This work is supported by

EPSRC Centre for Doctoral Training in Pervasive Parallelism

Engineering and Physical Sciences Research Council

Efficient Generic Search with Effect Handlers

Daniel Hillerström

Laboratory for Foundations of Computer Science School of Informatics The University of Edinburgh, UK

July 18, 2018

Programming Language Interest Group

(Joint work with Sam Lindley and John Longley)

The crux of this work is to establish a new complexity result for control operators

Lay person's version of the result

There is a class of problems for which a language with control operators provides asymptotically more efficient solutions than a language without control operators $(\mathcal{O}(2^n) \text{ vs } \Omega(n2^n))$.

To establish the existence of this class, we use *generic search* as an example program and effect handlers as our control operator.

This talk is high-level walk-through of how we establish this result

(The possibility of the existence of this result can be traced back to Longley (2009))

(Disclaimer: we present the result using a contextual operational semantics, although, it was originally established using an abstract machine (Hillerström and Lindley 2016))

The plan of attack

- Define a pure functional language $\mathcal{L},$ and an extension thereof $\mathcal{L}_{\it eff}$ with effect handlers.
- Provide a specification (type signature) of generic search problem
- \bullet Implement an efficient version of generic search in $\mathcal{L}_{\textit{eff}}$
- ... and prove that it is indeed efficient
- \bullet Finally show that any implementation of generic search in ${\cal L}$ has worse complexity
- There is a single rule of engagement:

No change of types is allowed! (Longley and Normann 2015)

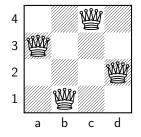
This rules out tricks such as

- CPS conversion (Hillerström et al. 2017)
- \bullet Implementing an interpreter for $\mathcal{L}_{\textit{eff}}$ in \mathcal{L}

Given a search problem P, a generic search algorithm finds solutions of P.

Applications include (Daniels 2016)

- *n*-Queens
- Sudoku
- Finding Nash equilibria
- Graph-colouring
- Exact real number integration



A solution to 4-Queens problem

Rather than finding solutions of P, we count the number of solutions of P

Somewhat related is work on exhaustive search on infinite spaces

- Berger (1990): exhaustive search on the Cantor space $2^{\mathbb{N}}$
- Escardó (2007): characterisation of searchable infinite sets
- Bauer (2011): efficient search on infinite sets with effect handlers

Fine-grain call-by-value PCF (Levy et al. 2003)

The core of a "pure" functional programming language ${\cal L}$

Types
$$A, B, C, D ::= \langle \rangle \mid \mathsf{Bool} \mid \mathsf{Nat} \mid A \times B \mid A + B \mid A \to B$$

Values

$$V, W \in \text{Val} ::= x \mid b \in \mathbb{B} \mid n \in \mathbb{N} \mid \text{Plus} \mid \langle \rangle \mid \langle V; W \rangle$$
$$\mid (\text{inl } V)^B \mid (\text{inr } W)^A \mid \lambda x^A. M \mid \text{rec } f^A x. M$$

Computations
$$M, N \in \text{Comp} ::= V W$$

 $| \text{ let } \langle x; y \rangle = V \text{ in } N$
 $| \text{ if } V \text{ then } M \text{ else } N$
 $| \text{ case } V \{ \text{inl } x \mapsto M; \text{ inr } y \mapsto N \}$
 $| \text{ return } V$
 $| \text{ let } x \leftarrow M \text{ in } N$

Eval. contexts $\mathcal{E} \in \mathsf{Eval} ::= [] | \mathsf{let} x \leftarrow \mathcal{E} \mathsf{ in } N$

The static and dynamic semantics are completely standard.

I shall permit myself to use regular call-by-value syntax, e.g. for $f, g, h, a \in Val$

 $f\left(h\,a
ight) +g\left\langle
ight
angle$

I shall permit myself to use regular call-by-value syntax, e.g. for $f, g, h, a \in Val$

$$\begin{bmatrix} f(ha) + g(k) \end{bmatrix} = \begin{bmatrix} ex \leftarrow ha \text{ in} \\ ex \leftarrow fx \text{ in} \\ ex \leftarrow g(k) \\ ex \leftarrow g(k)$$

The language \mathcal{L}_{eff}

Computations $M, N \in \text{Comp} ::= \cdots \mid \text{do } \ell V \mid \text{handle } M \text{ with } H$ Handlers $H ::= \{ \text{val } x \mapsto M \} \mid \{ \ell \ p \ r \mapsto N \} \uplus H$ Eval. contexts $\mathcal{E} \in \text{Eval} ::= \cdots \mid \text{handle } \mathcal{E} \text{ with } H$

