
This work is supported by

OCaml Labs

Runtime Agnostic Concurrency with Handlers
Pervasive Parallelism Lunch Talk

Daniel Hillerström

CDT Pervasive Parallelism
The University of Edinburgh, UK

October 12, 2016

Outline

This talk consists of four parts

1 Motivation

2 Introduction to algebraic effects and their handlers

3 Abstract message-passing concurrency model (Hillerström, 2016)

4 Concurrency model instantiations (joint work with C. Dubach, S. Lindley, and
KC Sivaramakrishnan) [work-in-progress]

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 3/30

Setting the stage

In the idealised world: write once, use everywhere (w.r.t some guarantees).

Really, really hard to achieve with different architectures in a parallel setting.

Concurrent program.

Rectangular computer architecture.

Diamond computer architecture.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 4/30

Setting the stage

In the idealised world: write once, use everywhere (w.r.t some guarantees).

Really, really hard to achieve with different architectures in a parallel setting.

Concurrent program.

Rectangular computer architecture.

Diamond computer architecture.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 4/30

The axis of parallelisation

Marlow (2013) Steuwer et al. (2015)1HPC community

Cole (1988)

manual automatic

This work

Lots of promising work in the area of automatic compiler-enabled parallelisation.

But my work positions itself in the other extreme.

1Steuwer, Fensch, Lindley, and Dubach
D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 5/30

The axis of parallelisation

Marlow (2013) Steuwer et al. (2015)1HPC community

Cole (1988)

manual automatic

This work

Lots of promising work in the area of automatic compiler-enabled parallelisation.

But my work positions itself in the other extreme.

1Steuwer, Fensch, Lindley, and Dubach
D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 5/30

The axis of parallelisation

Marlow (2013) Steuwer et al. (2015)1HPC community

Cole (1988)

manual automatic

This work

Lots of promising work in the area of automatic compiler-enabled parallelisation.

But my work positions itself in the other extreme.

1Steuwer, Fensch, Lindley, and Dubach
D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 5/30

Research hypothesis

Research hypothesis

Using algebraic effects and handlers we can decouple the concrete concurrency
implementation from the use of concurrency primitives in our programs.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 6/30

Computational effects

What are some examples of computational effects?

Printing to standard output (print).

Interacting with users (input).

Nondeterminism (choice).

Concurrency (fork, join, etc.)

. . . many more.

In short: computational effects are pervasive.

Nowadays, monads are the defacto abstraction for controlling effects (Moggi,
1991; Wadler 1992).

Algebraic effects (Plotkin and Power, 2001) combined with effect handlers
(Plotkin and Pretnar, 2013) provide a modular alternative to monads.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 7/30

Algebraic effects

Definition (Algebraic effect)

An algebraic effect is a collection of abstract operations. For example, we may
think of

effect Incr : int -> int

effect Decr : int -> int

as describing an algebraic effect with two operations Incr and Decr. Essentially,
an algebraic effect is an interface.

A silly example abstract computation:

let fortytwo () =

let i = perform (Incr 42) in

Printf.printf "%d\n" i;

Printf.printf "%d\n" (perform (Decr i))

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 8/30

Handlers

From the previous slide

let fortytwo () =

let i = perform (Incr 42) in

Printf.printf "%d\n" i;

Printf.printf "%d\n" (perform (Decr i))

Definition (Handler)

A handler is a modular interpreter over abstract computations.

Example interpretation of Incr and Decr:

let incr_decr m =

match m () with

| v -> v

| effect (Incr i) comp -> continue comp (i+1)

| effect (Decr i) comp -> continue comp (i-1)

To interpret fortytwo we apply incr_decr:

incr_decr fortytwo ;;

43

42
D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 9/30

Implementations of algebraic effects and handlers

Programming languages with support for effect handlers

Eff by Bauer and Pretnar (2015).

Multicore OCaml by Dolan, White, Sivaramakrishnan, Yallop, and
Madhavapeddy (2015).

Links2 by Hillerström and Lindley (2016)3.

Shonky by McBride (2016).

Frank by Lindley, McBride, and McLaughlin (2017)4.

Some embeddings in other programming languages

Haskell library by Kiselyov, Sabry, and Swords (2013).

Haskell library by Kammar, Lindley, and Oury (2013).

Prolog library by Saleh and Schrijvers (2016).

