
WasmFX: Structured Stack Switching for WebAssembly

Daniel Hillerström

Computing Systems Laboratory
Zurich Research Center

Huawei Technologies, Switzerland

September 22, 2023

WebAssembly: a low-level virtual machine (Haas et al. 2017)

What is Wasm?
A portable bytecode format
An abstraction of the commonly found hardware
A predictable performance model

Code format
A Wasm “program” is a structured module
Designed for stream compilation
The term language is statically typed and block-structured
Control flow is structured (i.e. all CFGs are reducible)

Exciting future prospects
Running non-JavaScript code in the browser
Secure-by-compilation cloud-native applications
Efficient cross-platform portable applications

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution

Add each abstraction as a primitive to Wasm
Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution

Add each abstraction as a primitive to Wasm
Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution
Add each abstraction as a primitive to Wasm

Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution
Add each abstraction as a primitive to Wasm

Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution
Add each abstraction as a primitive to Wasm
Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)

Asyncify is the current state-of-the-art (1)

(func $doSomething (param $arg i32) (result i32)
(call $foo
(call $bar (local.get $arg))))

Asyncify is the current state-of-the-art (1)
(func $doSomething (param $arg i32) (result i32)
(local $call_idx i32)
(local $ret i32)
(if (i32.eq (global.get $asyncify_mode) (i32.const 2)) ;; test rewind state
(then (local.set $arg ;; store local $arg

(i32.load offset=4 (global.get $asyncify_heap_ptr)))
(local.set $call_idx ;; continuation point
(i32.load offset=8 (global.get $asyncify_heap_ptr)))

(else))
(block $call_foo (result i32)
(block $restore_foo (result i32)
(block $call_bar (result i32)
(local.get $arg)
(if (i32.eq (global.get $asyncify_mode) (i32.const 2)) (result i32)
(then (if (i32.eq (local.get $call_idx) (i32.const 0))

(then (br $call_bar)) ;; restore $call_bar
(else (br $restore_foo))))

(else (br $call_bar)))) ;; regular $call_bar
(local.set $ret (call $bar (local.get 0)))
(if (i32.eq (global.get $asyncify_mode) (i32.const 1)) (result i32) ;; test unwind state

(then (i32.store offset=4 (global.get $asyncify_heap_ptr) (local.get $arg))
(i32.store offset=8 (global.get $asyncify_heap_ptr (i32.const 0))
(return (i32.const 0))) ...))))))

Asyncify is the current state-of-the-art (1)
(func $doSomething (param $arg i32) (result i32)
(local $call_idx i32)
(local $ret i32)
(if (i32.eq (global.get $asyncify_mode) (i32.const 2)) ;; test rewind state
(then (local.set $arg ;; store local $arg

(i32.load offset=4 (global.get $asyncify_heap_ptr)))
(local.set $call_idx ;; continuation point
(i32.load offset=8 (global.get $asyncify_heap_ptr)))

(else))
(block $call_foo (result i32)
(block $restore_foo (result i32)
(block $call_bar (result i32)
(local.get $arg)
(if (i32.eq (global.get $asyncify_mode) (i32.const 2)) (result i32)
(then (if (i32.eq (local.get $call_idx) (i32.const 0))

(then (br $call_bar)) ;; restore $call_bar
(else (br $restore_foo))))

(else (br $call_bar)))) ;; regular $call_bar
(local.set $ret (call $bar (local.get 0)))
(if (i32.eq (global.get $asyncify_mode) (i32.const 1)) (result i32) ;; test unwind state

(then (i32.store offset=4 (global.get $asyncify_heap_ptr) (local.get $arg))
(i32.store offset=8 (global.get $asyncify_heap_ptr (i32.const 0))
(return (i32.const 0))) ...))))))

