
Concurrent System Programming with Effect
Handlers

Stephen Dolan1, Spiros Eliopoulos3, Daniel Hillerström2, Anil Madhavapeddy1,
KC Sivaramakrishnan1(�), and Leo White3

1 University of Cambridge
2 The University of Edinburgh

3 Jane Street Group

Abstract. Algebraic effects and their handlers have been steadily gain-
ing attention as a programming language feature for composably express-
ing user-defined computational effects. While several prototype imple-
mentations of languages incorporating algebraic effects exist, Multicore
OCaml incorporates effect handlers as the primary means of expressing
concurrency in the language. In this paper, we make the observation that
effect handlers can elegantly express particularly difficult programs that
combine system programming and concurrency without compromising
performance. Our experimental results on a highly concurrent and scal-
able web server demonstrate that effect handlers perform on par with
highly optimised monadic concurrency libraries, while retaining the sim-
plicity of direct-style code.

1 Introduction

Algebraic effect handlers are a modular foundation for effectful program-
ming, which separate the operations available to effectful programs from their
concrete implementations as handlers. Effect handlers provide a modular alter-
native to monads [25, 35] for structuring effectful computations. They achieve the
separation between operations and their handlers through the use of delimited
continuations, allowing them to pause, resume and switch between different com-
putations. They provide a structured interface for programming with delimited
continuations [10], and can implement common abstractions such as state, gen-
erators, async/await, promises, non-determinism, exception handlers and back-
tracking search. Though originally studied in a theoretical setting [27, 28], ef-
fect handlers have gained practical interest with several prototype implemen-
tations in the form of libraries, interpreters, compilers and runtime representa-
tions [4, 5, 9, 12, 15, 16, 20, 21].

However, the application space of effect handlers remains largely unexplored.
In this paper we explore the applicability of effect handlers to concurrent system

� sk826@cl.cam.ac.uk



programming in Multicore OCaml. While Multicore OCaml supports shared-
memory parallel programming, this paper restricts its focus to concurrency i.e.
overlapped execution of tasks, leaving parallelism outside our scope.

2 Motivation

Multicore OCaml [8] incorporates effect handlers as the primary means of ex-
pressing concurrency in the language. The modular nature of effect handlers al-
lows the concurrent program to abstract over different scheduling strategies [9].
Moreover, effect handlers allow concurrent programs to be written in direct-
style retaining the simplicity of sequential code as opposed to callback-oriented
style (as used by e.g. Lwt [34] and Async [24]). In addition to being more read-
able, direct-style code tends to be easier to debug; unlike callback-oriented code,
direct-style code uses the stack for function calls, and hence, backtraces can be
obtained for debugging. Indeed, experience from Google suggests that as well as
making the code more compact and easier to understand (particularly important
when thousands of developers touch the code), direct-style code can perform as
well or better than callback-oriented code [3].

Some of the benefits of direct-style code can be achieved by rewriting direct-
style functions into callbacks, using syntactic sugar such as Haskell’s do-notation
for monads or F#’s async/await [32]. However, this separates functions which use
such rewriting from those that do not, leading to awkward mismatches and code
duplication: for instance, Haskell provides mapM, filterM and foldM because the
ordinary map, filter and foldl functions do not work with monadic arguments.
By contrast, effect handlers do not introduce an incompatible type of function.

In Multicore OCaml, the user-level thread schedulers themselves are ex-
pressed as OCaml libraries, thus minimising the secret sauce that gets baked
into high-performance multicore runtime systems [31]. This modular design al-
lows the scheduling policy to be changed by swapping out the scheduler library
for a different one with the same interface. As the scheduler is a library, it can live
outside the compiler distribution and be tailored to application requirements.

However, the interaction between user-level threading systems and the oper-
ating system services is difficult. For example, the Unix write() system call may
block if the underlying buffer is full. This would be fine in a sequential program
or a program with each user-level thread mapped to a unique OS thread, but
with many user-level threads multiplexed over a single OS thread, a blocking
system call blocks the entire program. How then can we safely allow interaction
between user-level threads and system services?

Concurrent Haskell [23], which also has user-level threads, solves the prob-
lem with the help of specialised runtime system features such as safe FFI calls
and bound threads. However, implementing these features in the runtime system
warrants that the scheduler itself be part of the runtime system, which is incom-
patible with our goal of writing thread schedulers in OCaml. Attempts to lift the
scheduler from the runtime system to a library in the high-level language while
retaining other features in the runtime system lead to further complications [31].



Our goals then are:

– Retain the simplicity of direct-style code for concurrent OCaml programs.
– Allow user-level thread schedulers to be written in OCaml as libraries.
– Allow safe interaction between user-level threads and the operating system.
– Perform as well as or better than existing solutions.

We observe that algebraic effects and their handlers can meet all of these
goals. In particular, we introduce asynchronous effects and their handlers, and
show how they elegantly solve the interaction between user-level threads and
operating system services. This paper makes the following contributions:

– We introduce effect handlers for Multicore OCaml and illustrate their utility
by constructing a high-performance asynchronous I/O library that exposes
a direct style API (Section 3).

– We show how asynchronous effects provide a clean interface to difficult-to-
use operating system services, such as signal handling and asynchronous
notification of I/O completion, and demonstrate how effect handlers enable
scoped interrupt handling (Section 4).

– We evaluate the performance of effect handlers in OCaml by implementing
a highly scalable web server and show that Multicore OCaml effect handlers
are efficient (Section 5).

After the technical content of the paper in Sections 3, 4, and 5, we discuss
related work in Section 6 and our conclusions in Section 7.

3 Algebraic effects and their handlers

Since the primary motivation for adding effect handlers in Multicore OCaml is
concurrency, we introduce effect handlers in constructing an asynchronous I/O
library which retains the simplicity of direct-style programming 4.