2Originally developed by Cooper, Lindley, Wadler, and Yallop (2006).
3Later developed a compiler (Hillerström, Lindley, and Sivaramakrishnan, 2016).
4To appear at POPL 2017.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 10/30

Implementations of algebraic effects and handlers

Programming languages with support for effect handlers

Eff by Bauer and Pretnar (2015).

Multicore OCaml by Dolan, White, Sivaramakrishnan, Yallop, and
Madhavapeddy (2015).

Links2 by Hillerström and Lindley (2016)3.

Shonky by McBride (2016).

Frank by Lindley, McBride, and McLaughlin (2017)4.

Some embeddings in other programming languages

Haskell library by Kiselyov, Sabry, and Swords (2013).

Haskell library by Kammar, Lindley, and Oury (2013).

Prolog library by Saleh and Schrijvers (2016).

2Originally developed by Cooper, Lindley, Wadler, and Yallop (2006).
3Later developed a compiler (Hillerström, Lindley, and Sivaramakrishnan, 2016).
4To appear at POPL 2017.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 10/30

Modelling message-passing concurrency

We are interesting in modelling a message-passing concurrency model.

P1m0m1· · ·mkMailbox

P2n0n1· · ·sMailbox

P1 sends message s to P2

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 11/30

Concurrency ingredients

Some abstract type pid that classifies process identifiers.

Three abstract operations for managing processes:

Spawn : (unit -> unit) -> pid — for process creation.

Yield : unit — for context switching.

Self : pid — for self-referral.

Two operations for managing communication among processes:

Send : (pid * m) -> unit — for sending a message of type m.

Recv : pid -> m option — for receiving a message of type m.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 12/30

An example abstract concurrent computation

This computation fits on a single slide:

let rec fib n parent () =

let rec recv self =

match perform (Recv self) with

| None -> yield (); recv ()

| Some msg -> msg

in

let send pid msg =

perform (Send (pid , msg)); yield ()

in

if n < 2

then send parent n

else let self = perform Self in

let _ = perform (Spawn (fib (n-1) self)) in

let _ = perform (Spawn (fib (n-2) self)) in

send parent ((recv self) + (recv self))

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 13/30

Scheduling

A handler for Spawn and Yield is a scheduler for processes. Consider the following
code5:

let roundrobin f () =

...

let rec spawn f =

match f () with

| () -> dequeue ()

| effect (Spawn f) comp ->

let child_pid = fresh_pid () in

enqueue (fun () -> continue comp child_pid);

spawn f

| effect Yield comp ->

enqueue (fun () -> continue comp ()); dequeue ()

in

spawn f

5Adapted from Bauer and Pretnar (2015)
D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 14/30

Communication

A mailbox can be represented as a mapping from pid to queues of msg.

let communication f =

...

match f () with

| v -> v

| effect (Send (pid , msg)) k ->

put pid msg;

continue k ()

| effect (Recv pid) k ->

let msg = lookup pid in

continue k msg

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 15/30

Model instantiation

Let type pid = int. Now, we make a single-threaded instantiation of our
concurrency model:

communication (roundrobin (fun () -> fib 7 (self ())))

Computes the value 8.

This instantiation is an implementation of cooperative multitasking.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 16/30

Instantiation: Cooperative multitasking

P

Actual system process.

Abstract concurrent computation.

Concurrency handler(s).

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 17/30

Observation: Model and implementation are decoupled

Observation
The abstract concurrent computations are implemented independently of our
choice of model instantiation.

Can we instantiate our model with, perhaps, a parallel runtime such as MPI?

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 18/30

Instantiation: Ring scheduling

P1 P2

Actual system process.

Abstract concurrent computation.

Concurrency handler(s).

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 19/30

Not quite a free lunch

The change of implementation does not come for free

Must change the initialisation of the application (our main function).

Must implement new handlers that take advantage of the new runtime.

But the main parts of our program are left untouched. We may even reuse
previous handlers.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 20/30

Encapsulation of runtime specific parts inside of handlers

Let type pid = int * int.
Observation: calls to MPI routines only occur inside of handlers!

let mpihandler m () =

...

let spawn f =

match f () with

| v -> dequeue ()

| effect (Spawn f) k -> (* Send task to neighbour *)

let pid = fresh_pid neighbour in

let _ = Mpi.send (Task (f,pid)) neighbour 1 Mpi.

comm_world in

continue k pid

| effect (Send (pid ,msg)) k -> (* Local or remote send? *)

let _ = Mpi.send (Result (msg , pid)) neighbour 2 Mpi.

comm_world in

continue k ()

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 21/30

Instantiation: Single master, multiple workers

Task queue

P0

W1 W2

Actual system process.
Abstract concurrent computation.