Asyncify is the current state-of-the-art (1)
(func $doSomething (param $arg i32) (result i32)
(local $call_idx i32)
(local $ret i32)
(if (i32.eq (global.get $asyncify_mode) (i32.const 2)) ;; test rewind state
(then (local.set $arg ;; store local $arg

(i32.load offset=4 (global.get $asyncify_heap_ptr)))
(local.set $call_idx ;; continuation point
(i32.load offset=8 (global.get $asyncify_heap_ptr)))

(else))
(block $call_foo (result i32)
(block $restore_foo (result i32)
(block $call_bar (result i32)
(local.get $arg)
(if (i32.eq (global.get $asyncify_mode) (i32.const 2)) (result i32)
(then (if (i32.eq (local.get $call_idx) (i32.const 0))

(then (br $call_bar)) ;; restore $call_bar
(else (br $restore_foo))))

(else (br $call_bar)))) ;; regular $call_bar
(local.set $ret (call $bar (local.get 0)))
(if (i32.eq (global.get $asyncify_mode) (i32.const 1)) (result i32) ;; test unwind state

(then (i32.store offset=4 (global.get $asyncify_heap_ptr) (local.get $arg))
(i32.store offset=8 (global.get $asyncify_heap_ptr (i32.const 0))
(return (i32.const 0))) ...))))))

Asyncify is the current state-of-the-art (1)
(func $doSomething (param $arg i32) (result i32)
(local $call_idx i32)
(local $ret i32)
(if (i32.eq (global.get $asyncify_mode) (i32.const 2)) ;; test rewind state
(then (local.set $arg ;; store local $arg

(i32.load offset=4 (global.get $asyncify_heap_ptr)))
(local.set $call_idx ;; continuation point
(i32.load offset=8 (global.get $asyncify_heap_ptr)))

(else))
(block $call_foo (result i32)
(block $restore_foo (result i32)
(block $call_bar (result i32)
(local.get $arg)
(if (i32.eq (global.get $asyncify_mode) (i32.const 2)) (result i32)
(then (if (i32.eq (local.get $call_idx) (i32.const 0))

(then (br $call_bar)) ;; restore $call_bar
(else (br $restore_foo))))

(else (br $call_bar)))) ;; regular $call_bar
(local.set $ret (call $bar (local.get 0)))
(if (i32.eq (global.get $asyncify_mode) (i32.const 1)) (result i32) ;; test unwind state

(then (i32.store offset=4 (global.get $asyncify_heap_ptr) (local.get $arg))
(i32.store offset=8 (global.get $asyncify_heap_ptr (i32.const 0))
(return (i32.const 0))) ...))))))

Characterising Asyncify

Pros
Expressive
Source-to-source transformation
Optimisable under a closed-world assumption

Cons
Code size blowup
Slowdown pure code
Whole-program approach

But, what is Asyncify? The key primitives are

Unwind stack, delimit unwind, and rewind stack

or expressed with a slightly different terminology:

Suspend continuation, delimit suspend, and resume continuation

Asyncify provides a particular implementation of delimited continuations!

(the state machine approach dates back at least as far as Adya et al. (2002))

Characterising Asyncify

Pros
Expressive
Source-to-source transformation
Optimisable under a closed-world assumption

Cons
Code size blowup
Slowdown pure code
Whole-program approach

But, what is Asyncify? The key primitives are

Unwind stack, delimit unwind, and rewind stack

or expressed with a slightly different terminology:

Suspend continuation, delimit suspend, and resume continuation

Asyncify provides a particular implementation of delimited continuations!

(the state machine approach dates back at least as far as Adya et al. (2002))

Characterising Asyncify

Pros
Expressive
Source-to-source transformation
Optimisable under a closed-world assumption

Cons
Code size blowup
Slowdown pure code
Whole-program approach

But, what is Asyncify? The key primitives are

Unwind stack, delimit unwind, and rewind stack

or expressed with a slightly different terminology:

Suspend continuation, delimit suspend, and resume continuation

Asyncify provides a particular implementation of delimited continuations!

(the state machine approach dates back at least as far as Adya et al. (2002))

Characterising Asyncify

Pros
Expressive
Source-to-source transformation
Optimisable under a closed-world assumption

Cons
Code size blowup
Slowdown pure code
Whole-program approach

But, what is Asyncify? The key primitives are

Unwind stack, delimit unwind, and rewind stack

or expressed with a slightly different terminology:

Suspend continuation, delimit suspend, and resume continuation

Asyncify provides a particular implementation of delimited continuations!