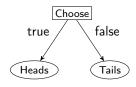
- S-Ret handle (return V) with H $\rightsquigarrow N[V/x]$, where $H^{val} = \{ val \ x \mapsto N \}$
- S-Op handle $\mathcal{E}[\text{do } \ell V]$ with H $\rightsquigarrow N[V/p, \lambda y.$ handle $\mathcal{E}[\text{return } y]$ with H/r], where $H^{\ell} = \{\ell p r \mapsto N\}$

Example: Coin tossing (nondeterminism)

Fix $\Sigma = \{ \mathsf{Choose} : \mathsf{Bool} \}$

A coin toss model

 $toss: \langle \rangle \rightarrow Toss$ $toss = \mathbf{if do}$ Choose then Heads else Tails



A possible handler for Choose

 $\begin{array}{l} \textit{allChoices}: (\langle \rangle \to \mathsf{Toss}) \to [\mathsf{Toss}] \\ \textit{allChoices} = \lambda m. \ \textbf{handle} \ m \left< \right> \ \textbf{with} \\ \textbf{val} \ x \mapsto [x] \\ \text{Choose } r \mapsto r \ \textbf{true} \ +\!\!+ r \ \textbf{false} \end{array}$

Enumerating all possible outcomes

allChoices toss $\rightsquigarrow^+ ??$

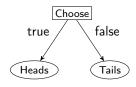
Example: Coin tossing (nondeterminism)

Fix $\Sigma = \{ \mathsf{Choose} : \mathsf{Bool} \}$

A coin toss model

 $toss: \langle \rangle \rightarrow Toss$ $toss = \mathbf{if do}$ Choose then Heads else Tails

Computation tree



A possible handler for Choose

 $\begin{array}{l} \textit{allChoices}: (\langle \rangle \to \mathsf{Toss}) \to [\mathsf{Toss}] \\ \textit{allChoices} = \lambda m. \ \textbf{handle} \ m \left< \right> \ \textbf{with} \\ \textit{val} \ x \mapsto [x] \\ \textit{Choose } r \mapsto r \ \textbf{true} + r \ \textbf{false} \end{array}$

Enumerating all possible outcomes

allChoices toss \rightsquigarrow^+ [Heads, Tails]

 $\mathsf{Predicate} \doteq (\mathsf{Nat} \to \mathsf{Bool}) \to \mathsf{Bool}$

 $\begin{array}{l} \mathsf{Point} \doteq \mathsf{Nat} \to \mathsf{Bool} \\ \mathsf{Predicate} \doteq \mathsf{Point} \to \mathsf{Bool} \end{array}$

 $\begin{array}{l} \mbox{Point} \doteq \mbox{Nat} \rightarrow \mbox{Bool} \\ \mbox{Predicate} \doteq \mbox{Point} \rightarrow \mbox{Bool} \\ \mbox{Counter} \doteq \mbox{Predicate} \rightarrow \mbox{Nat} \end{array}$

 $\begin{array}{l} \mbox{Point} \doteq \mbox{Nat} \rightarrow \mbox{Bool} \\ \mbox{Predicate} \doteq \mbox{Point} \rightarrow \mbox{Bool} \\ \mbox{Counter} \doteq \mbox{Predicate} \rightarrow \mbox{Nat} \end{array}$

Some (silly) example predicates

tt_n $\doteq \lambda p.p0; \dots; p(n-1);$ return true div_n \doteq rec d p.if p(n-1) then d p else return false odd_n $\doteq \lambda p.$ reduce xor false $[p0, \dots, p(n-1)]$

A possible implementation of generic search in $\mathcal L$

```
\begin{array}{l} count_n : (\operatorname{Predicate} \to \operatorname{Bool}) \to \operatorname{Nat} \\ count_n \doteq \lambda pred. count' \, n \, (\lambda i. \bot) \\ & \mathbf{where} \\ & count' \, 0 \qquad p \doteq \mathbf{if} \ pred \ p \ \mathbf{then} \ 1 \ \mathbf{else} \ 0 \\ & count' \, (n+1) \ p \doteq \quad count' \, n \, (\lambda i. \mathbf{if} \ i = n \ \mathbf{then} \ \mathrm{true} \ \mathbf{else} \ p \ i) \\ & + \ count' \, n \, (\lambda i. \mathbf{if} \ i = n \ \mathbf{then} \ \mathrm{false} \ \mathbf{else} \ p \ i) \end{array}
```

