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A new complexity result for control operators

The crux of this work is to establish a new complexity result for control operators

Lay person’s version of the result
There is a class of problems for which a language with control operators provides
asymptotically more efficient solutions than a language without control operators
(O(2n) vs Ω(n2n)).

To establish the existence of this class, we use generic search as an example
program and effect handlers as our control operator.

This talk is high-level walk-through of how we establish this result

(The possibility of the existence of this result can be traced back to Longley (2009))

(Disclaimer: we present the result using a contextual operational semantics, although, it was
originally established using an abstract machine (Hillerström and Lindley 2016))



Methodology

The plan of attack
Define a pure functional language L, and an extension thereof Leff with
effect handlers.
Provide a specification (type signature) of generic search problem
Implement an efficient version of generic search in Leff

. . . and prove that it is indeed efficient
Finally show that any implementation of generic search in L has worse
complexity

There is a single rule of engagement:

No change of types is allowed! (Longley and Normann 2015)

This rules out tricks such as
CPS conversion (Hillerström et al. 2017)
Implementing an interpreter for Leff in L



Generic search

Given a search problem P, a generic search algorithm finds solutions of P.

Applications include (Daniels 2016)
n-Queens
Sudoku
Finding Nash equilibria
Graph-colouring
Exact real number integration

4 0ZQZ
3 L0Z0
2 0Z0L
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A solution to 4-Queens problem

Rather than finding solutions of P, we count the number of solutions of P



First instance of efficient generic search with effect handlers

Somewhat related is work on exhaustive search on infinite spaces
Berger (1990): exhaustive search on the Cantor space 2N

Escardó (2007): characterisation of searchable infinite sets
Bauer (2011): efficient search on infinite sets with effect handlers



Fine-grain call-by-value PCF (Levy et al. 2003)

The core of a “pure” functional programming language L

Types A,B,C ,D ::= 〈〉 | Bool | Nat | A× B | A + B | A→ B

Values V ,W ∈ Val ::= x | b ∈ B | n ∈ N | Plus | 〈〉 | 〈V ; W 〉
| (inl V )B | (inr W )A | λxA.M | rec f A x .M

Computations M,N ∈ Comp ::= V W
| let 〈x ; y〉 = V in N
| if V then M else N
| case V {inl x 7→ M; inr y 7→ N}
| return V
| let x ← M in N

Eval. contexts E ∈ Eval ::= [ ] | let x ← E in N

The static and dynamic semantics are completely standard.



Service announcement: Syntactic sugar

I shall permit myself to use regular call-by-value syntax, e.g. for f , g , h, a ∈ Val

f (h a) + g 〈〉

= let x ← h a in
let y ← f x in
let z ← g 〈〉 in
Plus 〈y ; z〉



Service announcement: Syntactic sugar

I shall permit myself to use regular call-by-value syntax, e.g. for f , g , h, a ∈ Val

Jf (h a) + g 〈〉K = let x ← h a in
let y ← f x in
let z ← g 〈〉 in
Plus 〈y ; z〉



FGCB PCF with effect handlers

The language Leff

Handler types F ::= C ⇒ D
Signatures Σ ::= · | {` : A→ B} ] Σ
Labels ` ∈ L

Computations M,N ∈ Comp ::= · · · | do `V | handle M with H

Handlers H ::= {val x 7→ M} | {` p r 7→ N} ] H

Eval. contexts E ∈ Eval ::= · · · | handle E with H



FGCB PCF with effect handlers (dynamic semantics)

S-Ret handle (return V ) with H
 N[V /x ], where Hval = {val x 7→ N}

S-Op handle E [do ` V ] with H
 N[V /p, λy .handle E [return y ] with H/r ], where H` = {` p r 7→ N}



Example: Coin tossing (nondeterminism)

Fix Σ = {Choose : Bool}

A coin toss model

toss : 〈〉 → Toss
toss = if do Choose then Heads

else Tails

Computation tree

Choose

Heads

true

Tails

false

A possible handler for Choose

allChoices : (〈〉 → Toss)→ [Toss]
allChoices = λm. handle m 〈〉 with

val x 7→ [x ]
Choose r 7→ r true ++ r false

Enumerating all possible
outcomes

allChoices toss  + ??
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Fix Σ = {Choose : Bool}

A coin toss model

toss : 〈〉 → Toss
toss = if do Choose then Heads

else Tails

Computation tree

Choose

Heads

true

Tails

false

A possible handler for Choose

allChoices : (〈〉 → Toss)→ [Toss]
allChoices = λm. handle m 〈〉 with

val x 7→ [x ]
Choose r 7→ r true ++ r false

Enumerating all possible
outcomes

allChoices toss  + [Heads,Tails]



Setting up generic search

The secret of generic search is higher-order functions

Predicate .
= (Nat→ Bool)→ Bool

Some (silly) example predicates

ttn
.
= λp.p 0; · · · ; p (n − 1); return true

divn
.
= rec d p.if p (n − 1) then d p else return false

oddn
.
= λp.reduce xor false [p 0, . . . , p (n − 1)]
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A pure generic search procedure

A possible implementation of generic search in L
countn : (Predicate→ Bool)→ Nat
countn

.
= λpred .count ′ n (λi .⊥)

where
count ′ 0 p

.
= if pred p then 1 else 0

count ′ (n + 1) p
.
= count ′ n (λi .if i = n then true else p i)

+ count ′ n (λi .if i = n then false else p i)

Example count3 tt3:
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A possible implementation of generic search in L
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A pure generic search procedure

A possible implementation of generic search in L
countn : (Predicate→ Bool)→ Nat
countn

.
= λpred .count ′ n (λi .⊥)

where
count ′ 0 p

.
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.
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A pure generic search procedure

A possible implementation of generic search in L
countn : (Predicate→ Bool)→ Nat
countn

.
= λpred .count ′ n (λi .⊥)

where
count ′ 0 p

.
= if pred p then 1 else 0

count ′ (n + 1) p
.
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The effectful generic search procedure

For the efficient implementation of generic search in Leff , we require one
operation; fix Σ

.
= {Branch : Bool}

genericSearch : (Predicate→ Bool)→ Nat
genericSearch .