(the state machine approach dates back at least as far as Adya et al. (2002))

Characterising Asyncify

Pros
Expressive
Source-to-source transformation
Optimisable under a closed-world assumption

Cons
Code size blowup
Slowdown pure code
Whole-program approach

But, what is Asyncify? The key primitives are

Unwind stack, delimit unwind, and rewind stack

or expressed with a slightly different terminology:

Suspend continuation, delimit suspend, and resume continuation

Asyncify provides a particular implementation of delimited continuations!

(the state machine approach dates back at least as far as Adya et al. (2002))

The solution: a delimited continuations instruction set

Main idea
Let’s turn the gist of Asyncify into a proper instruction set!
. . . but where to start?

Many flavours of delimited continuations
Felleisen (1988)’s control/prompt
Danvy and Filinski (1990)’s shift/reset
Hieb and Dybvig (1990)’s spawn
Queinnec and Serpette (1991)’s splitter
Sitaram (1993)’s run/fcontrol
Gunter, Rémy, and Riecke (1995)’s cupto
Longley (2009)’s catchcont
Plotkin and Pretnar (2009)’s effect handlers

(see Appendix A of my PhD thesis (Hillerström 2021) for a comprehensive overview of continuations)

The solution: a delimited continuations instruction set

Main idea
Let’s turn the gist of Asyncify into a proper instruction set!
. . . but where to start?

Many flavours of delimited continuations
Felleisen (1988)’s control/prompt
Danvy and Filinski (1990)’s shift/reset
Hieb and Dybvig (1990)’s spawn
Queinnec and Serpette (1991)’s splitter
Sitaram (1993)’s run/fcontrol
Gunter, Rémy, and Riecke (1995)’s cupto
Longley (2009)’s catchcont
Plotkin and Pretnar (2009)’s effect handlers

(see Appendix A of my PhD thesis (Hillerström 2021) for a comprehensive overview of continuations)

Why effect handlers

Design constraints, must work. . .

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predictable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing
compatible with native effects
transparent cost of instructions
seamless interop

Why effect handlers

Design constraints, must work. . .

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predictable cost model

. . . with legacy code

reference counting suffices

first-order abstraction
no fundamental dependency
straightforward typing
compatible with native effects
transparent cost of instructions
seamless interop

Why effect handlers

Design constraints, must work. . .

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predictable cost model

. . . with legacy code

reference counting suffices
first-order abstraction

no fundamental dependency
straightforward typing
compatible with native effects
transparent cost of instructions
seamless interop

Why effect handlers

Design constraints, must work. . .

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predictable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency

straightforward typing
compatible with native effects
transparent cost of instructions
seamless interop

Why effect handlers

Design constraints, must work. . .

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predictable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing

compatible with native effects
transparent cost of instructions
seamless interop

Why effect handlers

Design constraints, must work. . .

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predictable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing
compatible with native effects

transparent cost of instructions
seamless interop

Why effect handlers

Design constraints, must work. . .

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predictable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing
compatible with native effects
transparent cost of instructions

seamless interop

Why effect handlers

Design constraints, must work. . .

. . . without garbage collection

. . . without closures

. . . without the use of recursion

. . . with simply typed stacks

. . . with imperative control structure

. . . with predictable cost model

. . . with legacy code

reference counting suffices
first-order abstraction
no fundamental dependency
straightforward typing
compatible with native effects
transparent cost of instructions
seamless interop

The WasmFX instruction set extension
Types

cont $ft

 2 3

Tags
tag $tag (param σ∗) (result τ∗)

 2 3

Core instructions
cont.new

 2 3

resume

 2 3

suspend

 2 3

Other instructions
cont.bind

 2 3

resume_throw

 2

barrier

 2

Legend
 Spec’ed
2 Reference impl.
3 Wasmtime impl.

We call this extension WasmFX (the proposal was originally named “typed continuations”).

https://wasmfx.dev

https://wasmfx.dev

The WasmFX instruction set extension
Types

cont $ft 2 3

Tags
tag $tag (param σ∗) (result τ∗)

 2 3

Core instructions
cont.new

 2 3

resume

 2 3

suspend

 2 3

Other instructions
cont.bind

 2 3

resume_throw

 2

barrier

 2

Legend
 Spec’ed
2 Reference impl.
3 Wasmtime impl.