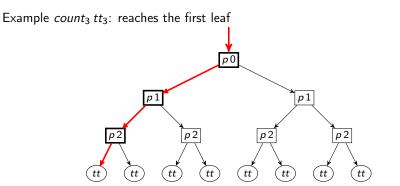
A possible implementation of generic search in ${\cal L}$

```
\begin{array}{l} count_n : (\operatorname{Predicate} \to \operatorname{Bool}) \to \operatorname{Nat} \\ count_n \doteq \lambda pred.count' \, n \, (\lambda i. \bot) \\ & \text{where} \\ & count' \, 0 \qquad p \doteq \text{if } pred \, p \, \text{then 1 else } 0 \\ & count' \, (n+1) \, p \doteq \quad count' \, n \, (\lambda i. \text{if } i = n \, \text{then true else } p \, i) \\ & + \, count' \, n \, (\lambda i. \text{if } i = n \, \text{then false else } p \, i) \end{array}
```

Example count₃ tt₃: p1 p2 p2p2

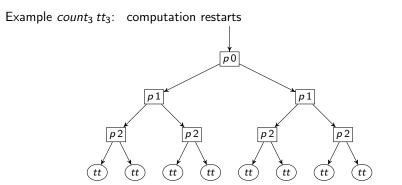
A possible implementation of generic search in ${\cal L}$

```
\begin{array}{l} count_n : (\operatorname{Predicate} \to \operatorname{Bool}) \to \operatorname{Nat} \\ count_n \doteq \lambda pred.count' \, n \, (\lambda i. \bot) \\ & \text{where} \\ & count' \, 0 \qquad p \doteq \text{if } pred \, p \, \text{then 1 else } 0 \\ & count' \, (n+1) \, p \doteq \quad count' \, n \, (\lambda i. \text{if } i = n \, \text{then true else } p \, i) \\ & + \, count' \, n \, (\lambda i. \text{if } i = n \, \text{then false else } p \, i) \end{array}
```



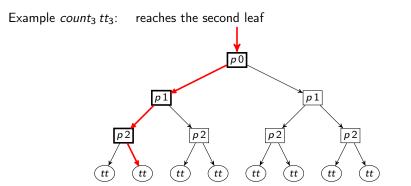
A possible implementation of generic search in $\mathcal L$

```
\begin{array}{l} count_n : (\operatorname{Predicate} \to \operatorname{Bool}) \to \operatorname{Nat} \\ count_n \doteq \lambda pred. count' \, n \, (\lambda i. \bot) \\ & \text{where} \\ & count' \, 0 \qquad p \doteq \text{ if } pred \, p \, \text{then } 1 \, \text{else } 0 \\ & count' \, (n+1) \, p \doteq \quad count' \, n \, (\lambda i. \text{if } i = n \, \text{then } \text{true } \text{else } p \, i) \\ & + \, count' \, n \, (\lambda i. \text{if } i = n \, \text{then } \text{false } \text{else } p \, i) \end{array}
```



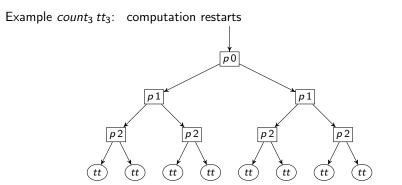
A possible implementation of generic search in ${\cal L}$

 $\begin{array}{l} count_n : (\operatorname{Predicate} \to \operatorname{Bool}) \to \operatorname{Nat} \\ count_n \doteq \lambda pred.count' \, n \, (\lambda i. \bot) \\ & \text{where} \\ & count' \, 0 \qquad p \doteq \text{if } pred \, p \, \text{then 1 else } 0 \\ & count' \, (n+1) \, p \doteq \quad count' \, n \, (\lambda i. \text{if } i = n \, \text{then true else } p \, i) \\ & + \, count' \, n \, (\lambda i. \text{if } i = n \, \text{then false else } p \, i) \end{array}$



