supported by EPSRC grant EP/L01503X/1 (EPSRC Centre for Doctoral Training in Pervasive

Parallelism). Sam Lindley was supported by EPSRC grant EP/K034413/1 (FromData Types to Session

Types—A Basis for Concurrency and Distribution).

REFERENCES
Andrej Bauer. 2018. What is algebraic about algebraic effects and handlers? CoRR abs/1807.05923 (2018).

Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. J. Log. Algebr. Meth. Program. 84,
1 (2015), 108–123.

Jordan Bell and Brett Stevens. 2009. A survey of known results and research areas for n-queens. Discret. Math. 309, 1 (2009),
1–31.

Nick Benton and Andrew Kennedy. 2001. Exceptional Syntax Journal of Functional Programming. J. Funct. Program. 11, 4
(2001), 395–410.

Ulrich Berger. 1990. Totale Objekte und Mengen in der Bereichstheorie. Ph.D. Dissertation. Ludwig Maximillians-Universtität,

Munich.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting algebraic effects. PACMPL 3, POPL

(2019), 6:1–6:28.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect instances

via lexically scoped handlers. PACMPL 4, POPL (2020), 48:1–48:29.

Richard Bird, Geraint Jones, and Oege de Moor. 1997. More haste less speed: lazy versus eager evaluation. J. Funct. Progr. 7,
5 (1997), 541–547.

Richard S. Bird. 2006. Functional Pearl: A program to solve Sudoku. J. Funct. Program. 16, 6 (2006), 671–679.
Robert Cartwright and Matthias Felleisen. 1992. Observable Sequentiality and Full Abstraction. In POPL. ACM Press,

328–342.

Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. 2020. Doo bee doo bee doo. J. Funct. Program. 30
(2020). To appear.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition
(3rd ed.). MIT Press.

Robbie Daniels. 2016. Efficient Generic Searches and Programming Language Expressivity. Master’s thesis. School of Informatics,

the University of Edinburgh, Scotland. http://homepages.inf.ed.ac.uk/jrl/Research/Robbie_Daniels_MSc_dissertation.pdf

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming. ACM, 151–160.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Madhavapeddy. 2015. Effective Concurrency

through Algebraic Effects. OCaml Workshop. (2015).

Martín Hötzel Escardó. 2007. Infinite sets that admit fast exhaustive search. In LICS. IEEE Computer Society, 443–452.

Matthias Felleisen. 1987. The Calculi of Lambda-nu-cs Conversion: A Syntactic Theory of Control and State in Imperative
Higher-order Programming Languages. Ph.D. Dissertation. Indianapolis, IN, USA. AAI8727494.

Matthias Felleisen. 1988. The Theory and Practice of First-Class Prompts. In POPL. ACM Press, 180–190.

Matthias Felleisen. 1991. On the expressive power of programming languages. Sci. Comput. Prog. 17, 1–3 (1991), 35–75.
Matthias Felleisen and Daniel P. Friedman. 1987. Control Operators, the SECD-machine, and the λ-Calculus. In The

Proceedings of the Conference on Formal Description of Programming Concepts III, Ebberup, Denmark. Elsevier, 193–217.
Andrzej Filinski. 1994. Representing Monads. In POPL. ACM Press, 446–457.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.

In PLDI. ACM, 237–247.

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-defined effects:

Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29 (2019), e15.
Daniel Hillerström and Sam Lindley. 2016. Liberating effects with rows and handlers. In TyDe@ICFP. ACM, 15–27.

Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. In APLAS (Lecture Notes in Computer Science), Vol. 11275.
Springer, 415–435.

Daniel Hillerström, Sam Lindley, and Robert Atkey. 2020. Effect Handlers via Generalised Continuations. J. Funct. Program.
30 (2020). To appear.

Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017. Continuation Passing Style for Effect

Handlers. In FSCD (LIPIcs), Vol. 84. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 18:1–18:19.

Neil Jones. 2001. The expressive power of higher-order types, or, life without CONS. J. Funct. Progr. 11 (2001), 5–94.
Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ICFP. ACM, 145–158.

, Vol. 1, No. 1, Article . Publication date: March 2020.

https://www.epsrc.ac.uk/
http://pervasiveparallelism.inf.ed.ac.uk
https://www.epsrc.ac.uk
http://groups.inf.ed.ac.uk/abcd/
http://homepages.inf.ed.ac.uk/jrl/Research/Robbie_Daniels_MSc_dissertation.pdf

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Effects for Efficiency :27

Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible effects: an alternative to monad transformers. In Haskell.
ACM, 59–70.

Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. 2005. Backtracking, Interleaving, and Terminating

Monad Transformers: (Functional Pearl). (2005), 192–203.

Donald Knuth. 1997. The Art of Computer Programming, Volume 1: Fundamental Algorithms (third edition). Addison-Wesley.

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In POPL. ACM, 486–499.

Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming languages.

Inf. Comput. 185, 2 (2003), 182–210.
Sam Lindley. 2014. Algebraic effects and effect handlers for idioms and arrows. In WGP@ICFP. ACM, 47–58.

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In POPL. ACM, 500–514.

John Longley. 1999. When is a functional program not a functional program?. In ICFP. ACM, 1–7.

John Longley. 2018. The recursion hierarchy for PCF is strict. Logical Methods in Comput. Sci. 14, 3:8 (2018), 1–51.
John Longley. 2019. Bar recursion is not computable via iteration. Computability 8, 2 (2019), 119–153.

John Longley and Dag Normann. 2015. Higher-Order Computability. Springer.
Robin Milner. 1977. Fully Abstract Models of Typed lambda-Calculi. Theor. Comput. Sci. 4, 1 (1977), 1–22.
MLton. 2020. MLton website. (2020). http://www.mlton.org

Chris Okasaki. 1999. Purely functional data structures. Cambridge University Press.

Nicholas Pippenger. 1996. Pure versus impure Lisp. In POPL. ACM, 104–109.

Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equivalence of Effect Handlers and Delimited Control. In

FSCD (LIPIcs), Vol. 131. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 30:1–30:16.