We call this extension WasmFX (the proposal was originally named “typed continuations”).

https://wasmfx.dev

https://wasmfx.dev

The WasmFX instruction set extension
Types

cont $ft 2 3

Tags
tag $tag (param σ∗) (result τ∗) 2 3

Core instructions
cont.new

 2 3

resume

 2 3

suspend

 2 3

Other instructions
cont.bind

 2 3

resume_throw

 2

barrier

 2

Legend
 Spec’ed
2 Reference impl.
3 Wasmtime impl.

We call this extension WasmFX (the proposal was originally named “typed continuations”).

https://wasmfx.dev

https://wasmfx.dev

The WasmFX instruction set extension
Types

cont $ft 2 3

Tags
tag $tag (param σ∗) (result τ∗) 2 3

Core instructions
cont.new 2 3

resume

 2 3

suspend

 2 3

Other instructions
cont.bind

 2 3

resume_throw

 2

barrier

 2

Legend
 Spec’ed
2 Reference impl.
3 Wasmtime impl.

We call this extension WasmFX (the proposal was originally named “typed continuations”).

https://wasmfx.dev

https://wasmfx.dev

The WasmFX instruction set extension
Types

cont $ft 2 3

Tags
tag $tag (param σ∗) (result τ∗) 2 3

Core instructions
cont.new 2 3

resume 2 3

suspend

 2 3

Other instructions
cont.bind

 2 3

resume_throw

 2

barrier

 2

Legend
 Spec’ed
2 Reference impl.
3 Wasmtime impl.

We call this extension WasmFX (the proposal was originally named “typed continuations”).

https://wasmfx.dev

https://wasmfx.dev

The WasmFX instruction set extension
Types

cont $ft 2 3

Tags
tag $tag (param σ∗) (result τ∗) 2 3

Core instructions
cont.new 2 3

resume 2 3

suspend 2 3

Other instructions
cont.bind

 2 3

resume_throw

 2

barrier

 2

Legend
 Spec’ed
2 Reference impl.
3 Wasmtime impl.

We call this extension WasmFX (the proposal was originally named “typed continuations”).

https://wasmfx.dev

https://wasmfx.dev

The WasmFX instruction set extension
Types

cont $ft 2 3

Tags
tag $tag (param σ∗) (result τ∗) 2 3

Core instructions
cont.new 2 3

resume 2 3

suspend 2 3

Other instructions
cont.bind 2 3

resume_throw

 2

barrier

 2

Legend
 Spec’ed
2 Reference impl.
3 Wasmtime impl.

We call this extension WasmFX (the proposal was originally named “typed continuations”).

https://wasmfx.dev

https://wasmfx.dev

The WasmFX instruction set extension
Types

cont $ft 2 3

Tags
tag $tag (param σ∗) (result τ∗) 2 3

Core instructions
cont.new 2 3

resume 2 3

suspend 2 3

Other instructions
cont.bind 2 3

resume_throw 2

barrier

 2

Legend
 Spec’ed
2 Reference impl.
3 Wasmtime impl.

We call this extension WasmFX (the proposal was originally named “typed continuations”).

https://wasmfx.dev

https://wasmfx.dev

The WasmFX instruction set extension
Types

cont $ft 2 3

Tags
tag $tag (param σ∗) (result τ∗) 2 3

Core instructions
cont.new 2 3

resume 2 3

suspend 2 3

Other instructions
cont.bind 2 3

resume_throw 2

barrier 2

Legend
 Spec’ed
2 Reference impl.
3 Wasmtime impl.

We call this extension WasmFX (the proposal was originally named “typed continuations”).

https://wasmfx.dev

https://wasmfx.dev

Instruction extension (1)

Continuation allocation

cont.new $ct : [(ref null $ft)] → [(ref $ct)]

where $ft : [σ∗] → [τ∗]
and $ct : cont $ft

Operational interpretation of cont.new

cont.new $t1 (ref.func $f)
cont.new $t2 (ref.func $g) call $f

call $g

SP
SP
SP

Operational interpretation of cont.new

cont.new $t1 (ref.func $f)
cont.new $t2 (ref.func $g) call $f

call $g

SP
SP
SP

Operational interpretation of cont.new

cont.new $t1 (ref.func $f)
cont.new $t2 (ref.func $g) call $f

call $g

SP
SP
SP

Instruction extension (2)

Continuation resumption

resume $ct (tag $tag $h)∗ : [σ∗ (ref null $ct)] → [τ∗]

where {$tagi : [σ
∗
i] → [τ∗i] and $hi : [σ∗

i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i] → [τ∗]}i

and $ct : cont $ft
and $ft : [σ∗] → [τ∗]

The instruction fully consumes the continuation argument.