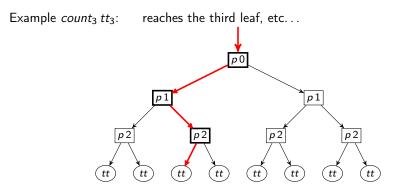
A possible implementation of generic search in $\mathcal L$

```
\begin{array}{l} count_n : (\operatorname{Predicate} \to \operatorname{Bool}) \to \operatorname{Nat} \\ count_n \doteq \lambda pred. count' \, n \, (\lambda i. \bot) \\ & \text{where} \\ & count' \, 0 \qquad p \doteq \text{ if } pred \, p \, \text{then } 1 \, \text{else } 0 \\ & count' \, (n+1) \, p \doteq \quad count' \, n \, (\lambda i. \text{if } i = n \, \text{then } \text{true } \text{else } p \, i) \\ & + \, count' \, n \, (\lambda i. \text{if } i = n \, \text{then } \text{false } \text{else } p \, i) \end{array}
```



A possible implementation of generic search in ${\cal L}$

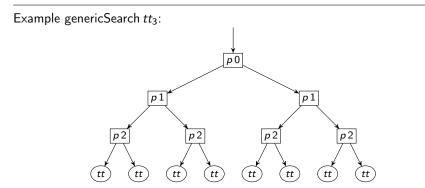
```
\begin{array}{l} count_n : (\operatorname{Predicate} \to \operatorname{Bool}) \to \operatorname{Nat} \\ count_n \doteq \lambda pred. count' \, n \, (\lambda i. \bot) \\ & \text{where} \\ & count' \, 0 \qquad p \doteq \text{ if } pred \, p \, \text{then } 1 \, \text{else } 0 \\ & count' \, (n+1) \, p \doteq \quad count' \, n \, (\lambda i. \text{if } i = n \, \text{then } \text{true } \text{else } p \, i) \\ & + \, count' \, n \, (\lambda i. \text{if } i = n \, \text{then } \text{false } \text{else } p \, i) \end{array}
```



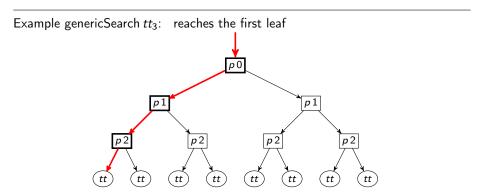
For the efficient implementation of generic search in \mathcal{L}_{eff} , we require one operation; fix $\Sigma \doteq \{\text{Branch} : \text{Bool}\}$

```
genericSearch : (Predicate \rightarrow Bool) \rightarrow Nat
genericSearch \doteq \lambda pred.handle (if pred (\lambda n.do Branch) then 1 else 0) with
val x \mapsto x
Branch r \mapsto r true + r false
```

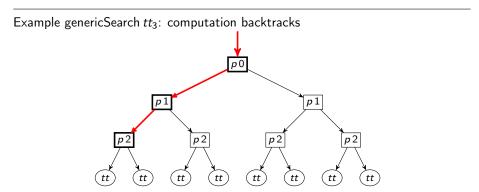
For the efficient implementation of generic search in \mathcal{L}_{eff} , we require one operation; fix $\Sigma \doteq \{\text{Branch} : \text{Bool}\}$



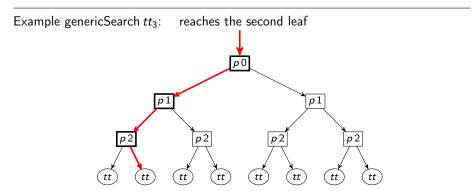
For the efficient implementation of generic search in \mathcal{L}_{eff} , we require one operation; fix $\Sigma \doteq \{\text{Branch} : \text{Bool}\}$



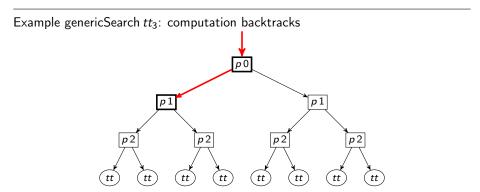
For the efficient implementation of generic search in \mathcal{L}_{eff} , we require one operation; fix $\Sigma \doteq \{\text{Branch} : \text{Bool}\}$



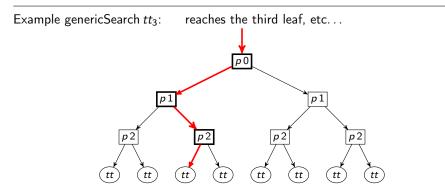
For the efficient implementation of generic search in \mathcal{L}_{eff} , we require one operation; fix $\Sigma \doteq \{\text{Branch} : \text{Bool}\}$



For the efficient implementation of generic search in \mathcal{L}_{eff} , we require one operation; fix $\Sigma \doteq \{\text{Branch} : \text{Bool}\}$