Concurrency handler(s).
D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 22/30

Future work

Next steps

Measure/generate some performance figures

Application to irregular parallel programs

Future, future work

Serialisation of continuations

Mixed-mode parallel programming

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 23/30

Summary

In summary

Algebraic effects and their handlers provide a modular abstraction for
controlling computational effects.

Concurrency arises as “just” another natural controllable effect.

Instantiate your concurrency model with your favourite implementation.

Potential for unleashing and taming parallelism within abstract computations.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 24/30

References I

Daniel Hillerström.
Compilation of effect handlers and their applications in concurrency.
Master’s thesis, School of Informatics, the University of Edinburgh, Scotland,
August 2016.

Daniel Hillerström, Sam Lindley, and KC Sivaramakrishnan.
Compiling Links effect handlers to the OCaml backend.
ML Workshop, 2016.

Daniel Hillerström and Sam Lindley.
Liberating effects with rows and handlers.
In Proceedings of 1st International Workshop on Type-Driven Development
(TyDe), TyDe 2016, pages 15–27, New York, NY, USA, September 2016.
ACM.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil
Madhavapeddy.
Effective concurrency through algebraic effects.
OCaml Workshop, 2015.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 25/30

References II

Andrej Bauer and Matija Pretnar.
Programming with algebraic effects and handlers.
J. Log. Algebr. Meth. Program., 84(1):108–123, 2015.

Ohad Kammar, Sam Lindley, and Nicolas Oury.
Handlers in action.
In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’13, pages 145–158, New York, NY, USA,
2013. ACM.

Daan Leijen.
Type directed compilation of row-typed algebraic effects.
Technical report, Microsoft Research, 2016.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 26/30

References III

Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach.
Generating performance portable code using rewrite rules: from high-level
functional expressions to high-performance opencl code.
In Kathleen Fisher and John H. Reppy, editors, Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2015,
Vancouver, BC, Canada, September 1-3, 2015, pages 205–217. ACM, 2015.

Simon Marlow.
Parallel and Concurrent Programming in Haskell: Techniques for Multicore
and Multithreaded Programming.
Parallel and Concurrent Programming in Haskell: Techniques for Multicore
and Multithreaded Programming. O’Reilly Media, 2013.

Oleg Kiselyov, Amr Sabry, and Cameron Swords.
Extensible effects: an alternative to monad transformers.
In Chung-chieh Shan, editor, Proceedings of the 2013 ACM SIGPLAN
Symposium on Haskell, Boston, MA, USA, September 23-24, 2013, pages
59–70. ACM, 2013.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 27/30

References IV

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers.
In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P.
de Roever, editors, Formal Methods for Components and Objects, 5th
International Symposium, FMCO 2006, Amsterdam, The Netherlands,
November 7-10, 2006, Revised Lectures, volume 4709 of Lecture Notes in
Computer Science, pages 266–296. Springer, 2006.

Amr Hany Saleh and Tom Schrijvers.
Efficient algebraic effect handlers for prolog.
CoRR, abs/1608.00816, 2016.

Eugenio Moggi.
Notions of computation and monads.
Inf. Comput., 93(1):55–92, 1991.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 28/30

References V

Philip Wadler.
The essence of functional programming.
In Ravi Sethi, editor, Conference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Albuquerque, New Mexico, USA, January 19-22, 1992, pages 1–14. ACM
Press, 1992.

Gordon D. Plotkin and John Power.
Adequacy for algebraic effects.
In Furio Honsell and Marino Miculan, editors, Foundations of Software
Science and Computation Structures, 4th International Conference, FOSSACS
2001 Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, volume
2030 of Lecture Notes in Computer Science, pages 1–24. Springer, 2001.

Gordon D. Plotkin and Matija Pretnar.
Handling algebraic effects.
Logical Methods in Computer Science, 9(4), 2013.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 29/30

References VI

Sam Lindley, Conor McBride, and Craig McLaughlin.
Do be do be do, 2017.
to appear at POPL 2017.

Conor McBride.
Shonky, 2016.
https://github.com/pigworker/shonky.

Murray Cole.
Algorithmic skeletons : a structured approach to the management of parallel
computation.
PhD thesis, University of Edinburgh, UK, 1988.

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 30/30

https://github.com/pigworker/shonky

	Motivation
	Algebraic effects and their handlers
	Abstract message-passing concurrency