Branching from resume uses the existing block instructions
(func $run (param $task1 (ref $task)) (param $task2 (ref $task))
(local $up (ref null $ct)) (local $down (ref null $ct)) ;; locals to manage continuations
(local $isOtherDone i32) ;; initialise locals
(local.set $up (cont.new (type $ct) (local.get $task1)))
(local.set $down (cont.new (type $ct) (local.get $task2)))
(loop $h ;; run $up
(block $on_yield (result (ref $ct))
(resume (tag $yield $on_yield)

(local.get $up))
(if (i32.eq (local.get $isOtherDone) (i32.const 1)) ;; $up finished, check whether $down is done
(then (return))) ;; prepare to run $down

(local.get $down)
(local.set $up)
(local.set $isOtherDone (i32.const 1))
(br $h)

) ;; on_yield clause, stack type: [(cont $ct)]
(local.set $up)
(if (i32.eqz (local.get $isOtherDone)) ;; swap $up and $down
(then (local.get $down)

(local.set $down (local.get $up))
(local.set $up)))

(br $h)))

Operational interpretation of resume

resume $t1 (tag ...) $xi , . . . , $xk

resume $t2 (tag ...) $xj , . . . , $xl call $f

call $g

SP
SPSP

SP

SP

Operational interpretation of resume

resume $t1 (tag ...) $xi , . . . , $xk

resume $t2 (tag ...) $xj , . . . , $xl call $f $xi , . . . , $xk

call $g

SP
SPSP

SP

SP

Operational interpretation of resume

resume $t1 (tag ...) $xi , . . . , $xk

resume $t2 (tag ...) $xj , . . . , $xl V1

call $g

SP
SPSP

SP

SP

Operational interpretation of resume

V1

resume $t2 (tag ...) $xj , . . . , $xl V1

call $g

SP
SPSP

SP

SP

Operational interpretation of resume

V1

resume $t2 (tag ...) $xj , . . . , $xl V1

call $g $xj , . . . , $xl

SP
SPSP

SP

SP

Operational interpretation of resume

V1

resume $t2 (tag ...) $xj , . . . , $xl V1

V2

SP
SPSP

SP

SP

Operational interpretation of resume

V1

V2 V1

V2

SP
SPSP

SP

SP

Instruction extension (4)

Continuation suspension
suspend $tag : [σ∗] → [τ∗]

where $tag : [σ∗] → [τ∗]

Operational interpretation of suspend

$c1 = cont

$c2 = cont

resume $t1 (tag ...) $c1

resume $t2 (tag ...)

resume $t3 (tag ...)

suspend $u1 V1

· · ·
· · ·

suspend $u2 V2

· · ·

SP
SP

SP

SPSP

SP

Operational interpretation of suspend

$c1 = null

$c2 = cont

resume $t1 (tag ...) $c1

resume $t2 (tag ...)

resume $t3 (tag ...)

suspend $u1 V1

· · ·
· · ·

suspend $u2 V2

· · ·

SP
SP

SP

SPSP

SP

Operational interpretation of suspend

$c1 = null

$c2 = cont

V1

$c3 = cont

resume $t2 (tag ...) V1 $c2

resume $t3 (tag ...)

· · ·
· · ·

suspend $u2 V2

· · ·

SP
SP

SP

SPSP

SP

Operational interpretation of suspend

$c1 = null

$c2 = null

V1

$c3 = cont

resume $t2 (tag ...) V1 $c2

resume $t3 (tag ...)