For the efficient implementation of generic search in \mathcal{L}_{eff} , we require one operation; fix $\Sigma \doteq \{\text{Branch} : \text{Bool}\}$



Definition (The label set)

The set Lab consists of queries parameterised by a natural number and answers parameterised by a boolean, i.e. $Lab \doteq \{!tt, !ff\} \cup \{?n \mid n \in \mathbb{N}\}$

Definition (Decision tree)

A decision tree is a partial function $t : \mathbb{B}^* \to Lab \times Eval \times \mathbb{N}$ from lists of booleans to node labels with the following properties:

- The domain of t, dom(t), is prefix closed.
- For any boolean, $b \in \mathbb{B}$, and list, $bs \in \mathbb{B}^*$, of booleans, if $t_{\ell}(bs) = !b$ is an answer node then bs is a leaf of t.

Notation: write t_{ℓ} and t_s for the projection of the first and third components of t(-), respectively.

Definition

We implement the decision tree semantics as a partial function parameterised by an abstract point p, $\mathcal{T}_p : \operatorname{Comp} \rightarrow (\mathbb{B}^* \rightarrow \operatorname{Lab} \times \operatorname{Eval} \times \mathbb{N})$, that given a predicate, *pred*, constructs a function, that given a list of booleans, *bs*, returns the corresponding node label in model of *pred* p, where p is an "abstract point".

$$\begin{split} \mathcal{T}_{p}(\textbf{return true})\,[\,] &= (!\mathsf{true},[\,],0)\\ \mathcal{T}_{p}(\textbf{return false})\,[\,] &= (!\mathsf{false},[\,],0)\\ \mathcal{T}_{p}(\mathcal{E}[p\,n])\,[\,] &= (?n,\mathcal{E},0)\\ \mathcal{T}_{p}(\mathcal{E}[p\,n])(b::bs) &\simeq \mathcal{T}_{p}(\mathcal{E}[\textbf{return }b])(bs)\\ \end{split}$$
 If $M \rightsquigarrow N$ then $\mathcal{T}_{p}(M)(bs) \simeq \mathcal{I}(\mathcal{T}_{p}(N)(bs))\\ \text{ where } \mathcal{I}(\ell,\mathcal{E},i) = (\ell,\mathcal{E},i+1) \end{split}$

Define Model \doteq Comp \rightarrow ($\mathbb{B}^* \times \mathsf{Eval} \times \mathbb{N}$).

We are interested in predicates whose models are complete binary trees, and query each component of a provided point exactly once.

Definition (*n*-standard trees)

For any n > 0 a decision tree t is said to be n-standard whenever

• The domain of t consists of all the lists whose length is at most n, i.e.

$$dom(t) = \{bs : \mathbb{B}^* \mid |bs| \le n\}$$

• Every leaf node in t is an answer node, i.e. for all $bs \in dom(t)$

if $t_{\ell}(bs) = |b|$ then |bs| = n

• There are no repeated queries in t, i.e. for all $bs, bs' \in dom(t), j \in \mathbb{N}$

if $bs \sqsubseteq bs'$ and $t_{\ell}(bs) = t_{\ell}(bs') = ?j$ then bs = bs'

where $bs \sqsubseteq bs'$ means bs is a prefix of bs'.

Theorem

• For every n-standard predicate pred, the generic search procedure has at most time complexity

$$\mathsf{Time}(\mathsf{genericSearch} \ \mathsf{pred}) = \sum_{bs \in \mathbb{B}^*, |bs| \le n} t_s(bs) + \mathcal{O}(2^n)$$

 Every generic counting function count ∈ L has for every n-standard predicate pred at least time complexity

$$\mathsf{Time}(\textit{count pred}) = \sum_{bs \in \mathbb{B}^*, |bs| \le n} 2^{n-|bs|} t_s(bs) + \mathcal{O}(n2^n)$$

Define suitable evaluation state computing functions

 $\textit{start},\textit{end}: \mathbb{B}^* \times \mathsf{Model} \to \mathsf{Comp}$

Lemma

Suppose t is a model of a n-standard predicate, then for every boolean list bs $\in \mathbb{B}^*$

$$start(bs, t)$$

$$\longrightarrow^{+} start(true :: bs, t) \longrightarrow^{\sum_{|bs|+1 \leq n} t_{s}(true :: bs)+2^{n-(|bs|+1)}} end(true :: bs, t)$$

$$\longrightarrow^{+} start(false :: bs, t) \longrightarrow^{\sum_{|bs|+1 \leq n} t_{s}(false :: bs)+2^{n-(|bs|+1)}} end(false :: bs, t)$$

$$\longrightarrow^{+} end(bs, t)$$

Proof.

