WasmFX: Structured Stack Switching via Effect Handlers in

WebAssembly

Daniel Hillerstrom

Laboratory for Foundations of Computer Science
The University of Edinburgh
Scotland, United Kingdom

October 25, 2022

| am but one of many

=

Sam Lindley Andreas Rossberg

KC S|varama.krishnan

Matija Pretnar Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
o Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
o Coroutines (e.g. C++, Kotlin, Python, Swift)
o Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
o Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

@ First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
o Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
o Coroutines (e.g. C++, Kotlin, Python, Swift)
o Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
o Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

@ First-class continuations (e.g. Haskell, Java, OCaml, Scheme)
The problem

How do | compile non-local control flow abstractions to Wasm?

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
o Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
o Coroutines (e.g. C++, Kotlin, Python, Swift)
o Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
o Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

@ First-class continuations (e.g. Haskell, Java, OCaml, Scheme)
The problem

How do | compile non-local control flow abstractions to Wasm?

Solution

o Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
o Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
o Coroutines (e.g. C++, Kotlin, Python, Swift)
o Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
o Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

@ First-class continuations (e.g. Haskell, Java, OCaml, Scheme)
The problem

How do | compile non-local control flow abstractions to Wasm?

Solution

@ Add each abstraction as a primitive to Wasm

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
o Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
o Coroutines (e.g. C++, Kotlin, Python, Swift)
o Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
o Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

@ First-class continuations (e.g. Haskell, Java, OCaml, Scheme)
The problem

How do | compile non-local control flow abstractions to Wasm?

Solution

o Add-each-abstractionasaprimitive-to-Wasm

@ Use effect handlers as a unified modular basis for control in Wasm

A—RV—eR

Perspectives on effect handlers

Operational interpretation

First-class resumable exceptions

Software engineering interpretation

Composable monads builders (monads as a design pattern)

Functional programming interpretation

Folds over computation trees

Mathematical interpretation

Homomorphisms between free algebraic models

Effect handlers are a proven technology

A modular and extensible basis
@ Structured form of delimited control
o Easy encoding of your favourite abstraction via effect handlers

@ Trivially compatible with typed representations

Practical evidence
@ 100+ peer reviewed papers
@ Available in many programming languages (e.g. C++, Haskell, Pyro, OCaml, Unison)

@ Deployed in industrial technologies (e.g. GitHub's semantic, Meta's React, Uber's Pyro)

Running example: coroutines (1)

;; interface for running two coroutines
;; non-interleaving implementation
(module $co2

;; type alias task = [] -> []

(type $task (func))

;7 oyield : [] -> []
(func $yield (export "yield")
(nop))

;5 run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $taskl (ref $task)) (param $task2 (ref $task))
;; run the tasks sequentially
(call_ref (local.get $taskl))
(call_ref (local.get $task2))
)
)

Running example: coroutines (2)

(module $example ;; main example: streams of odd and even naturals

;; imports yield : [] -> []
(func $yield (import "co2" "yield"))

Running example: coroutines (3)

(module $example

;poodd @ [i32] -> []
;; prints the first $niter odd natural numbers
(func $odd (param $niter i32)

(local $n i32) ;; next odd number
(local $i i32) ;; 1terator
(local.set $n (i32.const 1)) ;; initialise locals
(local.set $i (i32.const 1)) FF R
(block $b
(loop $1
(br_if $b (i32.gt_u (local.get $i) (local.get $niter))) ;; termination condition
(call $print (local.get $n)) ;; print the current odd number

(local.set $n (i32.add (local.get $n) (i32.const 2))) ;; compute next odd number
(local.set $i (i32.add (local.get $i) (i32.const 1))) ;; increment the iterator
(call $yield) ;; yield control

(br $1)))) ;; repeat

;o oeven @ [132] -> []
;; prints the first $niter even natural numbers
(func $even (param $niter i32) ...)