3.1 Concurrency

We start with an abstraction for creating asynchronous tasks and waiting on
their results. We use the term fiber to indicate a lightweight user-level thread to
distinguish it from kernel threads.
val async : (α → β) → α → β promise
(* [async f v] spawns a fiber to run [f v] asynchronously. *)

val await : α promise → α
(* Block until the result of a promise is available. Raises

exception [e] if the promise raises [e]. *)

val yield : unit → unit
(* Yield control to other fibers. *)

4 A comprehensive list of example programs written using effect handlers in Multicore
OCaml is available at https://github.com/kayceesrk/effects-examples

https://github.com/kayceesrk/effects-examples


Multicore OCaml extends OCaml with the ability to declare user-defined
effects with the help of the effect keyword. Since async, await and yield are
effectful operations, we declare them as follows:

effect Async : (α → β) * α → β promise
effect Await : α promise → α
effect Yield : unit

The first declaration says that Async is an effect which is parameterised by a
pair of a thunk and a value, and returns a promise as a result when performed.
Await is parameterised by a promise and returns the result. Yield is a nullary
effect that returns a unit value. To be precise, these declarations are operations of
a single built-in effect type α eff in Multicore OCaml. Indeed, these declarations
are syntactic sugar for extending the built-in extensible variant type α eff:

type _ eff +=
| Async : (α → β) * α → β promise eff
| Await : α promise → α eff
| Yield : unit eff

Effects are performed with the perform : α eff → α primitive, which per-
forms the effect and returns the result. We can now define the functions async,
await and yield as:

let async f v = perform (Async (f,v))
let await p = perform (Await p)
let yield () = perform Yield

These effects are interpreted by an effect handler, as shown in Figure 1.
A promise (lines 1–6) is either completed successfully Done v, failed with an
exception Error e or still pending Waiting l, with a list of fibers waiting on it
for completion. The function run (line 8) is the top-level function that runs the
main concurrent program. run_q is the queue of concurrent fibers ready to run.
The effect handler itself is defined in the lines 17–38. An effect handler comprises
of five clauses – a value clause, an exception clause, and three clauses that handle
the effects Async, Await and Yield.

Effect clauses are of the form effect e k where e is the effect and k is the
continuation of the corresponding perform delimited by this handler. k is of type
(α , β) continuation, representing a continuation waiting for a value of type
α and returning a value of type β when resumed. There are two primitives
operating on continuations: continue k x resumes the continuation k where it
left off, returning the value x from perform, while discontinue k exn resumes the
continuation k by raising the exception exn from perform.

In the case of an Async (f,v) effect (lines 28–31), we create a new promise
value p which is initially waiting to be completed. We set up the original fibers,
represented by continuation k, to resume with the promise using the continue
primitive. Finally, we recursively call fork to run the new fiber f v. Since Mul-
ticore OCaml uses so-called deep handlers, the continuation k references its sur-
rounding handler, and so we need not write another match expression when
continue-ing k (See Kammar et al. [15] for more on deep vs. shallow handlers).



1 type α _promise = Done of α | Error of exn
2 | Waiting of (α, unit) continuation list
3

4 type α promise = α _promise ref
5

6 let run main v =
7 let run_q = Queue.create () in
8 let enqueue f = Queue.push f run_q in
9 let run_next () =

10 if Queue.is_empty run_q then ()
11 else Queue.pop run_q ()
12 in
13 let rec fork : α β. α promise → (β → α) → β → unit =
14 fun p f v →
15 match f v with
16 | v →
17 let Waiting l = !p in
18 List.iter (fun k →
19 enqueue (fun () → continue k v)) l;
20 p := Done v;
21 run_next ()
22 | exception e →
23 let Waiting l = !p in
24 List.iter (fun k →
25 enqueue (fun () → discontinue k e)) l;
26 p := Error e;
27 run_next ()
28 | effect (Async (f,v)) k →
29 let p = ref (Waiting []) in
30 enqueue (fun () → continue k p);
31 fork p f v
32 | effect (Await p) k →
33 match !p with
34 | Done v → continue k v
35 | Error e → discontinue k e
36 | Waiting l → p := Waiting (k::l); run_next ()
37 | effect Yield k →
38 enqueue (fun () → continue k ());
39 run_next ()
40 in
41 fork (ref (Waiting [])) main v

Fig. 1: A simple scheduler, implemented with effects



In the case of Await p, we check whether the promise is complete. If success-
ful, we immediately resume with the value, and if failed, we use the discontinue
primitive to resume the continuation by raising an exception. Otherwise, we
block the current fiber on the promise and resume the next fiber from the sched-
uler. In the case of Yield effect, we enqueue the current fiber and run the next
available fiber. In the case of a fiber successfully running to completion (lines
18–23) or raising an exception (lines 24–29), we update the promise, wake up
the waiting fibers and resume the next available fiber.

3.2 Implementing effect handlers

Unlike other languages that incorporate effect handlers, effects in Multicore
OCaml are unchecked. That is, there is no static check for whether all the possi-
ble effects have been handled in the program. As a result, a fiber that performs
an unhandled effect is discontinued with Unhandled exception.

There are several alternatives to implement the continuations in effect han-
dlers including free monadic interpretations [16, 17, 36], CPS translations [13,
20], and runtime strategies. Multicore OCaml chooses the latter and uses a cus-
tom stack layout, efficiently supported by the runtime system. We observe that
many effect handlers do not resume the continuations more than once, and
support only linear continuations by default, which can be implemented effi-
ciently [9]. We also support explicit copying for non-linear use of continuations.

3.3 Adding I/O

Next let us add support for the following I/O operations:

val accept : file_descr → file_descr * sockaddr
val recv : file_descr → bytes → int → int

→ msg_flag list → int
val send : file_descr → bytes → int → int

→ msg_flag list → int

These functions have the same signature as their counterparts in the Unix
module. However, invoking any of these functions may block the kernel thread
until the I/O operation is complete. In a user-level threaded system this would
block the scheduler, preventing other fibers from running.