Gordon Plotkin. 1977. LCF considered as a programming language. Theor. Comput. Sci. 5, 3 (1977), 223–255.
Gordon D. Plotkin and John Power. 2001. Adequacy for Algebraic Effects. In FoSSaCS (Lecture Notes in Computer Science),

Vol. 2030. Springer, 1–24.

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (2013).
Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers. Electr. Notes Theor. Comput. Sci. 319 (2015), 19–35.

Invited tutorial paper.

Dana Scott and Christopher Strachey. 1971. Proceedings of the Symposium on Computers and Automata 21 (1971).
Alex K. Simpson. 1998. Lazy Functional Algorithms for Exact Real Functionals. In MFCS (Lecture Notes in Computer Science),

Vol. 1450. Springer, 456–464.

Michael Sperber, Kent R. Dybvig, Matthew Flatt, Anton van Stratten, Robby Bruce Findler, and Jacob Matthews. 2009.

Revised
6
Report on the Algorithmic Language Scheme. J. Funct. Progr. 19, S1 (2009), 1–301.

, Vol. 1, No. 1, Article . Publication date: March 2020.

http://www.mlton.org

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

:28 Daniel Hillerström, Sam Lindley, and John Longley

Configurations

L⟨M | γ | σ ⟩M = LσM(LMMγ)

Pure continuations
L[]MM = M

L(γ , x,N) :: σMM = LσM(let x ← M in LN M(γ\{x}))
Computation terms

LV W Mγ = LV Mγ LW Mγ
Llet ⟨x; y⟩ = V in N Mγ = let ⟨x; y⟩ = LV Mγ in LN M(γ\{x, y})

Lcase V {inl x 7→ M; inr y 7→ N }Mγ = case LV Mγ {inl x 7→ LMM(γ\{x});
inr y 7→ LN M(γ\{y})}

Lreturn V Mγ = return LV Mγ
Llet x ← M in N Mγ = let x ← LMMγ in LN M(γ\{x})

Value terms and values

LxMγ = LvM, if γ (x) = v
LxMγ = x, if x < dom(γ)
LnMγ = n

LλxA.MMγ = λxA.LMM(γ\{x})
Lrec f xA.MMγ = rec f xA.LMM(γ\{f , x})

L⟨⟩Mγ = ⟨⟩
L⟨V ;W ⟩Mγ = ⟨LV Mγ ; LW Mγ ⟩

L(inl V)BMγ = (inl LV Mγ)B

L(inr W)AMγ = (inr LW Mγ)A

LnM = n
L(γ , λxA.M)M = λxA.LMM(γ\{x})

L(γ , rec f xA.M)M = rec f xA.LMM(γ\{f , x})
L⟨⟩M = ⟨⟩

L⟨v;w⟩M = ⟨LvM; LwM⟩
L(inl v)BM = (inl LvM)B

L(inr w)AM = (inr LwM)A

LσAM = λxA.LσM(return x)

Fig. 8. Mapping from Base Machine Configurations to Terms

A CORRECTNESS OF THE BASE MACHINE
We now show that the base abstract machine is correct with respect to the operational semantics,

that is, the abstract machine faithfully simulates the operational semantics. Initial states provide a

canonical way to map a computation term onto the abstract machine. A more interesting question

is how to map an arbitrary configuration to a computation term. Figure 8 describes such a mapping

L−M from configurations to terms via a collection of mutually recursive functions defined on

configurations, continuations, computation terms, value terms, and machine values. The mapping

makes use of two operations on environments, γ , which we define now.

Definition A.1. We write dom(γ) for the domain of γ , and γ\{x1, . . . , xn} for the restriction of

environment γ to dom(γ)\{x1, . . . , xn}.

The L−M function enables us to classify the abstract machine reduction rules according to how

they relate to the operational semantics. The rule (M-Let) is administrative in the sense that L−M is
invariant under this rule. This leaves the β-rules (M-App), (M-Split), (M-Case), and (M-RetCont).

Each of these corresponds directly with performing a reduction in the operational semantics.

Definition A.2 (Auxiliary reduction relations). We write −→a for administrative steps (M-Let)

and ≃a for the symmetric closure of −→∗
a
. We write −→β for β-steps (all other rules) and =⇒ for a

sequence of steps of the form −→∗
a
−→β .

The following lemma describes how we can simulate each reduction in the operational semantics

by a sequence of administrative steps followed by one β-step in the abstract machine.

Lemma A.3. Suppose M is a computation and C is configuration such that LCM = M, then if M { N
there exists C′ such that C =⇒ C′ and LC′M = N, or if M ̸{ then C ≠⇒.

Proof. By induction on the derivation of M { N . □

, Vol. 1, No. 1, Article . Publication date: March 2020.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Effects for Efficiency :29

Configurations

L⟨M | γ | κ⟩M = LκM(LMMγ)

Continuations
L[]MM = M

L(σ , χ) :: κMM = LκM(LχM(LσM(M)))
Handler Closures and Definitions

L(γ ,H)MM = handle M with LHMγ L{val x 7→ M}Mγ = {val x 7→ LMM(γ\{x})}
L{ℓ x r 7→ M} ⊎ HMγ = {ℓ x r 7→ LMM(γ\{x, r})} ⊎ LHMγ

Computation Terms and Machine Values

Lhandle M with HMγ = handle LMMγ with LHMγ
Ldo ℓ V Mγ = do ℓ LV Mγ

L(γ ,H)Mγ = λxA.L(γ ,H)M(return x)

Fig. 9. Mapping from Handler Machine Configurations to Terms

The correspondence here is rather strong: there is a one-to-one mapping between { and

=⇒ / ≃a. The inverse of the lemma is straightforward as the semantics is deterministic. Notice

that Lemma A.3 does not require that M be well-typed. We have chosen here not to perform

type-erasure, but the results can be adapted to semantics in which all type annotations are erased.