Running example: coroutines (4)

(module $example

;; odds, even5 : [] -> []

(func $odd5 (export "odd5")
(call $odd (i32.const 5)))

(func $even5 (export "even5")
(call $even (i32.const 5)))

;; calling $run with $odd5 and $even5...
(call $run (ref.func $odd5) (ref.func $even5))
;i ... prints 13579246 810

Instructions: declaring control tags

Control tag declaration
(tag $tag (param o*) (result 77))

it's a mild extension of Wasm's exception tags

(known in the literature as an ‘operation symbol’ (Plotkin and Pretnar 2013))

Refactoring the co2 module (1)

(module $co2
;; type alias task = [] -> []
(type $task (func))

;o yleld @[] -> []
(tag $yield)

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run @ [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $taskl (ref $task)) (param $task2 (ref $task))
)

Instructions: creating continuations

Continuation type
(cont $ft)

cont is a new reference type constructor parameterised by a function type, $ft : [0*] — [7%]

Continuation allocation
cont.new : [(ref null $ft)] — [(ref $ct)]
where $ft : [o*] — [77]
and $ct : cont $ft

Refactoring the co2 module (2)

(module $co2
;; type alias $task = [] -> []
(type $task (func))

;, type alias $ct = $task
(type $ct (cont $task))

;; run : [(ref $task) (ref $task)] -> []
;; implements a ’'seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $taskl (ref $task)) (param $task2 (ref $task))
;,; locals to manage continuations
(local $up (ref null $ct))
(local $down (ref null $ct))
(local $isOtherDone i32)
;; initialise locals
(local.set $up (cont.new (type $ct) (local.get $taskl)))
(local.set $down (cont.new (type $ct) (local.get $task2)))
)

Instructions: invoking continuations

Continuation resumption
resume (tag $tag $h)* : [o* (ref null $ct)] — [77]

where {S$tag; : [o}] — [7] and $h; : [0} (ref null $ct;)] and
$ct; : cont $ft; and $ft; : [Ti*] — [T*]},‘
and $ct : cont $ft
and $ft : [0*] = [1*]

The instruction fully consume the continuation argument

Refactoring the co2 module (3)

(module $co2

- ;; declarations of $task, $yield, etc
;porun : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $taskl (ref $task)) (param $task2 (ref $task))

;; initialisation of $up and $down

;; run $up

(Loop $h ;7 handling loop
(block $on_yield (result (ref $ct))
(resume (tag $yield $on_yield) (local.get $up)) ;; resume $up; handle $yield using $on_yield
(if (i32.eq (local.get $isOtherDone) (i32.const 1)) ;; $up finished; $down is already done?
(then (return))) ;; ... then exit
(local.get $down) ;; ... otherwise prepare to run $down
(local.set $up) ;; $up := $down
(local.set $isOtherDone (i32.const 1)) ;; mark other as done
(br $h) ;, repeat
) ;; yleld-case definition; stack: [(cont $ct)]
(local.set $up) ;, set $up to the current continuation
(if (i32.eqz (local.get $isOtherDone)) ;; 1s $down already done?
(then (local.get $down) ;; ... then swap $up and $down
(local.set $down (local.get $up))
(local.set $up)))
(br $h))) ;, repeat

Instructions: suspending continuations

Continuation suspension
suspend $tag : [0"] — [17]

where $tag : [0*] — [77]

Refactoring the co2 module (4)

(module $co2
;; type alias task = [] -> []
(type $task (func))
;; type alias ct = $task
(type $ct (cont $task))

;7 oyield : []1 -> []
(tag $yield (param) (result))

;; oyield @ [] -> []
(func $yield (export "yield")
(suspend $yield))

;; run @ [(ref $task) (ref $task)] -> []

;, implements a ’'seesaw’ (c.f. Ganz et al. (ICFP@99))

(func $run (export "run") (param $taskl (ref $task)) (param $task2 (ref $task))
-

Now (call $run (ref.func $odd5) (ref.func $even5)) prints 12345678910

Current status of the proposal

What has already been done
@ Formal specification
@ Informal explainer documentation

@ Reference implementation

What is happening now

@ An implementation in Wasmtime, a production-grade engine

What is going to happen next
@ Experimenting with implementation strategies (e.g. Wasmtime fiber, libmprompt)