The standard solution to this problem is to use an event loop, suspending
each task performing a blocking I/O operation, and then multiplexing the out-
standing I/O operations through an OS-provided blocking mechanism such as
select, epoll, kqueue, IOCP, etc. Such asynchronous, non-blocking code typically
warrants callback-oriented programming, making the continuations of I/O oper-
ations explicit through explicit callbacks (à la JavaScript) or concurrency monad
(Lwt and Async libraries for OCaml). The resultant code is arguably messier and
more difficult to understand than direct-style code.

Effect handlers lets us retain direct-style while still allowing the use of event
loops. Below, we shall just consider accept. The other functions are similar. As



earlier, we start by declaring an effect for an accept function: effect Accept :
file_descr → (file_descr * sockaddr). The handler for Accept is:
| effect (Accept fd) k →

(match Unix.accept fd with
| (newfd , sockaddr) →

continue k (newfd , sockaddr)
| exception Unix_error(EWOULDBLOCK , _, _) →

record_waiting fd k; run_next ())

If there is a waiting connection, Unix.accept returns it and we resume the
continuation. If not, Unix.accept raises the EWOULDBLOCK error, and we record that
the fiber is waiting to accept and switch to the next thread from the scheduler
queue. The send and recv operations have similar handler implementations.
let run_next () =

if Queue.is_empty run_q then
if io_is_pending () then begin

wait_until_io_ready (); do_io (); run_next ()
end else () (* done *)

else Queue.pop run_q ()

Correspondingly, the run_next function is updated such that it first runs all
the available threads, and then if any I/O is pending it waits until at least one
of the I/O operations is ready, and then tries to perform the I/O and continue.
If the scheduler queue is empty, and there is no pending I/O, then the scheduler
returns. The library blocks on I/O only if there are no ready threads and there
are pending I/O operations.

Using this API, we can write a simple server that echoes client messages:
let rec echo_server sock =

let sent = ref 0 in
let msg_len = (* receive message *)

try recv sock buffer 0 buf_size [] with
| _ → 0 (* Treat exceptions as 0 length message *) in

if msg_len > 0 then begin
(* echo message *)
(try while !sent < msg_len do

let write_count =
send sock buffer !sent (msg_len - !sent) [] in

sent := write_count + !sent
done with _ → ()); (* ignore send failures *)
echo_server sock

end else close sock (* client left , close connection *)

The details of the code are not important, but observe that the code is
in direct-style and moreover is the same code for the synchronous, blocking
echo server. Furthermore, since the following code is asynchronous, the two echo
servers on sock1 and sock2 do not block each other:
run (fun () →

async echo_server sock1; async echo_server sock2) ()



3.4 Default handlers

For an invocation of an effectful operation to be meaningful it must happen in
the scope of an appropriate handler. A default handler is a convenient mecha-
nism for ensuring that an operation invocation is always meaningful even when
not in scope of a handler. A default handler provides a default interpretation
of an operation. This interpretation is chosen if no other appropriate handler
encloses the invocation context. In other words, a default handler can opera-
tionally be understood as a top level handler which encloses the entire program
context including itself. As a concrete example we can give a default synchronous
semantics for Accept

effect Accept : file_descr → (file_descr * sockaddr)
with function Accept fd → Unix.accept fd

In Multicore OCaml a default handler is declared along with the effectful opera-
tion it is handling using the familiar function construct. In contrast to a regular
effect handler, a default handler does not expose the continuation of the oper-
ation to the programmer, rather, the continuation is implicitly applied to the
body clause(s). This particular design admits an efficient implementation, since
every continuation invocation in a default handler is guaranteed to be in tail
position. Thus the runtime does not need to allocate a continuation, it can sim-
ply return the value produced by the default handler clause. As a consequence
an invocation of a default handler amounts to a function call. This makes it
possible for effectful libraries to remain performance backwards compatible with
programs that do not use regular effect handlers.

Continuing, we can also obtain the synchronous counterparts to Await, Async,
and Yield by giving them all a default synchronous semantics, i.e.

effect Async : (α → β) * α → β promise
with function Async (f, v) →

match f v with
| v → ref (Done v)
| exception e → ref (Error e)

effect Await : α promise → α
with function Await (ref (Done v)) → v

| Await (ref (Error e)) → raise e

effect Yield : unit with function Yield → ()

If a default handler raises an exception, then the fiber is discontinued with
that exception. Furthermore, if a default handler performs an effect then the
default handler of that effect is invoked. If we define the default implementations
of Send and Recv in a similar way then by using default handlers the following
program behaves exactly like its synchronous counterpart.

async echo_server sock1; async echo_server sock2



4 Programming with resources and effects

Systems programming generally involves the manipulation of scarce resources
such as file handles, connections and locks. Such resources are inherently linear,
stateful values: once a file handle is closed, it cannot be used again.

Ordinary straight-line imperative code is not enough to use resources cor-
rectly in the presence of exceptions, let alone effects. For instance, the following
code leaks an unclosed file handle if do_stuff_with f raises an exception:

let f = open_in "data.csv" in
do_stuff_with f;
close_in f

We need to ensure that the file handle is closed, even if an exception is raised:

let f = open_in "data.csv" in
match do_stuff_with f with
| () → close_in f
| exception e → close_in f; raise e

Note that the initial open_in occurs outside the exception handler - if opening
the file fails with an exception, we need not close it. This idiom or something
equivalent is widespread, often with syntactic support as try-finally.

However, note an implicit assumption in this code, that if do_stuff_with f
terminates then it does so only once. If the computation do_stuff_with f were
to return twice (by allowing a continuation captured inside f to be resumed
twice), then the cleanup code (close_in f in this example) would incorrectly run
multiple times. If the computation do_stuff_with_f were to continue execution
after the cleanup code had run, its operations would have unexpected effects.

As well as the performance advantages mentioned above, this is the other
major reason that our continuations are linear. By preserving the linearity of
computations (operations that are begun once do not complete twice), we allow
resource-manipulating code to work correctly in the presence of effects.