Theorem A.4 (Base simulation). If ⊢ M : A and M {+ N such that N is normal, then
⟨M | ∅ | []⟩ −→+ C such that LCM = N, or M ̸{ then ⟨M | ∅ | []⟩ ̸−→.

Proof. By repeated application of Lemma A.3. □

B CORRECTNESS OF THE HANDLER MACHINE
The correctness result for the base machine can mostly be repurposed for the handler machine as

we need only recheck the cases for (M-Let) and (M-RetCont) and check the cases for handlers.

Figure 9 shows the necessary changes to the L−M function.

Lemma B.1. Suppose M is a computation and C is configuration such that LCM = M, then if M { N
there exists C′ such that C =⇒ C′ and LC′M = N, or if M ̸{ then C ≠⇒.

Proof. By induction on the derivation of M { N . □

Theorem B.2 (Handler simulation). If ⊢ M : A and M {+ N such that N is normal, then
⟨M | ∅ | κ0⟩ −→+ C such that LCM = N, or M ̸{ then ⟨M | ∅ | κ0⟩ ̸−→.

Proof. By repeated application of Lemma B.1. □

C PROOF DETAILS FOR THE COMPLEXITY OF EFFECTFUL GENERIC COUNTING
In this appendix we give proof details and artefacts for Theorem 5.10. Throughout this section we

let Hcount denote the handler definition of count, that is

Hcount :=


val x 7→ if x then return 1 else return 0

Branch ⟨⟩ r 7→ let x ← r true in
let y ← r false in
x + y


The timed decision tree model embeds timing information. For the proof we must also know the

abstract machine environment and the pure continuation. Thus we decorate timed decision trees

with this information.

, Vol. 1, No. 1, Article . Publication date: March 2020.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

:30 Daniel Hillerström, Sam Lindley, and John Longley

Definition C.1 (decorated timed decision trees). A decorated timed decision tree is a partial function

t : B∗ ⇀ (Lab × Nat) × (Env × PureCont) such that its first projection bs 7→ t(bs).1 is a timed

decision tree. As an abbreviation, we define DT := B∗ ⇀ (Lab × Nat) × (Env × PureCont).

We extend the projections labs and steps in the obvious way to work over decorated timed

decision trees. We define two further projections. The first env(t) := bs 7→ t(bs).2.1 projects the
environment, whilst the second pure(t) := bs 7→ t(bs).2.2 projects the pure continuation.

The following definition gives a procedure for constructing a decorated timed decision tree. The

construction is similar to that of Definition 5.4.

Definition C.2. The decorated timed decision tree of a configuration is defined by the following

equations

D : Conf ⇀ DT
D(⟨return true | γ | []⟩) [] = ((!true, 0), (γ , []))
D(⟨return false | γ | []⟩) [] = ((!false, 0), (γ , []))

D(⟨p V | γ | σ ⟩) [] = ((?JV Kγ , 0), (γ ,σ))
D(⟨p V | γ | σ ⟩) (b :: bs) ≃ D(⟨return b | γ | σ ⟩) bs

D(⟨M | γ | σ ⟩) bs ≃ I(D(⟨M ′ | γ ′ | σ ′⟩) bs),
if ⟨M | γ | σ ⟩ −→ ⟨M ′ | γ ′ | σ ′⟩

where I((ℓ, s), (γ ,σ)) := ((ℓ, s + 1), (γ ,σ)) and p is a distinguished free variable such that in all of

the above equations γ (p) = γ ′(p) = p.

We shall write D(P) to mean D(⟨P p | ∅[p 7→ p] | []⟩).
We define some functions, that given a list of booleans and a n-standard predicate, compute

configurations of the effectful abstract machine at particular points of interest during evaluation of

the given predicate. Let χcount(V) := (∅[pred 7→ JV K∅],Hcount) denote the handler closure of Hcount.

Notation. For an n-standard predicate P wewrite |P | = n for the size of the predicate. Furthermore,

we define χid for the identity handler closure (∅, {val x 7→ x}).

Definition C.3 (computing machine configurations). For any given n-standard predicate P and a

list of booleans bs, such that |bs | ≤ n, we can compute machine configurations at points of interest

during evaluation of count P .
To make the notation slightly simpler we use the following conventions whenever n, t, and c

appear free: n = |P |, t = D(P), and c = C(P).
• The function arrive either computes the configuration at a query node, if |bs | < n, or the
configuration at an answer node.

arrive : B∗ × Val⇀ Conf
arrive(bs, P) := ⟨V j | γ | (σ , χcount(P)) :: residual(bs, P)⟩, if |bs | < n
where γ = env(t)(bs), ?j = labs(t)(bs), and JV Kγ = (env⊥(P), λ_.do Branch ⟨⟩)
arrive(bs, P) := ⟨return b | γ | ([], χcount(P)) :: residual(bs, P)⟩, if |bs | = n

where γ = env(t)(bs) and !b = labs(t)(bs)

• Correspondingly, the depart function computes the configuration either after the completion

of a query or handling of an answer.

depart : B∗ × Val⇀ Conf
depart(bs, P) := ⟨return m | γ | residual(bs, P)⟩, if |bs | < n
where γ = env↑false(bs, P) and m = c(true :: bs) + c(false :: bs)
depart(bs, P) := ⟨return m | γ | residual(bs, P)⟩, if |bs | = n

where γ = env⊥(P) and m = c(bs)

, Vol. 1, No. 1, Article . Publication date: March 2020.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Effects for Efficiency :31

The two clauses of depart yield slightly different configurations. The first clause com-

putes a configuration inside the operation clause of Hcount. The configuration is exactly

tail-configuration after summing up the two respective values returned by the two invoca-

tions of resumption. Whilst the second clause computes the tail-configuration inside of the

success clause of Hcount after handling a return value of the predicate.

