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Outline

This talk consists of four parts

1 Motivation

2 Introduction to algebraic effects and their handlers

3 Abstract message-passing concurrency model (Hillerström, 2016)

4 Concurrency model instantiations (joint work with C. Dubach, S. Lindley, and
KC Sivaramakrishnan) [work-in-progress]
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Setting the stage

In the idealised world: write once, use everywhere (w.r.t some guarantees).

Really, really hard to achieve with different architectures in a parallel setting.

Concurrent program.

Rectangular computer architecture.

Diamond computer architecture.
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The axis of parallelisation

Marlow (2013) Steuwer et al. (2015)1HPC community

Cole (1988)

manual automatic

This work

Lots of promising work in the area of automatic compiler-enabled parallelisation.

But my work positions itself in the other extreme.

1Steuwer, Fensch, Lindley, and Dubach
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Research hypothesis

Research hypothesis

Using algebraic effects and handlers we can decouple the concrete concurrency
implementation from the use of concurrency primitives in our programs.
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Computational effects

What are some examples of computational effects?

Printing to standard output (print).

Interacting with users (input).

Nondeterminism (choice).

Concurrency (fork, join, etc.)

. . . many more.

In short: computational effects are pervasive.

Nowadays, monads are the defacto abstraction for controlling effects (Moggi,
1991; Wadler 1992).

Algebraic effects (Plotkin and Power, 2001) combined with effect handlers
(Plotkin and Pretnar, 2013) provide a modular alternative to monads.
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Algebraic effects

Definition (Algebraic effect)

An algebraic effect is a collection of abstract operations. For example, we may
think of

effect Incr : int -> int

effect Decr : int -> int

as describing an algebraic effect with two operations Incr and Decr. Essentially,
an algebraic effect is an interface.

A silly example abstract computation:

let fortytwo () =

let i = perform (Incr 42) in

Printf.printf "%d\n" i;

Printf.printf "%d\n" (perform (Decr i))
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Handlers

From the previous slide

let fortytwo () =

let i = perform (Incr 42) in

Printf.printf "%d\n" i;

Printf.printf "%d\n" (perform (Decr i))

Definition (Handler)

A handler is a modular interpreter over abstract computations.

Example interpretation of Incr and Decr:

let incr_decr m =

match m () with

| v -> v

| effect (Incr i) comp -> continue comp (i+1)

| effect (Decr i) comp -> continue comp (i-1)

To interpret fortytwo we apply incr_decr:

# incr_decr fortytwo ;;

43

42
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Implementations of algebraic effects and handlers

Programming languages with support for effect handlers

Eff by Bauer and Pretnar (2015).

Multicore OCaml by Dolan, White, Sivaramakrishnan, Yallop, and
Madhavapeddy (2015).

Links2 by Hillerström and Lindley (2016)3.

Shonky by McBride (2016).

Frank by Lindley, McBride, and McLaughlin (2017)4.

Some embeddings in other programming languages

Haskell library by Kiselyov, Sabry, and Swords (2013).

Haskell library by Kammar, Lindley, and Oury (2013).

Prolog library by Saleh and Schrijvers (2016).

2Originally developed by Cooper, Lindley, Wadler, and Yallop (2006).
3Later developed a compiler (Hillerström, Lindley, and Sivaramakrishnan, 2016).
4To appear at POPL 2017.
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Modelling message-passing concurrency

We are interesting in modelling a message-passing concurrency model.

P1m0m1· · ·mkMailbox

P2n0n1· · ·sMailbox

P1 sends message s to P2
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Concurrency ingredients

Some abstract type pid that classifies process identifiers.

Three abstract operations for managing processes:

Spawn : (unit -> unit) -> pid — for process creation.

Yield : unit — for context switching.

Self : pid — for self-referral.

Two operations for managing communication among processes:

Send : (pid * m) -> unit — for sending a message of type m.

Recv : pid -> m option — for receiving a message of type m.
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An example abstract concurrent computation

This computation fits on a single slide:

let rec fib n parent () =

let rec recv self =

match perform (Recv self) with

| None -> yield (); recv ()

| Some msg -> msg

in

let send pid msg =

perform (Send (pid , msg)); yield ()

in

if n < 2

then send parent n

else let self = perform Self in

let _ = perform (Spawn (fib (n-1) self)) in

let _ = perform (Spawn (fib (n-2) self)) in

send parent ((recv self) + (recv self))
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Scheduling

A handler for Spawn and Yield is a scheduler for processes. Consider the following
code5:

let roundrobin f () =

...

let rec spawn f =

match f () with

| () -> dequeue ()

| effect (Spawn f) comp ->

let child_pid = fresh_pid () in

enqueue (fun () -> continue comp child_pid);

spawn f

| effect Yield comp ->

enqueue (fun () -> continue comp ()); dequeue ()

in

spawn f

5Adapted from Bauer and Pretnar (2015)
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Communication

A mailbox can be represented as a mapping from pid to queues of msg.

let communication f =

...

match f () with

| v -> v

| effect (Send (pid , msg)) k ->

put pid msg;

continue k ()

| effect (Recv pid) k ->

let msg = lookup pid in

continue k msg
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Model instantiation

Let type pid = int. Now, we make a single-threaded instantiation of our
concurrency model:

communication (roundrobin (fun () -> fib 7 (self ())))

Computes the value 8.

This instantiation is an implementation of cooperative multitasking.
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Instantiation: Cooperative multitasking

P

Actual system process.

Abstract concurrent computation.

Concurrency handler(s).
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Observation: Model and implementation are decoupled

Observation
The abstract concurrent computations are implemented independently of our
choice of model instantiation.

Can we instantiate our model with, perhaps, a parallel runtime such as MPI?

D. Hillerström (University of Edinburgh) Runtime Agnostic Concurrency with Handlers 12-10-2016 18/30



Instantiation: Ring scheduling

P1 P2

Actual system process.

Abstract concurrent computation.

Concurrency handler(s).
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Not quite a free lunch

The change of implementation does not come for free

Must change the initialisation of the application (our main function).

Must implement new handlers that take advantage of the new runtime.

But the main parts of our program are left untouched. We may even reuse
previous handlers.
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Encapsulation of runtime specific parts inside of handlers

Let type pid = int * int.
Observation: calls to MPI routines only occur inside of handlers!

let mpihandler m () =

...

let spawn f =

match f () with

| v -> dequeue ()

| effect (Spawn f) k -> (* Send task to neighbour *)

let pid = fresh_pid neighbour in

let _ = Mpi.send (Task (f,pid)) neighbour 1 Mpi.

comm_world in

continue k pid

| effect (Send (pid ,msg)) k -> (* Local or remote send? *)

let _ = Mpi.send (Result (msg , pid)) neighbour 2 Mpi.

comm_world in

continue k ()
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Instantiation: Single master, multiple workers

Task queue

P0

W1 W2

Actual system process.
Abstract concurrent computation.

Concurrency handler(s).
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Future work

Next steps

Measure/generate some performance figures

Application to irregular parallel programs

Future, future work

Serialisation of continuations

Mixed-mode parallel programming
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Summary

In summary

Algebraic effects and their handlers provide a modular abstraction for
controlling computational effects.

Concurrency arises as “just” another natural controllable effect.

Instantiate your concurrency model with your favourite implementation.

Potential for unleashing and taming parallelism within abstract computations.
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