Some interesting examples of programming with effects and handlers (such
as backtracking) are incompatible with this approach, since they rely on con-
tinuations to be usable more than once. To support experimenting with such
examples, we do provide a primitive to allow re-use of continuations, with the
proviso that it is not safe in general when used with code that handles resources.

The linearity of computations is implicit in OCaml without effect handlers,
but once continuations appear as first-class values the possibility of using them
twice arises. OCaml does not have the linear types necessary to prevent this
statically (and we are not proposing to add them), so we must enforce linearity
dynamically. Ensuring that a continuation is not used twice is easy enough, by
keeping a bit of state in the continuation, updated by continue and discontinue
so that subsequent resumptions fail. Ensuring that a continuation is not sim-
ply discarded is harder: the system must detect when a continuation is being
garbage-collected, and discontinue it with a special exception so that resource
cleanup code runs.



4.1 Asynchronous exceptions

Correct use of resources is much more difficult in the presence of asynchronous
exceptions. For example, on Unix-like systems when the user of a command-line
program presses Ctrl-C the SIGINT signal is sent. By default, this terminates the
program. However, programs may indicate that they can handle this signal, for
instance by cancelling a long-running task and accepting user input again.

In OCaml, programs indicate willingness to handle SIGINT by calling Sys
.catch_break true. From that point onwards, the special exception Sys.Break
may be raised at essentially any point in the program, if the user presses Ctrl-C.
Unfortunately, the try-finally idiom does not clean up correctly in this case:

let f = open_in "data.csv" in
match do_stuff_with f with
| () → close_in f
| exception e → close_in f; raise e

If Sys.Break is raised just after open_in returns but before the match statement
is entered, then the file handle will never be closed. To eliminate this possibility,
we need to temporarily disable asynchronous exceptions. Suppose we introduce
two functions set_mask and clear_mask, to disable (mask) and re-enable asyn-
chronous exceptions. Our second attempt at resource handling looks like:

set_mask ();
let f = open_in "data.csv" in
match clear_mask (); do_stuff_with f; set_mask () with
| () → close_in f; clear_mask ()
| exception e → set_mask (); close_in f; clear_mask ();

raise e

Correctly placing calls to set_mask and clear_mask is a very tricky business.
Indeed, the above code has a serious bug: if open_in fails with an ordinary
synchronous exception (because e.g. the file is not found), then asynchronous
exceptions will never be unmasked.

Instead, we follow the good advice of Marlow et al. in the design of Haskell’s
asynchronous exceptions [22], and prefer instead scoped combinators:

mask (fun () →
let f = open_in "data.csv" in
match unmask (fun () → do_stuff_with f) with
| () → close_in f
| exception e → close_in f; raise e)

The changes to the masking state made by mask and unmask apply only to one
scope, and are automatically undone, making it impossible to accidentally leave
asynchronous exceptions masked. The presence of unmask allows a further im-
provement to the semantics: we model the asynchronous exception Sys.Break as
being raised not by whatever code happened to be executing when Ctrl-C was
pressed, but by the nearest enclosing unmask. This ensures that exception han-
dlers for asynchronous exceptions need not be treated specially. In particular,
the follow code cannot fail, no matter when Ctrl-C is pressed:



match 1 + 1 with
| n → n
| exception Sys.Break → failwith "what?"

4.2 Signal handling and asynchronous effects

Even with the scoped masking combinators, it is difficult and unpleasant to
write code that correctly manipulates resources in the presence of asynchronous
exceptions. For this reason, many systems choose instead to poll for cancellation
requests, instead of being interrupted with one. That is, instead of a Sys.Break
exception being raised, the programmer manually and regularly checks a mutable
boolean cancellation_flag, which is asynchronously set to true when the user
presses Ctrl-C (This check may be combined with other system facilities: one
common choice is that cancellation is checked at all I/O operations, since the
program must handle failures there anyway).

On Unix-like systems, it is possible to implement this behaviour using a
signal handler, which is a callback invoked when a signal is raised (e.g. by the
user pressing Ctrl-C). In OCaml, these can be installed using the function Sys.
set_signal. In fact, the behaviour of the previously-mentioned Sys.catch_break
is implemented by installing a signal handler that raises Sys.Break:

set_signal sigint (Signal_handle(fun _ → raise Break))

Synchronous cancellation can be implemented using a signal handler that sets a
cancellation flag:

let cancellation_flag = ref false
let is_cancelled () = !cancellation_flag
let () =

set_signal sigint (Signal_handle(fun _ →
cancellation_flag := true))

By removing the possibly of cancellation except at designated points, the im-
perative parts of the system become safer and easier to write. However, as Marlow
et al. [22] note, for the purely functional parts of the system asynchronous can-
cellation is both necessary and just as safe as synchronous: necessary, because
inspecting the mutable cancellation state breaks referential transparency, and
safe, because purely functional code holds no resources and pure computations
can be abandoned without issue.

In order to call a pure function from imperative code while maintaining
prompt cancellation, we need to switch from synchronous (polling) cancellation
to asynchronous cancellation and back, by providing a combinator:

async_cancellable : (unit → α) → (unit → α option)

Normally, async_cancellable f returns Some (f ()). However, the computation
f may be cancelled asynchronously, causing async_cancellable f to return None,
ensuring that asynchronous cancellation does not affect the caller.

Our first attempt at such a mechanism looks like:



let sync_handler = Signal_handle (fun _ →
cancellation_flag := true)

let async_handler = Signal_handle (fun _ →
raise Break)

let async_cancellable f =
mask (fun () →

match
set_signal sigint async_handler;
let result = unmask f in
set_signal sigint sync_handler;
result

with
| x → Some x
| exception Break → None)

This code is tricky, due to its delicate mutation of global state. It is very similar
to the code we saw earlier using set_mask and clear_mask, and even has the same
bug: it leaves the wrong signal handler in place if f raises an exception.