• The residual function computes the residual continuation structure which contains the bits

of computations to perform after handling a complete path in a decision tree.

residual : B∗ × Val⇀ Cont
residual(bs, P) := [(purecont(bs, P), χid)]

• The function purecont computes the pure continuation.

purecont : B∗ × Val⇀ PureCont
purecont([], P) := []

purecont(true :: bs, P) := (γ , xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P),
where γ = env↓true(true :: bs, P)

purecont(false :: bs, P) := (γ , xfalse, xtrue + xfalse) :: purecont(bs, P),
where γ = env↓false(false :: bs, P)

• The function env⊥ computes the initial environment of the handler. The family of functions

env↓b∈B contains two functions, one for each instantiation of b, which describe how to compute

the environment prior descending down a branch as the result of invoking a resumption with

b. Analogously, the functions in the family env↑b∈B describe how to compute the environment

after ascending from the resumptive exploration of a branch.

env⊥ : Val→ Env
env⊥(P) := ∅[pred 7→ JPK∅]

env↓true : B∗ × Val⇀ Env
env↓true(bs, P) := env⊥(V)[r 7→ (σ , χcount(P))],

where σ = pure(t)(bs)

env↓false : B∗ × Val⇀ Env
env↓false(bs, P) := γ [x 7→ i],
where γ = env↓true(bs, P) and i = c(true :: bs)

env↑false : B∗ × Val⇀ Env
env↑false(bs, P) := γ [y 7→ j],
where γ = env↓false(bs, P) and j = c(false :: bs)

We require an auxiliary lemma, because we need to be able to reason about bits of predicate

computation, specifically when the predicate is first applied, going from a departure configuration

to an arrival configuration, and from a departure configuration to an answer configuration. The

following lemma states that for an n-standard predicate, handler machine transitions in lock-step

with the base machine.

For a given predicate P wewrite χcount(P)val to mean χcount(P)val = (∅[pred 7→ JPK∅],Hcount)
val =

Hval
count, that is the projection of the success clause of Hcount.

, Vol. 1, No. 1, Article . Publication date: March 2020.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

:32 Daniel Hillerström, Sam Lindley, and John Longley

Lemma C.4. For any given n-standard predicate P and a list of booleans bs ∈ B∗ such that |bs | ≤ n
along with two value V : Bool and b ∈ B, then the base machine and handler machine transition in
lock-step in either way
(1) If |bs | = [], then

⟨P p | γ | []⟩
−→ steps(t)([])

⟨p i | γ ′ | σ ⟩,

where ?i = labs(t)([]), γ = ∅[P 7→ P], γ ′ = env(t)([]), and σ = pure(t)([]); implies the handler
machine perform the same amount of transitions

⟨P p | γ | ([], χcount(P)) :: residual(P, [])⟩[(λ_.do Branch ⟨⟩)/p]
−→ steps(t)([])

⟨p i | γ ′ | (σ , χcount(P)) :: residual(P, [])⟩[(λ_.do Branch ⟨⟩)/p]

(2) For bs = b :: bs′ we have the following two subcases
• If |bs | < n, then

⟨return b | γ | σ ⟩
−→ steps(t)(b::bs)

⟨p i | γ ′ | σ ⟩,

where ?i = labs(t)(b :: bs), γ = env↓b , γ
′ = env(t)(b :: bs), and σ = pure(t)(bs); implies the

handler machine perform the same amount of transitions

⟨return b | γ | (σ , χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]
−→ steps(t)(b::bs)

⟨p i | γ ′ | (σ , χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]

• If |bs | = n, then
⟨return b | γ | σ ⟩

−→ steps(t)(b::bs′)

⟨return b′ | γ ′ | []⟩,

where !b′ = labs(t)(b :: bs), γ = env(t)(bs), γ ′ = env(t)(b :: bs), and σ = pure(t)(bs); implies
the handler machine perform the same amount of transitions

⟨return b | γ | (σ , χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]
−→ steps(t)(b::bs′)

⟨return b′ | γ ′ | ([], χcount(P)) :: residual(P, b :: bs, n, t, c)⟩[(λ_.do Branch ⟨⟩)/p]

Proof. Proof by induction on the transition relation −→. □

Let control : Conf ⇀ Val denote a partial function that hoists a value out of a given machine

configuration, that is

control(⟨M | γ | κ⟩) :=

{
JV Kγ if M = return V
⊥ otherwise

The following lemma performs most of the heavy lifting for the proof of Theorem 5.10.

Lemma C.5. Suppose P is an n-standard predicate, then for any list of booleans bs ∈ B∗ such that
|bs | ≤ n

arrive(bs, P) {T (bs,n) depart(bs, P),

, Vol. 1, No. 1, Article . Publication date: March 2020.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Effects for Efficiency :33

and control(depart(bs, P)) ≤ 2
n−|bs | with the function T defined as

T (bs, n) =

{
9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 +

∑
1≤ |bs′ | ≤n−|bs |
bs′∈B∗ steps(t)(bs′ ++ bs) if |bs | < n

2 if |bs | = n

Proof. By downward induction on bs.

Base step We have that |bs | = n. Since the predicate is n-standard we further have that n ≥ 1.

We proceed by direct calculation.

arrive(bs, P)
= (definition of arrive when n = |bs |)
⟨return b | γ | ([], χcount(P)) :: residual(bs, P)⟩

where γ = env(t)(bs) and !b = labs(t)(bs)
−→ (M-RetHandler, χcount(P)val = {val x 7→ · · · })
⟨if x then return 1 else return 0 | γ ′[x 7→ JbKγ ′] | residual(bs, P)⟩

where γ ′ = χcount(P).1

The value b can assume either of two values. We consider first the case b = true.

= (assumption b = true, definition of J−K (2 value steps))
⟨if x then return 1 else return 0 | γ ′[x 7→ true] | residual(bs, P)⟩

−→ (M-Case-inl (and log |γ ′[x 7→ true]| = 1 environment operations))

⟨return 1 | γ ′[x 7→ true] | residual(bs, n, P, t, c)⟩
= (definition of depart when n = |bs |)
depart(bs, P)

We have that control(depart(bs, P)) = 1 ≤ 2
0 = 2

n−|bs |
. Next, we consider the case when

b = false.