= λpred .handle (if pred (λn.do Branch) then 1 else 0) with
val x 7→ x
Branch r 7→ r true + r false

Example genericSearch tt3:
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Semantics for predicates

Definition (The label set)
The set Lab consists of queries parameterised by a natural number and answers
parameterised by a boolean, i.e. Lab .

= {!tt, !ff } ∪ {?n | n ∈ N}

Definition (Decision tree)
A decision tree is a partial function t : B∗ → Lab× Eval×N from lists of booleans
to node labels with the following properties:

The domain of t, dom(t), is prefix closed.
For any boolean, b ∈ B, and list, bs ∈ B∗, of booleans, if t`(bs) = !b is an
answer node then bs is a leaf of t.

Notation: write t` and ts for the projection of the first and third components of
t(−), respectively.



Model construction

Definition
We implement the decision tree semantics as a partial function parameterised by
an abstract point p, Tp : Comp ⇀ (B∗ ⇀ Lab× Eval×N), that given a predicate,
pred , constructs a function, that given a list of booleans, bs, returns the
corresponding node label in model of pred p, where p is an “abstract point”.

Tp(return true) [ ] = (!true, [ ], 0)

Tp(return false) [ ] = (!false, [ ], 0)

Tp(E [p n]) [ ] = (?n, E , 0)

Tp(E [p n])(b :: bs) ' Tp(E [return b])(bs)

If M  N then Tp(M)(bs) ' I(Tp(N)(bs))

where I(`, E , i) = (`, E , i + 1)

Define Model .= Comp ⇀ (B∗ × Eval× N).



Standard decision trees

We are interested in predicates whose models are complete binary trees, and query
each component of a provided point exactly once.

Definition (n-standard trees)
For any n > 0 a decision tree t is said to be n-standard whenever

The domain of t consists of all the lists whose length is at most n, i.e.

dom(t) = {bs : B∗ | |bs| ≤ n}

Every leaf node in t is an answer node, i.e. for all bs ∈ dom(t)

if t`(bs) = !b then |bs| = n

There are no repeated queries in t, i.e. for all bs, bs ′ ∈ dom(t), j ∈ N

if bs v bs ′ and t`(bs) = t`(bs ′) =?j then bs = bs ′

where bs v bs ′ means bs is a prefix of bs ′.



Main theorem

Theorem

1 For every n-standard predicate pred , the generic search procedure has at
most time complexity

Time(genericSearch pred) =
∑

bs∈B∗,|bs|≤n

ts(bs) +O(2n)

2 Every generic counting function count ∈ L has for every n-standard predicate
pred at least time complexity

Time(count pred) =
∑

bs∈B∗,|bs|≤n

2n−|bs|ts(bs) +O(n2n)



Proving the positive result

Define suitable evaluation state computing functions

start, end : B∗ ×Model→ Comp

Lemma
Suppose t is a model of a n-standard predicate, then for every boolean list bs ∈ B∗

start(bs, t)

−→+ start(true :: bs, t) −→
∑
|bs|+1≤n ts(true::bs)+2n−(|bs|+1)

end(true :: bs, t)

−→+ start(false :: bs, t) −→
∑
|bs|+1≤n ts(false::bs)+2n−(|bs|+1)

end(false :: bs, t)
−→+ end(bs, t)

Proof.
Proof by downward induction on the list of booleans bs.



Proving the negative result

Suppose that we have an arbitrary implementation of generic search count ∈ L.
Pick any n-standard predicate pred and look at the computation arising from
count pred . Now we need to show that

Lemma (Every leaf is visited (A))
The computation (count pred) visits every leaf in the model of pred .

Lemma (No shared computation (B))
If p and p′ are distinct points then their subcomputations are disjoint.

Since each subcomputation has length at least Ω(n) the entire computation must
have at least length Ω(n2n).



Threads and sections

Consider a 3-standard predicate seven (has seven true leaves)

Thread
.
= { pred p  ∗ E0[p 0],
E0[true] ∗ E1[p 1]
E1[false] ∗ E2[p 2],
E2[true]→ false }

?0

?1

?2

!tt !tt

?2

!ff !tt

?1

?2

!tt !tt

?2

!tt !tt

Any n-standard predicate has 2n threads, and every thread consists of n + 1
sections.

Proof of Lemma A.
By contradiction: pick a leaf that has no thread; negate the value at the leaf;
tweak the predicate accordingly; observe a wrong result.
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No shared computation

Every section has a unique successor

Proof.
Follows by definition of section and the
semantics being deterministic.

Every section has a single predecessor

Proof.
By direct calculation on the reduction
sequence induced by a section.



Summary and future work

In summary
We have defined two languages L and Leff

We have demonstrated that Leff provides strictly more efficient
implementations of generic search than L (O(2n) vs Ω(n2n))
. . . which establish a new complexity result for control operators

Future considerations
Perform empirical experiments to observe the result in practice (Daniels 2016)
Study the robustness of the result, i.e. what feature(s) can we add to L
whilst retaining an efficiency gap between L and Leff ?
Generalise the result to all conceivable effective models of computations
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