As before, scoped combinators make such code easier to get right (or, more
accurately, harder to get wrong). To this end, we introduce asynchronous effects,
which are effects that can be performed asynchronously, just as asynchronous
exceptions can be raised asynchronously. By treating Break as an asynchronous
effect, we can mix synchronous and asynchronous cancellation reliably.

For synchronous cancellation, we handle the Break effect by setting a flag:

let cancellation_flag = ref false
let sync_cancellable f =

mask (fun () →
match unmask f with
| result → result
| effect Break k →

cancellation_flag := true; continue k ())

Asynchronously-cancellable code can be implemented by handling the Break ef-
fect and discarding the continuation. Since effect handlers delimit the continua-
tion, the asynchrony is limited to the specified function.

let async_cancellable f =
mask (fun () →

match unmask f with
| result → Some result
| effect Break k → None)

Instead of having a single global callback as the current signal handler, asyn-
chronous effects allow handlers to delimit their scope and nest correctly.

4.3 Managing multiple computations with asynchronous effects

Unlike signal handlers, asynchronous effects get an explicit representation of the
computation they interrupted by way of the continuation k. While signal handlers



can only resume the computation or abandon it (by raising an exception), effect
handlers have other options available. For instance, a scheduler which maintains
a collection of tasks can switch to another task when handling an asynchronous
effect, just as the scheduler in Fig. 1 does for the synchronous Yield effect. Using
asynchronous effects the cooperative scheduler of Fig. 1 can be made preemptive,
by asking the operating system to provide a periodic timer signal (using e.g. the
Unix timer_create API), and adding a new clause to the scheduler:

| effect TimerTick k → enqueue (continue k); run_next ()

4.4 Asynchronous I/O notifications

Operating systems provide several different I/O interfaces. The simplest is the
direct-style blocking I/O, in which the program calls operating-system functions
which do not return until the operation completes. This allows a straightforward
style of programming in which the sequence of I/O operations matches the flow
of the code. We aim to support this style of programming using alternative
operating system interfaces that allow multiple I/O operations to be overlapped.

In Section 3.3, we saw one way of accomplishing this with effects, by using
multiplexing mechanisms like select, poll, etc., which block until one of several
file descriptors is ready. An alternative is asynchronous I/O, in which multiple
operations are submitted to the operating system, which overlaps their execution.
However, applications written using asynchronous I/O tend to have complex
control flow which does not clearly explain the logic being implemented, due to
the complexity of handling the operating system’s asynchronous notifications of
I/O completion.

We propose effects and handlers as a means of writing direct-style I/O code,
but using the asynchronous operating system interfaces. We introduce two new
effect operations: Delayed, which describes an operation that has begun and will
complete later, and Completed, which describes its eventual completion. Both of
these take an integer parameter, which identifies the particular operation.

Potentially long-running operations like read perform the Delayed effect, in-
dicating that the operation has been submitted to the operating system but
has not yet completed. Later, upon receipt of an operating-system completion
notification, the asynchronous effect Completed is performed.

Using this mechanism, support for asynchronous completions can be added
to the scheduler of Fig. 1 by adding clauses for the Delayed and Completed effects,
where ongoing_io is an initially empty hash table:

| effect (Delayed id) k →
Hashtbl.add ongoing_io id k

| effect (Completed id) k →
let k’ = Hashtbl.find ongoing_io id in
Hashtbl.remove ongoing_io id;
enqueue (fun () → continue k ());
continue k’ ()



In this sample, the continuation k of the Delayed effect is the continuation of the
code performing the I/O operation, which instead of being immediately invoked
is stored in a hash table until it can be invoked without blocking.

The continuation k of the Completed effect is the continuation of whichever
fiber was running when the I/O completed. This scheduler chooses to preempt
that fiber in favour of the fiber that performed the I/O. Equally, the scheduler
could give priority to the running fiber, by swapping k and k’ in the last lines.

5 Results

So far we have presented what we believe are compelling applications of effect
handlers for elegant system programming. However, none of that would matter if
the resultant programs were unacceptably slower compared to extant solutions.
Hence, in this section, we evaluate the performance of a web server built with
effect handlers against existing production-quality web servers.

We have implemented an effect-based asynchronous I/O library, aeio [2],
that exposes a direct-style API to the clients. At its core, aeio uses the main
loop engine from the Lwt library using the libev5 event loop (using epoll in
our experiments). For the OCaml web server, we use httpaf, which is a high
performance, memory efficient, and scalable web server that uses the Async
library [24] (also using epoll as its I/O system call). We then extended httpaf
and implemented an effect handler based backend using aeio. The configurations
we use for the evaluation are:

– Effect: Effect-based version which uses httpaf with aeio on the Multi-
core OCaml compiler. The Multicore OCaml compiler was forked off vanilla
OCaml version 4.02.2.

– Async: Vanilla OCaml version 4.03.0, using httpaf + Async 113.33.03.
– Go: Go 1.6.3 version of the benchmark using net/http package.

For comparison, all three configurations were constrained to only one core (using
the GOMAXPROCS variable in the case of Go).

The evaluations were done on a 3 GHz Intel Core i7 with 16 GB of main
memory running 64-bit Ubuntu 16.10. The client workload was generated by
the wrk26 program. Each wrk2 run uses a fixed number of client connections that
issues requests at a constant rate, and measures request latency and throughput.