= (assumption b = false, definition of J−K (2 value steps))
⟨if x then return 1 else return 0 | γ ′[x 7→ false] | residual(bs, P)⟩

−→ (M-Case-Inl (and log |γ ′[x 7→ false]| = 1 environment operations))

⟨return 0 | γ ′[x 7→ false] | residual(bs, n, P, t, c)⟩
= (definition of depart when n = |bs |)
depart(bs, P)

Again, we have that control(depart(bs, P)) = 0 ≤ 2
0 = 2

n−|bs |
.

Step analysis. In either case, the machine uses exactly 2 transitions. Thus we get that

2 = T (bs, n), when |bs | = n

Inductive step The induction hypothesis states that for all b ∈ B and |bs | < n

arrive(b :: bs, P) {T (b::bs,n) depart(b :: bs, P),

, Vol. 1, No. 1, Article . Publication date: March 2020.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

:34 Daniel Hillerström, Sam Lindley, and John Longley

such that control(depart(b :: bs, P)) ≤ 2
n−|b::bs |

. We proceed by direct calculation.

arrive(bs, P)
= (definition of arrive when n < |bs |)
⟨V j | γ | (σ , χcount(P)) :: residual(bs, P)⟩

where ?j = labs(t)(bs),γ = env(t)(bs),σ = pure(t)(bs), and V = (env⊥(P), λ_.do Branch ⟨⟩)
−→ (M-App)

⟨do Branch ⟨⟩ | γ ′[_ 7→ JjKγ ′] | (σ , χcount(P)) :: residual(bs, P)⟩
where γ ′ = env⊥(P)

−→ (M-Handle-Op, χcount(P)Branch = {Branch ⟨⟩ r 7→ · · · })〈let xtrue ← r true in
let xfalse ← r false in
xtrue + xfalse

| γ [r 7→ J(σ , χcount(P))Kγ] | residual(bs, P)

〉
where γ = env⊥(P)

= (definition of J−K (1 value step))〈let xtrue ← r true in
let xfalse ← r false in
xtrue + xfalse

| γ ′ | residual(bs, P)

〉
where γ ′ = γ [r 7→ (σ , χcount(P))]

−→ (M-Let, definition of residual)
⟨r true | γ ′ | residual(true :: bs, P)⟩

−→ (M-Resume, JrKγ ′ = (σ , χcount(P)) (log |γ ′ | = 1 environment operations))

⟨return true | γ ′ | (σ , χcount(P)) :: residual(true :: bs, P)⟩

We now use Lemma C.4 to reason about the progress of the predicate computation σ . There
are two cases consider, either 1 + |bs | < n or 1 + |bs | = n.

, Vol. 1, No. 1, Article . Publication date: March 2020.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Effects for Efficiency :35

Case 1 + |bs | < n. We obtain the following configuration.

−→ steps(t)(true::bs) (by Lemma C.4)

⟨V j | γ ′′ | (σ ′, χcount(P)) :: residual(true :: bs, P)⟩
where ?j = labs(t)(true :: bs),γ ′′ = env(t)(true :: bs),σ ′ = pure(t)(true :: bs)

and JV Kγ ′′ = (env⊥(P), λ_.do Branch ⟨⟩)
= (definition of arrive when 1 + |bs | < n)
arrive(true :: bs, P)

−→ T (true::bs,n) (induction hypothesis)

depart(true :: bs, P)
= (definition of depart when 1 + |bs | < n)
⟨return i | γ | residual(true :: bs, P)⟩

where i = c(true :: true :: bs) + c(false :: true :: bs) and γ = env↑false(true :: bs, P)
= (definition of residual and purecont)
⟨return i | γ | [((γ ′, xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P), χid)]⟩

where γ ′ = env↓true(bs, P)
−→ (M-RetCont)

⟨let xfalse ← r false in xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩
where γ ′′ = γ ′[xtrue 7→ JiKγ ′]

−→ (M-Let)

⟨r false | γ ′′ | [((γ ′′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩
= (definition of purecont and residual)
⟨r false | γ ′′ | residual(false :: bs, P)⟩

−→ (M-Resume)

⟨return false | γ ′′ | (σ , χcount(P)) :: residual(false :: bs, P)⟩
where σ = pure(t)(bs)

−→ steps(t)(false::bs) (by Lemma C.4 and assumption |false :: bs | < n)
⟨V j | γ | (σ , χcount(P)) :: residual(false :: bs, P)⟩

where ?j = labs(t)(false :: bs),σ = pure(t)(false :: bs),γ = env(t)(false :: bs)
and JV Kγ = (env⊥(P), λ_.do Branch ⟨⟩)
= (definition of arrive when 1 + |bs | < n)
arrive(false :: bs, P)

−→ T (false::bs,n) (induction hypothesis)

depart(false :: bs, P)
= (definition of depart when 1 + |bs | < n)
⟨return j | γ | residual(false :: bs, P)⟩

where j = c(true :: false :: bs) + c(false :: false :: bs) and γ = env↑false(false :: bs, P)
= (definition of residual and purecont)
⟨return j | γ | [((γ ′′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩

−→ (M-RetCont)

⟨xtrue + xfalse | γ ′′[xfalse 7→ JjKγ ′′] | residual(bs, P)⟩
−→ (M-Plus)

⟨return m | γ ′′[xfalse 7→ JjKγ ′′] | residual(bs, P)⟩
where

m = c(true :: true :: bs) + c(false :: true :: bs) + c(true :: false :: bs) + c(false :: false :: bs)
= c(true :: bs) + c(false :: bs) = c(bs) ≤ 2

n−|bs |

= (definition of depart when |bs | < n)
depart(bs, P)

, Vol. 1, No. 1, Article . Publication date: March 2020.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

:36 Daniel Hillerström, Sam Lindley, and John Longley

Step analysis. The total number of machine transitions is given by

9 + steps(t)(true :: bs) + T (true :: bs, n) + steps(t)(false :: bs) + T (false :: bs, n)
= (reorder)