Proof by downward induction on the list of booleans bs.

Suppose that we have an arbitrary implementation of generic search $count \in \mathcal{L}$. Pick any *n*-standard predicate *pred* and look at the computation arising from *count pred*. Now we need to show that

Lemma (Every leaf is visited (A))

The computation (count pred) visits every leaf in the model of pred.

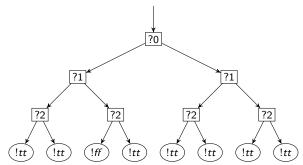
Lemma (No shared computation (B))

If p and p' are distinct points then their subcomputations are disjoint.

Since each subcomputation has length at least $\Omega(n)$ the entire computation must have at least length $\Omega(n2^n)$.

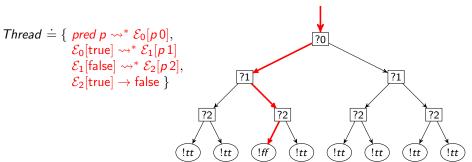
Threads and sections

Consider a 3-standard predicate seven (has seven true leaves)



Threads and sections

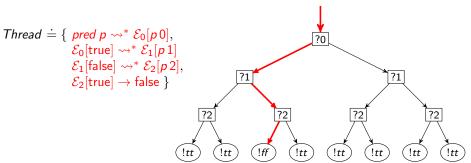
Consider a 3-standard predicate *seven* (has seven true leaves)



Any *n*-standard predicate has 2^n threads, and every thread consists of n + 1 sections.

Threads and sections

Consider a 3-standard predicate *seven* (has seven true leaves)



Any *n*-standard predicate has 2^n threads, and every thread consists of n + 1 sections.

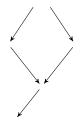
Proof of Lemma A.

By contradiction: pick a leaf that has no thread; negate the value at the leaf; tweak the predicate accordingly; observe a wrong result.

No shared computation

Every section has a unique successor

Every section has a single predecessor



Proof.	Proof.
Follows by definition of section and the	By direct calculation on the reduction
semantics being deterministic.	sequence induced by a section. $\hfill \Box$

In summary

- \bullet We have defined two languages ${\cal L}$ and ${\cal L}_{\it eff}$
- We have demonstrated that L_{eff} provides strictly more efficient implementations of generic search than L (O(2ⁿ) vs Ω(n2ⁿ))
- ... which establish a new complexity result for control operators

Future considerations

- Perform empirical experiments to observe the result in practice (Daniels 2016)
- Study the robustness of the result, i.e. what feature(s) can we add to \mathcal{L} whilst retaining an efficiency gap between \mathcal{L} and \mathcal{L}_{eff} ?
- Generalise the result to all conceivable effective models of computations

Bauer, Andrej (2011). How make the "impossible" functionals run even faster. Mathematics, Algorithms and Proofs, Leiden, the Netherlands. url: http://math.andrej.com/2011/12/06/how-to-make-the-impossiblefunctionals-run-even-faster/.

- Berger, Ulrich (1990). "Totale Objekte und Mengen in der Bereichstheorie". PhD thesis. Munich: Ludwig Maximillians-Universtität.
- Daniels, Robbie (2016). "Efficient Generic Searches and Programming Language Expressivity". MA thesis. Scotland: School of Informatics, the University of Edinburgh.
- Escardó, Martín Hötzel (2007). "Infinite sets that admit fast exhaustive search". In: *LICS*. IEEE Computer Society, pp. 443–452.
- Hillerström, Daniel and Sam Lindley (2016). "Liberating effects with rows and handlers". In: *TyDe@ICFP*. ACM, pp. 15–27.
- Hillerström, Daniel et al. (2017). "Continuation Passing Style for Effect Handlers". In: FSCD. Vol. 84. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 18:1–18:19.

- Levy, Paul Blain, John Power, and Hayo Thielecke (2003). "Modelling environments in call-by-value programming languages". In: *Inf. Comput.* 185.2, pp. 182–210.
- Longley, John (2009). "Some Programming Languages Suggested by Game Models (Extended Abstract)". In: *Electr. Notes Theor. Comput. Sci.* 249, pp. 117–134.
 Longley, John and Dag Normann (2015). *Higher-Order Computability*. Theory and Applications of Computability. Springer.