Figure 2 shows the latency profiles for 1 minute runs under two different
configurations. At 1k connections and 10k requests per second, the effect imple-
mentation performs marginally better than Async. Go performs the best with
all requests satisfied within 27 ms. The average request latency of effect config-
uration is 2.127 ms over 587969 requests. Under this configuration, the observed
throughput is between 9780 and 9800 requests per second in all of the configu-
rations.
5 http://software.schmorp.de/pkg/libev.html
6 https://github.com/giltene/wrk2

http://software.schmorp.de/pkg/libev.html
https://github.com/giltene/wrk2


0% 90.0% 99.0% 99.9% 99.99%99.999%
0

5

10

15

20

25

30

La
nt

en
cy

 (m
s)

Async
Go
Effects

(a) Medium contention: 1k connections,
10k requests/sec

0% 90.0% 99.0% 99.9% 99.99%99.999%
0

2000

4000

6000

8000

10000

La
nt

en
cy

 (m
s)

Async
Go
Effects

(b) High contention: 10k connections, 30k
requests/sec

Fig. 2: Latency profile of client requests

At high loads, the performance degrades substantially in every configuration,
but it is worse in the OCaml implementations. The average latency for satisfy-
ing a client request increases to 333.40 ms in the effect case, while it is 139 ms
in async and 107.25 ms in Go. While Go achieved 17389 requests per second,
Async and effect implementations achieved only 16761 and 15440 requests per
second, respectively. This indicates that there is room for optimisations. Multi-
core OCaml has a new garbage collector, which has not been tuned to the extent
of vanilla OCaml and Go. We strongly suspect that garbage collector optimi-
sation and tuning would lead to performance improvements. Importantly, the
tail latencies of both OCaml implementations (the vanilla Async and our effect-
based server) were comparable in both configurations, indicating that there is no
significant performance degradation from our switch to using the effects model
presented in this paper.

6 Related work

Implementations of effect handlers Since their inception, several implementa-
tions of algebraic effect handlers have appeared, many of which are implemented
as libraries in existing programming languages [5, 15, 16, 17, 18, 30, 36]. There
are several other implementations that like Multicore OCaml provide language
level support for effect handlers:

– Eff [4] is the first programming language designed with effect handlers in
mind. It is a strict language with Hindley-Milner type inference similar in
spirit to ML. It includes a novel feature for supporting fresh generation of
effects in order to support effects such as ML-style higher-order state. Eff
compiles to a free monad embedding in OCaml [29].

– Frank [21] is a programming language with effect handlers but no separate
notion of function: a function is but a special case of a handler. Frank has
a bidirectional type and effect system with a novel form of effect polymor-
phism. Furthermore, the handlers in Frank are so-called shallow handlers,



which do not implicitly wrap themselves around the continuation, thereby
allowing nonuniform interpretations of operations.

– Koka is a functional web-oriented programming language which has recently
been enriched with effect handlers [20]. It has a type-and-effect system which
is based on row polymorphism. Koka uses a novel type-and-effect driven
selective CPS compilation scheme for implementing handlers on managed
platforms such as .NET and JavaScript.

– Links [7] is a single source, statically typed language with effect tracking
for multi-tier web programming. Links supports effect handlers on both the
client and the server. The server side implementation is based on a gener-
alised abstract CEK machine [12], while the client side implementation is
based on a CPS translation [13]. Links also has a prototype compiler for the
server side with effect handlers based on the Multicore OCaml compiler [14].

A common theme for the above implementations is that their handlers are
multi-shot handlers which permit multiple invocations of continuations.

Asynchronous IO Many systems seek to combine the simplicity of direct-style,
blocking I/O with the performance gains of allowing independent operations
to complete in parallel. Indeed, the blocking I/O interfaces of most operating
systems are designed in this way, by descheduling a process that requests a slow
operation and running another process until the operation completes. However,
operating system mechanisms rely on hardware context switching. The high
overheads of such mechanisms lead to a desire for lightweight concurrent tasks
integrated into programming languages.

The Erlang system [33] is a good example, capable of managing large numbers
of lightweight processes with an integrated scheduler, and multiplexing their
I/O onto operating system interfaces like select, poll, etc. More recently, the
work by Syme et al. [32] adding async/await to F# allows the programmer to
specify which operations should be completed asynchronously, implemented by
compiling functions which use async differently from those that do not. The
work by Marlow et al. on Concurrent Haskell [23] also supports large numbers
of concurrent threads with multiplexed I/O, while allowing possibly-blocking
operating system services to be used without blocking the entire system via the
mechanism of safe foreign calls. Leijen [19] describes an implementation of a full-
fledged async-await library implemented using effect handlers in Koka including
cancellation and timeout. Koka compiles to JavaScript, whose concurrency model
is cooperative. In particular, there are no asynchronous interrupts in JavaScript
and Koka does not need the associated machinery to safely handle them.

Resource handling with control operators Programming languages supporting
systems programming and exceptions generally support some variant of the try-
finally idiom, often with syntactic support. For example, try{...}finally{...}
in Java, using statements in C#, destructors and RAII in C++, or defer in Go.

Languages with more powerful control operators require correspondingly
more powerful constructs for safe resource handling. The Common LISP con-
dition system allows conditions (similar to effects) to be handled by abandoning



the computation with an error, restarting it or ignoring the error and continuing,
but does not allow the continuation to be captured as a value. It supports the
unwind-protect form to ensure that cleanup code is run no matter how a block
is exited. See Pitman [26] for an analysis of the condition system’s design.

Scheme supports general nonlinear continuations [1], which present difficul-
ties when handling inherently linear resources. Many Scheme implementations
provide a primitive dynamic-wind [11], which generalises the try-finally idiom by
taking some setup and cleanup code to be run not just once but every time con-
trol passes in and out of a specified block of code. However, this comes with its
own caveats: the naive approach of using dynamic-wind to open and close a file
will close and reopen the file every time a computation is paused and resumed,
which is not safe in general as the file may not still exist at the second opening.
One-shot (linear) continuations have also been proposed for Scheme [6].

Support for truly asynchronous interrupts is more rare, partially due to the
difficulty of programming in their presence. The Unix signalling mechanism is an
important example, but its reliance on global mutable state makes programming
difficult (see Section. 4.2). Marlow et al. [22] present a more composable design
for asynchronous exceptions in Haskell. Our approach can be viewed as the
extension of the Haskell approach to effects as well as exceptions.