9 + T (true :: bs, n) + steps(t)(false :: bs) + steps(t)(true :: bs) + steps(t)(false :: bs)
= (definition of T)
9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|true::bs |+1 + 2n−|false::bs |+1

+

1≤ |bs′ | ≤n−|true::bs |∑
bs′∈B∗

steps(t)(bs′ ++ true :: bs) +
1≤ |bs′ | ≤n−|false::bs |∑

bs′∈B∗
steps(t)(bs′ ++ false :: bs)

+steps(t)(true :: bs) + steps(t)(false :: bs)
= (simplify)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1

+

1≤ |bs′ | ≤n−|true::bs |∑
bs′∈B∗

steps(t)(bs′ ++ true :: bs) +
1≤ |bs′ | ≤n−|false::bs |∑

bs′∈B∗
steps(t)(bs′ ++ false :: bs)

+steps(t)(true :: bs) + steps(t)(false :: bs)
= (merge sums)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1

+

(
2≤ |bs′ | ≤n−|bs |∑

bs′∈B∗
steps(t)(bs′ ++ bs)

)
+ steps(t)(true :: bs) + steps(t)(false :: bs)

= (rewrite binary sum)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1

+

2≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs) +
1≤ |bs′ | ≤1∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (merge sums)

9 + 9 ∗ (2n−|true::bs | − 1) + 9 ∗ (2n−|false::bs | − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (factoring)

9 + 2 ∗ 9 ∗ (2n−|bs |−1 − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (distribute)

9 + 9 ∗ (2n−|bs | − 2) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (distribute)

9 + 9 ∗ 2n−|bs | − 18 + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (simplify)

9 ∗ 2n−|bs | − 9 + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (factoring)

9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (definition of T)
T (bs, n)

, Vol. 1, No. 1, Article . Publication date: March 2020.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Effects for Efficiency :37

Case 1 + |bs | = n. We obtain the following configuration.

−→ steps(t)(true::bs) (by Lemma C.4)

⟨return b | γ ′′ | ([], χcount(P)) :: residual(true :: bs, P)⟩
where !b = labs(t)(true :: bs),γ ′′ = env(t)(true :: bs)

= (definition of arrive when 1 + |bs | = n)
arrive(true :: bs, P)

−→ T (true::bs,n) (induction hypothesis)

depart(true :: bs, P)
= (definition of depart when 1 + |bs | = n)
⟨return i | γ | residual(true :: bs, P)⟩

where i = c(true :: bs) ≤ 2
n−|true::bs | = 1 and γ = env⊥(P)

= (definition of residual and purecont)
⟨return i | γ | [((γ ′, xtrue, let xfalse ← r false in xtrue + xfalse) :: purecont(bs, P), χid)]⟩

−→ (M-RetCont)

⟨let xfalse ← r false in xtrue + xfalse | γ ′[xtrue 7→ JiKγ ′] | [(purecont(bs, P), χid)]⟩
= (definition of J−K (1 value step))
⟨let xfalse ← r false in xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩

where γ ′′ = γ ′[xtrue 7→ i]
−→ (M-Let, definition of residual)
⟨r false | γ ′′ | residual(false :: bs, P)⟩

−→ (M-Resume)

⟨return false | γ ′′ | (σ , χcount(P)) :: residual(false :: bs, P)⟩
where σ = pure(t)(bs)

−→ steps(t)(false::bs) (by Lemma C.4 and assumption 1 + |bs | = n)
⟨return b | γ | ([], χcount(P)) :: residual(false :: bs, P)⟩

where !b = labs(t)(false :: bs),γ = env(t)(false :: bs)
= (definition of arrive when 1 + |bs | = n)
arrive(false :: bs, P)

−→ T (false::bs,n) (induction hypothesis)

depart(false :: bs, P)
= (definition of depart when 1 + |bs | = n)
⟨return j | γ | residual(false :: bs, P)⟩

where j = c(false :: bs) ≤ 2
n−|false::bs | = 1 and γ = env⊥(P)

= (definition of residual and purecont)
⟨return j | γ | [((γ ′, xfalse, xtrue + xfalse) :: purecont(bs, P), χid)]⟩

where γ ′ = env↓false(bs, P)
−→ (M-RetCont)

⟨xtrue + xfalse | γ ′′ | [(purecont(bs, P), χid)]⟩
where γ ′′ = γ ′[xfalse 7→ JjKγ ′] = γ ′[xfalse 7→ j]

−→ (M-Plus)

⟨return m | γ ′′ | [(purecont(bs, P), χid)]⟩
where m = c(true :: bs) + c(false :: bs) ≤ 2

n−|bs |

= (definition of residual and depart when |bs | < n)
depart(bs, P)

, Vol. 1, No. 1, Article . Publication date: March 2020.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

:38 Daniel Hillerström, Sam Lindley, and John Longley

Step analysis. The total number of machine transitions is given by

9 + steps(t)(true :: bs) + T (true :: bs, n) + steps(t)(false :: bs) + T (false :: bs, n)
= (reorder)

9 + T (true :: bs, n) + T (false :: bs, n) + steps(t)(true :: bs) + steps(t)(false :: bs)
= (definition of T when |bs | + 1 = n)
9 + 2 + 2 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (simplify)

9 + 22 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (rewrite 2 = n − |bs | + 1)
9 + 2n−|bs |+1 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (multiply by 1)

9 ∗ (2n−|bs | − 1) + 2n−|bs |+1 + steps(t)(true :: bs) + steps(t)(false :: bs)
= (rewrite binary sum)

9 ∗ (2n−|bs | − 1) + 2n−|bs | +

1≤ |bs′ | ≤n−|bs |∑
bs′∈B∗

steps(t)(bs′ ++ bs)

= (definition of T)
T (bs, n)

□

The following theorem is a copy of Theorem 5.10.

Theorem C.6. For all n > 0 and any n-standard predicate P it holds that

(1) The program effcount is a generic counting program
(2) The runtime complexity of effcount P is given by the following formula:

|bs | ≤n∑
bs∈B∗

steps(T (P))(bs) + O(2n)

, Vol. 1, No. 1, Article . Publication date: March 2020.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Effects for Efficiency :39

Proof. The proof begins by direct calculation.