@ Gathering performance evidence

Wasmtime fiber interface

The essence of the Wasmtime fiber interface in Rust

trait FiberStack {
fn new(size: usize) -> io::Result<Self>

}

trait<Resume, Yield, Return> Fiber<Resume, Yield, Return> {
fn new(stack: FiberStack,
func: FnOnce(Resume, &Suspend<Resume, Yield, Return>) -> Return
fn resume(&self, val: Resume) -> Result<Return, Yield>
}

trait Suspend<Resume, Yield, Return> {
fn suspend(&self, Yield) -> Resume

}

The gist of encoding effect handlers on top of Wasmtime fibers

Fix suitably Resume, Yield, and Return types.

Continuation creation Z[—] : Instr x ValStack — Rust

I[[cont.new; [f]]] — Fiber.new(FiberStack.new(STACK_SIZE), |resume, &mySuspend| {Return(f(resume))})

Continuation resumption 7[—]: Tag — Rust, L[—] : Label x ValStack — Rust

Z[resume (tag $tag $h)*;[xo,- .., Xn, K]]
= match Fiber.resume(k, Tuple(Xp,...,Xp)) {
[vield(op(T [$tag]. aras)) == L[$h;; [args, k]]]

Yield(Op(tag, args)) => Fiber.resume(k, mySuspend.suspend(Op(tag, args)))
Return(x) => x

Continuation suspension

I[[suspend; [tag, args]ﬂ — mySuspend.suspend(Op(tag,args))

Summary
o Effect handlers provide a modular and extensible basis for stack switching in Wasm
o Effect handlers are a proven technology
@ The extension to Wasm is minimal and compatible
@ Working on an implementation in Wasmtime

@ Experimentation with implementation strategies

The work is actively being turned into a proposal; for more details see
https://wasmfx.dev

Comments and feedback are welcome!

https://wasmfx.dev

References

Sitaram, Dorai (1993). “Handling Control”. In: PLDI. ACM, pp. 147-155.

Ganz, Steven E., Daniel P. Friedman, and Mitchell Wand (1999). “Trampolined Style". In: ICFP. ACM,
pp. 18-27.

Plotkin, Gordon D. and Matija Pretnar (2013). “Handling Algebraic Effects”. In: Logical Methods in
Computer Science 9.4.

Haas, Andreas et al. (2017). “Bringing the web up to speed with WebAssembly". In: PLDI. ACM,
pp. 185-200.

Forster, Yannick et al. (2019). “On the expressive power of user-defined effects: Effect handlers,
monadic reflection, delimited control”. In: J. Funct. Program. 29, el5.

Hillerstrom, Daniel (2021). “Foundations for Programming and Implementing Effect Handlers".
PhD thesis. The University of Edinburgh, Scotland, UK.

Sivaramakrishnan, K. C. et al. (2021). “Retrofitting effect handlers onto OCaml". In: PLDI. ACM,
pp. 206-221.

Ghica, Dan et al. (2022). “High-Level Type-Safe Effect Handlers in C++". In: Proc. ACM Program.
Lang. 6.00PSLA, pp. 1-30.

Thomson, Patrick et al. (2022). "Fusing industry and academia at GitHub (experience report)”. In:
Proc. ACM Program. Lang. 6.1CFP, pp. 496-511.

Continuation binding, cancellation, and trapping

Partial continuation application
cont.bind (type $ct) : [og (ref null $ct)] — [(ref $ct’)]

where $ct : cont $ft and $ft : [of of] — [7*]
and $ct’ : cont $ft’ and $ft’ : [o7] — [77]

Continuation cancellation
resume_throw (tag $exn) (tag $tag $h)* : [o5 (ref null $ct)] — [77]
where S$exn: [o§] — [], {Stag; : [0]] = [77] and $h; : [0} (ref null $ct;)] and
$ct; :cont $ft; and $ft; : [7] — [7*]}i

and $ct : cont ([o*] — [77]

Control barriers
barrier $/bl (type $bt) instr* : [0*] — [77]

where $bt = [0*] — [7*] and instr* : [0*] — [7%]

	References