7 Conclusion

Multicore OCaml provides effect handlers as a means to abstract concurrency.
In this paper, we have described and demonstrated the utility of effect handlers
in concurrent system oriented programming. We have developed a direct-style
asynchronous I/O with effect handlers [2]. Using this library, we built a highly
concurrent and scalable web server. Our evaluation shows that this implemen-
tation retains a comparative performance with the current state of the art in
vanilla OCaml, but that OCaml has some room for improvement vs direct-style
multicore concurrency in Go.

Rather than providing the full generality of effect handlers with nonlinear
continuations, our design provides effect handlers with linear continuations. This
design admits a particularly efficient implementation. Furthermore, linear con-
tinuations interplay more smoothly with system resources. Our implementation
of asynchronous effects also provides an elegant solution to handling problematic
corner cases in typical operating system interfaces, such as reliable signal han-
dling and efficiently implementing quirky system call interfaces while exposing
a simple, portable interface to the developer.

Acknowledgements

Daniel Hillerström was supported by EPSRC grant CDT in Pervasive Paral-
lelism (EP/L01503X/1). KC Sivaramakrishnan was supported by a Research
Fellowship from the Royal Commission for the Exhibition of 1851.



Bibliography

[1] Abelson, H., Dybvig, R.K., Haynes, C.T., Rozas, G.J., Adams, N., Fried-
man, D.P., Kohlbecker, E., Steele, G., Bartley, D.H., Halstead, R., et al.:
Revised(5) report on the algorithmic language Scheme. Higher-order and
symbolic computation 11(1), 7–105 (1998)

[2] Aeio: An asynchronous, effect-based I/O library (2017), https://github.
com/kayceesrk/ocaml-aeio, accessed: 2017-05-05 09:21:00

[3] Barroso, L., Marty, M., Patterson, D., Ranganathan, P.: Attack of the Killer
Microseconds. Commun. ACM 60(4), 48–54 (Mar 2017), http://doi.acm.
org/10.1145/3015146

[4] Bauer, A., Pretnar, M.: Programming with Algebraic Effects and Handlers.
Journal of Logical and Algebraic Methods in Programming 84(1), 108–123
(2015)

[5] Brady, E.: Programming and Reasoning with Algebraic Effects and De-
pendent Types. In: Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming. pp. 133–144. ICFP ’13, ACM, New
York, NY, USA (2013), http://doi.acm.org/10.1145/2500365.2500581

[6] Bruggeman, C., Waddell, O., Dybvig, R.K.: Representing Control in the
Presence of One-Shot Continuations. In: Fischer, C.N. (ed.) Proceedings of
the ACM SIGPLAN’96 Conference on Programming Language Design and
Implementation (PLDI), Philadephia, Pennsylvania, May 21-24, 1996. pp.
99–107. ACM (1996)

[7] Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web Program-
ming Without Tiers. In: Proceedings of the 5th International Con-
ference on Formal Methods for Components and Objects. pp. 266–296.
FMCO’06, Springer-Verlag, Berlin, Heidelberg (2007), http://dl.acm.
org/citation.cfm?id=1777707.1777724

[8] Dolan, S., White, L., Madhavapeddy, A.: Multicore OCaml. OCaml Work-
shop (2014)

[9] Dolan, S., White, L., Sivaramakrishnan, K., Yallop, J., Madhavapeddy, A.:
Effective Concurrency through Algebraic Effects. OCaml Workshop (2015)

[10] Forster, Y., Kammar, O., Lindley, S., Pretnar, M.: On the Expressive
Power of User-defined Effects: Effect Handlers, Monadic Reflection, Delim-
ited Control. Proc. ACM Program. Lang. 1(ICFP), 13:1–13:29 (Aug 2017),
http://doi.acm.org/10.1145/3110257

[11] Friedman, D.P., Haynes, C.T.: Constraining Control. In: Proceedings of the
12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. pp. 245–254. POPL ’85, ACM, New York, NY, USA (1985),
http://doi.acm.org/10.1145/318593.318654

[12] Hillerström, D., Lindley, S.: Liberating Effects with Rows and Handlers.
In: Proceedings of the 1st International Workshop on Type-Driven De-
velopment. pp. 15–27. TyDe 2016, ACM, New York, NY, USA (2016),
http://doi.acm.org/10.1145/2976022.2976033

https://github.com/kayceesrk/ocaml-aeio
https://github.com/kayceesrk/ocaml-aeio
http://doi.acm.org/10.1145/3015146
http://doi.acm.org/10.1145/3015146
http://doi.acm.org/10.1145/2500365.2500581
http://dl.acm.org/citation.cfm?id=1777707.1777724
http://dl.acm.org/citation.cfm?id=1777707.1777724
http://doi.acm.org/10.1145/3110257
http://doi.acm.org/10.1145/318593.318654
http://doi.acm.org/10.1145/2976022.2976033


[13] Hillerström, D., Lindley, S., Atkey, R., Sivaramakrishnan, K.C.: Contin-
uation Passing Style for Effect Handlers. In: Miller, D. (ed.) 2nd In-
ternational Conference on Formal Structures for Computation and De-
duction (FSCD 2017). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 84, pp. 18:1–18:19. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany (2017), http://drops.dagstuhl.de/opus/
volltexte/2017/7739

[14] Hillerström, D., Lindley, S., Sivaramakrishnan, K.: Compiling Links Effect
Handlers to the OCaml Backend. ML Workshop (2016)

[15] Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: Proceedings
of the 18th ACM SIGPLAN International Conference on Functional Pro-
gramming. pp. 145–158. ICFP ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2500365.2500590

[16] Kiselyov, O., Ishii, H.: Freer Monads, More Extensible Effects. In: Pro-
ceedings of the 2015 ACM SIGPLAN Symposium on Haskell. pp. 94–105.
Haskell ’15, ACM, New York, NY, USA (2015), http://doi.acm.org/10.
1145/2804302.2804319