· · ·
· · ·

V1

suspend $u2 V2

· · ·

SP
SP

SP

SPSP

SP

Operational interpretation of suspend

$c1 = null

$c2 = null

V1

$c3 = cont

V2

$c4 = cont

resume $t3 (tag ...) V2 $c3

· · ·
· · ·

V1

· · ·

SP
SP

SP

SPSP

SP

Operational interpretation of suspend

$c1 = null

$c2 = null

V1

$c3 = null

V2

$c4 = cont

resume $t3 (tag ...) V2 $c3

V2

· · ·
· · ·

V1

· · ·

SP
SP

SP

SPSP

SP

Research prototype implementation in Wasmtime

Prototype implementation in Wasmtime
Naïve baseline implementation
Enables running “real” programs
Stack switching on top of Wasmtime Fiber

Key naïve implementation decisions
Stack switching is non-Wasm native
Use u128 as the universal type
Reallocate argument buffers on each context switch Wasm

Rust/Wasmtime runtime

lib
ca

ll

Experiments setup
Setup overview

Fiber-based micro-benchmarks; three implementations: Asyncify, WasmFX, and bespoke
Fiber interface in C; instantiated with either Asyncify or WasmFX
No memory leaks allowed

Tools
WASI SDK version 20.0
Binaryen version 114

Apples & oranges
Bespoke and Asyncify implementations are optimised

clang -O3
wasm-opt -O2 --asyncify --pass-arg=asyncify-ignore-imports

WasmFX implementation is unoptimised and assembled by hand
Different storage

Asyncify-backed fibers in linear memory
WasmFX-backed fibers in tables

Tools do not understand function references

Experiments setup: Fiber interface in C

/** The signature of a fiber entry point. **/
typedef void* (*fiber_entry_point_t)(void*);
/** The abstract type of a fiber object. **/
typedef struct fiber* fiber_t;

/** Allocates a new fiber with the default stack size. **/
fiber_t fiber_alloc(fiber_entry_point_t entry);
/** Reclaims the memory occupied by a fiber object. **/
void fiber_free(fiber_t fiber);

/** Yields control to its parent context. This function must be called
from within a fiber context. **/

void* fiber_yield(void *arg);

/** Possible status codes for ‘fiber_resume‘. **/
typedef enum { FIBER_OK, FIBER_YIELD, FIBER_ERROR } fiber_result_t;

/** Resumes a given ‘fiber‘ with argument ‘arg‘. **/
void* fiber_resume(fiber_t fiber, void *arg, fiber_result_t *result);

Microbenchmark: C10m

Description
HTTP server workload simulation.
10 million coroutines in total.
Sliding window: 10000 coroutines run concurrently, each yielding once.
Shallow call stack depth

Run-time ratio Memory footprint ratio Binary size ratio
Asyncify 1.00 1.00 (54mb) 1.00 (9.1kb)
WasmFX 0.23 0.98 (55mb) 10.78 (844b)

Microbenchmark: C10m

Description
HTTP server workload simulation.
10 million coroutines in total.
Sliding window: 10000 coroutines run concurrently, each yielding once.
Shallow call stack depth

Run-time ratio Memory footprint ratio Binary size ratio
Bespoke 1.00 1.00 (13mb) 1.00 (940b)
Asyncify 0.21 0.24 (54mb) 0.10 (9.1kb)
WasmFX 0.05 0.24 (55mb) 1.11 (844b)

Microbenchmark: Skynet

Description
Nested tree-structured concurrency simulation.
10 million coroutines in total, 6 active, each yielding once.
No auxiliary data structure; fibers are stored in the control flow state.
Deep call stack.

Run-time ratio Memory footprint ratio Binary size ratio
Asyncify 1.00 1.00 (14mb) 1.00 (30kb)
WasmFX 2.12 1.00 (14mb) 55.87 (537b)

Microbenchmark: Skynet

Description
Nested tree-structured concurrency simulation.
10 million coroutines in total, 6 active, each yielding once.
No auxiliary data structure; fibers are stored in the control flow state.
Deep call stack.