⟨effcount P | ∅ | [([], χid)]⟩
= (definition of residual)
⟨effcount P | ∅ | residual(P, [], t, c)⟩

−→ (M-App, JeffcountK∅ = (∅, λpred. · · ·))
⟨handle pred (λ_.do Branch ⟨⟩) with Hcount | γ | residual(P, [])⟩

where γ = env⊥(P)
−→ (M-Handle)

⟨pred (λ_.do Branch ⟨⟩) | γ | ([], (γ ,Hcount)) :: residual(P, [])⟩
= (definition of χcount)
⟨pred (λ_.do Branch ⟨⟩) | γ | ([], χcount(P)) :: residual(P, [])⟩

−→ steps(t)([]) (by Lemma C.4)

⟨(λ_.do Branch ⟨⟩) j | γ ′ | (σ , χcount(P)) :: residual(P, [])⟩
where γ ′ = env(t)([]),σ = pure(t)(bs) and ?j = labs(t)(bs)
= (definition of arrive)
arrive(P, [])

−→ T ([],n) (by Lemma C.5)

depart(P, [])
= (definition of depart)
⟨return m | γ | residual(P, [])⟩

where γ = env⊥(P) and m = c([]) ≤ 2
n−|bs | = 2

n

= (definition of residual)
⟨return m | γ | [([], χid)]⟩

−→ (M-Handle-Ret, H val
id = {val x 7→ return x})

⟨return x | ∅[x 7→ m] | []⟩

, Vol. 1, No. 1, Article . Publication date: March 2020.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

:40 Daniel Hillerström, Sam Lindley, and John Longley

Analysis. The machine yields the valuem. By Lemma C.5 it follows thatm ≤ 2
n−|bs | = 2

n−|[] | = 2
n
.

Furthermore, the total number of transitions used were

5 + steps(t)([]) + T ([], n)
= (definition of T)

5 + steps(t)([]) + 9 ∗ 2n + 2n+1 +
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

= (simplify)

5 + steps(t)([]) + 9 ∗ 2n + 2n+1 +
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

= (reorder)

5 +

(
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

)
+ steps(t)([]) + 9 ∗ 2n + 2n+1

= (rewrite as unary sum)

5 +

(
1≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′) +
0≤ |bs′ | ≤0∑
bs′∈B∗

steps(t)(bs′)

)
+ 9 ∗ 2n + 2n+1

= (merge sums)

5 +

(
0≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

)
+ 9 ∗ 2n + 2n+1

= (definition of O)(
0≤ |bs′ | ≤n∑
bs′∈B∗

steps(t)(bs′)

)
+ O(2n)

□

D PROOF DETAILS FOR THE NO SHORTCUTS LEMMA
The proof of Lemma 5.11 relies on the fact that any n-standard predicate has a canonical form.

Section D.1 disseminates canonical predicates, whilst Section D.2 proves Lemma 5.11.

D.1 Canonical Predicates
The decision tree model (Definition 5.2) captures the interaction between a given predicate P and

its point p. The interior nodes correspond to those places where P queries p, whilst the leaves
represent answers ultimately conferred from the dialogue between the predicate and its point.

The abstract nature of the decision tree model means that concrete syntactic structure of the

predicate is lost. Thus we cannot hope to reconstruct a particular predicate from its model. Indeed

many syntactically distinct predicates may share the same model. However, we can construct some
predicate from a given model, namely, the canonical predicate. Intuitively, the canonical predicate
P ′ of P is a predicate which exhibits the same dialogue as P for every (valid) point.

LetU(P) := bs 7→ T (P)(bs).1 denote the procedure for constructing an untimed decision tree of
a given predicate P .

Definition D.1 (Canonical predicate). A canonical predicate P ′ of an n-standard predicate P is

itself an n-standard predicate whose body (syntactically) consists entirely of let-bindings of point
applications and whose continuation is either another let-expression of the same form or return b
for some boolean b. Moreover, P ′ exhibits the same dialogue as P , that is for all bs ∈ B∗ such that

, Vol. 1, No. 1, Article . Publication date: March 2020.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Effects for Efficiency :41

|bs | ≤ n that

U(P)(bs) = U(P ′)(bs)

Next we define a procedure for constructing canonical predicate of any given n-standard predicate.

Definition D.2 (Normalisation procedure for predicates). The meta-procedure norm takes as input

an n-standard untimed decision tree, and outputs a program whose type is Point→ Bool, which is

exactly the type of predicates. The procedure makes use of an auxiliary procedure body to generate
the predicate body.

norm : (B∗ ⇀ Lab) → Val

norm(t) := λpPoint.body(t, [], p)

body : (B∗ ⇀ Lab) × B∗ × Val→ Comp

body(t, bs, p) :=


return b t(bs) =!b

let b← p i in
if b then body(t, true :: bs, p)
else body(t, false :: bs, p)

if t(bs) =?i

As convenient notation we write norm(P) to mean norm(bs 7→ U(P)(bs)). Next we show that

the meta-procedure norm produces canonical predicates.

Lemma D.3. Suppose P is an n-standard predicate then P ′ := norm(P) is an n-standard predicate
such that for all bs ∈ B∗, |bs | ≤ n

U(P)(bs) = U(P)(bs′)

Proof. By induction on n and body.
□

Lemma D.4. The procedure norm generates canonical predicates.

Proof. First observe that the syntax produced by the body procedure of norm conforms with the

syntactic restrictions of canonical predicates (Definition D.1). The rest follows as by Lemma D.3. □

D.2 No Shortcuts
We now have the necessary machinery to show that every n-count program in λb has at least
exponential time complexity. The following lemma is a copy of Lemma 5.11.

Lemma D.5. If C is an n-count program and P is an n-standard predicate, then C applies P to at
least 2n distinct n-points. More formally, for any of the 2n possible semantic n-points π : Nn → B,
there is a term E[P p] appearing in the small-step reduction of C P such that p is a closed value (hence
an n-point) and PJpK = π .