[17] Kiselyov, O., Sabry, A., Swords, C.: Extensible Effects: An Alternative to
Monad Transformers. In: Proceedings of the 2013 ACM SIGPLAN Sympo-
sium on Haskell. pp. 59–70. Haskell ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2503778.2503791

[18] Kiselyov, O., Sivaramakrishnan, K.: Eff directly in OCaml. ML Workshop
(2016)

[19] Leijen, D.: Structured Asynchrony with Algebraic Effects. In: Proceed-
ings of the 2Nd ACM SIGPLAN International Workshop on Type-Driven
Development. pp. 16–29. TyDe 2017, ACM, New York, NY, USA (2017),
http://doi.acm.org/10.1145/3122975.3122977

[20] Leijen, D.: Type Directed Compilation of Row-typed Algebraic Effects. In:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages. pp. 486–499. POPL 2017, ACM, New York, NY, USA
(2017), http://doi.acm.org/10.1145/3009837.3009872

[21] Lindley, S., McBride, C., McLaughlin, C.: Do be do be do. In: Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. pp. 500–514. POPL 2017, ACM, New York, NY, USA (2017),
http://doi.acm.org/10.1145/3009837.3009897

[22] Marlow, S., Jones, S.P., Moran, A., Reppy, J.: Asynchronous Exceptions
in Haskell. In: Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation. pp. 274–285. PLDI
’01, ACM, New York, NY, USA (2001), http://doi.acm.org/10.1145/
378795.378858

[23] Marlow, S., Jones, S.P., Thaller, W.: Extending the Haskell Foreign Func-
tion Interface with Concurrency. In: Proceedings of the 2004 ACM SIG-
PLAN Workshop on Haskell. pp. 22–32. Haskell ’04, ACM, New York, NY,
USA (2004), http://doi.acm.org/10.1145/1017472.1017479

http://drops.dagstuhl.de/opus/volltexte/2017/7739
http://drops.dagstuhl.de/opus/volltexte/2017/7739
http://doi.acm.org/10.1145/2500365.2500590
http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/2503778.2503791
http://doi.acm.org/10.1145/3122975.3122977
http://doi.acm.org/10.1145/3009837.3009872
http://doi.acm.org/10.1145/3009837.3009897
http://doi.acm.org/10.1145/378795.378858
http://doi.acm.org/10.1145/378795.378858
http://doi.acm.org/10.1145/1017472.1017479


[24] Minsky, Y., Madhavapeddy, A., Hickey, J.: Real World OCaml - Functional
Programming for the Masses. O’Reilly (2013), http://shop.oreilly.com/
product/0636920024743.do#tab_04_2

[25] Moggi, E.: Notions of Computation and Monads. Information and
Computation 93(1), 55–92 (Jul 1991), http://dx.doi.org/10.1016/
0890-5401(91)90052-4

[26] Pitman, K.M.: Condition Handling in the Lisp Language Family, pp. 39–59.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

[27] Plotkin, G., Power, J.: Adequacy for Algebraic Effects. In: International
Conference on Foundations of Software Science and Computation Struc-
tures. pp. 1–24. Springer (2001)

[28] Plotkin, G.D., Pretnar, M.: Handling Algebraic Effects. Logical Methods
in Computer Science 9(4) (2013), https://doi.org/10.2168/LMCS-9(4:
23)2013

[29] Pretnar, M., Saleh, A.H., Faes, A., Schrijvers, T.: Efficient Compilation of
Algebraic Effects and Handlers. Tech. Rep. CW 708, KU Leuven, Belgium
(Oct 2017)

[30] Saleh, A.H., Schrijvers, T.: Efficient Algebraic Effect Handlers for Prolog.
Theory and Practice of Logic Programming 16(5-6), 884–898 (2016)

[31] Sivaramakrishnan, K.C., Harris, T., Marlow, S., Peyton Jones, S.: Compos-
able Scheduler Activations for Haskell. Journal of Functional Programming
26, e9 (2016)

[32] Syme, D., Petricek, T., Lomov, D.: The F# Asynchronous Programming
Model. In: Proceedings of the 13th International Conference on Practi-
cal Aspects of Declarative Languages. pp. 175–189. PADL’11, Springer-
Verlag, Berlin, Heidelberg (2011), http://dl.acm.org/citation.cfm?id=
1946313.1946334

[33] Virding, R., Wikström, C., Williams, M.: Concurrent Programming in ER-
LANG (2Nd Ed.). Prentice Hall International (UK) Ltd., Hertfordshire,
UK, UK (1996)

[34] Vouillon, J.: Lwt: A Cooperative Thread Library. In: Proceedings of the
2008 ACM SIGPLANWorkshop on ML. pp. 3–12. ML ’08, ACM, New York,
NY, USA (2008), http://doi.acm.org/10.1145/1411304.1411307

[35] Wadler, P.: The Essence of Functional Programming. In: Proceedings of the
19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 1–14. POPL ’92, ACM, New York, NY, USA (1992), http:
//doi.acm.org/10.1145/143165.143169

[36] Wu, N., Schrijvers, T., Hinze, R.: Effect Handlers in Scope. In: Proceed-
ings of the 2014 ACM SIGPLAN Symposium on Haskell. pp. 1–12. Haskell
’14, ACM, New York, NY, USA (2014), http://doi.acm.org/10.1145/
2633357.2633358

http://shop.oreilly.com/product/0636920024743.do#tab_04_2
http://shop.oreilly.com/product/0636920024743.do#tab_04_2
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
http://dl.acm.org/citation.cfm?id=1946313.1946334
http://dl.acm.org/citation.cfm?id=1946313.1946334
http://doi.acm.org/10.1145/1411304.1411307
http://doi.acm.org/10.1145/143165.143169
http://doi.acm.org/10.1145/143165.143169
http://doi.acm.org/10.1145/2633357.2633358
http://doi.acm.org/10.1145/2633357.2633358

	Concurrent System Programming with Effect Handlers