Run-time ratio Memory footprint ratio Binary size ratio
Bespoke 1.00 1.00 (13mb) 1.00 (306b)
Asyncify 0.01 0.01 (14mb) 0.01 (30kb)
WasmFX 0.14 0.24 (14mb) 0.57 (537b)

Future experiments (1)

Benchmarks
Get into pole position
Realistic workloads and use-cases

Backends
Internalise Wasmtime Fiber in codegen
Cranelift native stack switching

Memory
Deferred stack allocation
Stack pools

Extensions
Named resume blocks
First-class & generative control tags

Future experiments (2)

Toolchain support
Compiling control abstractions1

Retrofitting existing toolchains2

Develop new (researchy) toolchains

1The Kotlin team has shown interest in compiling to the WasmFX instruction set
2Currently working on added the WasmFX instruction set to binaryen

WasmFX resource list

Resources
Formal specification
(https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md)
Informal explainer document
(https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Explainer.md)
Reference implementation (https://github.com/wasmfx/specfx)
Research prototype implementation in Wasmtime (https://github.com/wasmfx/wasmfxtime)
Toolchain support (https://github.com/wasmfx/binaryenfx)
OOPSLA’23 research paper (https://doi.org/10.48550/arXiv.2308.08347)

https://wasmfx.dev

https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md
https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Explainer.md
https://github.com/wasmfx/specfx
https://github.com/wasmfx/wasmfxtime
https://github.com/wasmfx/binaryenfx
https://doi.org/10.48550/arXiv.2308.08347
https://wasmfx.dev

References I

Felleisen, Matthias (1988). “The Theory and Practice of First-Class Prompts”. In: POPL. ACM Press,
pp. 180–190.

Danvy, Olivier and Andrzej Filinski (1990). “Abstracting Control”. In: LISP and Functional
Programming, pp. 151–160.

Hieb, Robert and R. Kent Dybvig (1990). “Continuations and Concurrency”. In: PPoPP. ACM,
pp. 128–136.

Queinnec, Christian and Bernard P. Serpette (1991). “A Dynamic Extent Control Operator for Partial
Continuations”. In: POPL. ACM Press, pp. 174–184.

Sitaram, Dorai (1993). “Handling Control”. In: PLDI. ACM, pp. 147–155.
Gunter, Carl A., Didier Rémy, and Jon G. Riecke (1995). “A Generalization of Exceptions and Control

in ML-like Languages”. In: FPCA. ACM, pp. 12–23.
Ganz, Steven E., Daniel P. Friedman, and Mitchell Wand (1999). “Trampolined Style”. In: ICFP. ACM,

pp. 18–27.
Adya, Atul et al. (2002). “Cooperative Task Management Without Manual Stack Management”. In:

USENIX Annual Technical Conference, General Track. USENIX, pp. 289–302.

References II

Longley, John (2009). “Some Programming Languages Suggested by Game Models (Extended
Abstract)”. In: MFPS. Vol. 249. Electronic Notes in Theoretical Computer Science. Elsevier,
pp. 117–134.

Plotkin, Gordon D. and Matija Pretnar (2009). “Handlers of Algebraic Effects”. In: ESOP. Vol. 5502.
LNCS. Springer, pp. 80–94.

Haas, Andreas et al. (2017). “Bringing the web up to speed with WebAssembly”. In: PLDI. ACM,
pp. 185–200.

Hillerström, Daniel (2021). “Foundations for Programming and Implementing Effect Handlers”.
PhD thesis. The University of Edinburgh, Scotland, UK.

Phipps-Costin, Luna et al. (2023). “Continuing WebAssembly with Effect Handlers”. In: Proc. ACM
Program. Lang. 7.OOPSLA2. To appear.

Instruction extension (3)

Partial continuation application

cont.bind $sct $dct : [σ∗
0 (ref null $sct)] → [(ref $dct)]

where $sct : cont $ft and $ft : [σ∗
0 σ

∗
1] → [τ∗]

and $dst : cont $ft ′ and $ft ′ : [σ∗
1] → [τ∗]

Instruction extension (5)

Continuation cancellation

resume_throw $ct(tag $exn) (tag $tag $h)∗ : [σ∗
0 (ref null $ct)] → [τ∗]

where $exn : [σ∗
0] → [], {$tagi : [σ

∗
i] → [τ∗i] and $hi : [σ∗

i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i] → [τ∗]}i

and $ct : cont ([σ∗] → [τ∗]

Instruction extension (6)

Control barriers
barrier $lbl $bt instr∗ : [σ∗] → [τ∗]

where $bt = [σ∗] → [τ∗] and instr∗ : [σ∗] → [τ∗]

	References