Proof. Suppose C and P are as above, and suppose for contradiction that π is some semantic

n-point such that no corresponding application P p ever arises in the course of computing C P . Let
t be the untimed decision tree for P . Now consider the leaf node in t corresponding to the point π ,
and let t ′ be the tree obtained from t ′ by simply negating the boolean value at this leaf node, that is

t ′ := bs′ 7→

{
¬b if bs = bs′

U(P)(bs′) otherwise

Then P ′ = norm(t ′) constructs a canonical predicate, and as the numbers of true-leaves in t and t ′

differ by 1, it follows that their count at the leaf node in question differ by 1, i.e.

|C(P ′)(bs) − C(P)(bs)| = 1.

, Vol. 1, No. 1, Article . Publication date: March 2020.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

:42 Daniel Hillerström, Sam Lindley, and John Longley

Taking bs = [], we get that the values ultimately returned by C P and C P ′ differ by 1, i.e.

|C(P ′)([]) − C(P)([])| = 1.

There are two cases to consider:

(1) If C P = C P ′ then C cannot be an n-count program, because C(P)([]) , C(P ′)([]), which
contradicts the assumption.

(2) If C P , C P ′ then we have to argue that if the computation of C P never actually ‘visits’ the

leaf node in question, then C is unable to detect any difference between P and P ′. To establish
our argument we make use of a variation of Milner’s context lemma for PCF. Specifically, we
have to show the following by induction on length of reduction sequences:

Lemma D.6. Let F [−] be any multi-hole context in C such that F [P] = C P and the type of
F [P] is either Nat or Bool. If F [P] {m return V then F [P ′] {∗ return V where the type
of V is either Nat or Bool.

Proof. Proof by induction on the length of the reduction sequence, m.

Base step We have that m = 0 which implies F [P] {0 return V from which it follows that

F [−] is simply return V , thus it follows immediately that F [P ′] {0 return V .
Induction step We have that m = 1 +m′. The induction hypothesis is

∀F .F [P] {m′ return V implies F [P ′] {∗ return V .

There are two cases to consider depending on whether applications of P occur in F .

Case F [P] is not an application of P . By assumption there is at least one reduction step,

unroll this step to obtain

F [−] { F ′[−] {m′ return V

Now plug in P ′ and then the result follows by a single application of the induction

hypothesis.

Case F [P] is an application of P . It must be that P is applied to values of type Point.
Moreover by assumption, we know that denotation of those values are distinct from

the critical point pc . Now write F [P] = G[P, P p[P]] such that the first component of G

tracks residuals of P and the second component focuses on the expression in evaluation

position, which in our particular case is an application of P to some point p in which P
may occur again. We need to show that

G[P, P p[P]] { G[P, return W] { return V

for someW : Bool. Looking at the reduction sequence modulo G[P,−], we have that

P p[P] {+ F0[p[P] i0] { F0[return V0] {
+ F1[p[P] i1] { · · · {+ returnW ,

where each reduction step is justified by the untimed decision tree model of P . From this

we can deduce that

G[P, P p[P]] {+ G[P, return W] {∗ return V

where the last step follows by the induction hypothesis and V : Bool. Now, we argue that
the above reduction sequence is tracked by G[P ′,−]. The n-standardness of P ′ guarantees
that it contains n queries, and moreover, since the decision tree model for P ′ is the same

as P except for at one leaf, we know that the queries appear the in same order, so by

appeal to the decision tree for P ′ we obtain that

P ′ p[P ′] {+ F ′
0
[p[P ′] i0]

, Vol. 1, No. 1, Article . Publication date: March 2020.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Effects for Efficiency :43

The term in evaluation position corresponds exactly to the first query node in the decision

tree model. Now we can apply the induction hypothesis to obtain

F ′
0
[p[P ′] i0] {∗ F ′0 [return V0]

The value V0 is exactly the same answer to p i0 as P obtained. Now there are two cases

to consider depending on the value of n. If n = 1 then by the 1-standardness of P ′ we
know that there will be no further queries, and it ultimately yields the sameW as P p,
because by assumption PJpK , π . Otherwise if n > 1 then there must be further queries,

and in particular, those queries must occur in the same order as those of P . Thus by the

n-standardness of P ′ we get

F ′
0
[return V0] {

+ F ′
1
[p[P ′] i1]

Yet again we find ourselves in a position where we can again apply the induction hypoth-

esis to obtain an answer. By repeating this argument n times, we get that P ′ p eventually

yieldsW , we can lift this back into the outer context to obtain

G[P ′, P ′ p[P ′]] {+ G[P ′, return W]

and by the induction hypothesis, we get that

G[P ′, return W] {∗ return V .

□

Recall that C P , C P ′, but by the Context Lemma D.6 both C P and C P ′ reduce to the same

value which contradicts the initial assumption.

□

, Vol. 1, No. 1, Article . Publication date: March 2020.

	Abstract
	1 Introduction
	2 Effect Handlers Primer
	3 Calculi
	3.1 Base Calculus
	3.2 Handler Calculus

	4 Abstract Machine Semantics
	4.1 Base Machine
	4.2 Handler Machine
	4.3 Realisability and Asymptotic Complexity

	5 Efficient Generic Search
	5.1 Predicates and Points
	5.2 Effectful Generic Counting
	5.3 Predicates, Points, and their Models, Formally
	5.4 Specification of Generic Counting
	5.5 Complexity of Effectful Generic Counting
	5.6 Pure Generic Counting

	6 Extensions and Variations
	6.1 Beyond n-Standard Predicates
	6.2 Extending b with State
	6.3 Berger Count

	7 Experiments
	8 Conclusions and Future Work
	Acknowledgments
	References
	A Correctness of the Base Machine
	B Correctness of the Handler Machine
	C Proof Details for the Complexity of Effectful Generic Counting
	D Proof Details for the No Shortcuts Lemma
	D.1 Canonical Predicates
	D.2 No Shortcuts

