This work is supported by

% THE UNIVERSITY
- of EDINBURGH

EPSRC Centire for Doctoral Training in
Pervasive Parallelism

5 UNIVERSITY OF
4P CAMBRIDGE

] School of _ ¢
informatics

EPSRC

Engineering and Physical Sciences
Research Council

OCaml Labs

Compiling Links Effect Handlers to the OCaml Backend

ML Workshop '16

1

Daniel Hillerstrom Sam Lindley ! KC Sivaramakrishnan 2

The University of Edinburgh, UK

2University of Cambridge, UK

September 22, 2016

The Programming Language Links

Meet Links (Cooper et al., 2006)
@ a ML-like strict functional programming language,
a single-source language for multi-tier web-programming,
with a syntax reminiscent of JavaScript, e.g. fun foo(x,y) { ... },
and a strong type system including linear types,

with effect typing based on row polymorphism,

@ and it provides effect handlers for controlling effects (Hillerstrom, 2015).
Links has three backends, each written in OCaml:

@ a JavaScript compiler for the client,

@ an interpreter for the server,

@ and an SQL generator for the database,

@ and with this work a compiler for the server.
See more at http://www.links-lang.org.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

http://www.links-lang.org

Algebraic Effects and Abstract Computations

An algebraic effect is a collection of abstract operations, e.g.

Nondet = {Choose : Bool}

Using abstract operations we can define effectful computations abstractly, e.g.

fun toss() { if (do Choose) Heads else Tails }

D. Hillerstrdm (University of Edinburgh)

Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

Algebraic Effects and Abstract Computations

An algebraic effect is a collection of abstract operations, e.g.

Nondet = {Choose : Bool}

Using abstract operations we can define effectful computations abstractly, e.g.

sig toss : () {Choose:Booll|e}-> Toss
fun toss() { if (do Choose) Heads else Tails }

D. Hillerstrdm (University of Edinburgh)

Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

Algebraic Effects and Abstract Computations

An algebraic effect is a collection of abstract operations, e.g.

Nondet = {Choose : Bool}

Using abstract operations we can define effectful computations abstractly, e.g.

sig toss : () {Choose:Booll|e}-> Toss
fun toss() { if (do Choose) Heads else Tails }

Evaluation of an abstract computation. . .

links> toss();
**x Error: Unhandled operation: Choose

... but, what is the semantics of Choose?

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

Abstract Operation Instantiation with Handlers

A handler instantiates abstract operations with concrete implementations, e.g.

handler randomResult {
case Return(x) -> x
case Choose(resume) -> resume(random() > 0.5)

}

The function resume is the captured (delimited) continuation of the operation.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

22-09-2016

Abstract Operation Instantiation with Handlers

A handler instantiates abstract operations with concrete implementations, e.g.

sig randomResult : (() {Choose:Boolle}-> a) ->
() {Choose{p} le}-> a
handler randomResult {
case Return(x) -> x
case Choose(resume) -> resume(random() > 0.5)

}

The function resume is the captured (delimited) continuation of the operation.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

Abstract Operation Instantiation with Handlers

A handler instantiates abstract operations with concrete implementations, e.g.

sig randomResult : (() {Choose:Boolle}-> a) ->
() {Choose{p} le}-> a
handler randomResult {
case Return(x) -> x
case Choose(resume) -> resume(random() > 0.5)

}

The function resume is the captured (delimited) continuation of the operation.

Interpretation of toss with this handler:

links> randomResult (toss) ();
Tails : Toss

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

Abstract Operation Instantiation with Handlers

A handler instantiates abstract operations with concrete implementations, e.g.

sig allChoices : (() {Choose:Boolle}-> a) ->
() {Choose{p} le}-> [al
handler allChoices {
case Return(x) -> [x]
case Choose(resume) -> resume(true) ++ resume(false)

}

The function resume is the captured (delimited) continuation of the operation.

Interpretation of toss with this handler:

links> allChoices (toss) ();
[Heads, Tails] : [Toss]

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

Handlers can be Abstract Too

Consider the following abstract handler:

sig flip : (() {Choose:Bool |e}-> a) ->
() {Choose:Bool |e}-> a)
handler flip {
case Return(x) -> x

case Choose(resume) -> resume(not(do Choose))

}

We may use allChoices to interpret flip(toss):

links> allChoices (flip(toss)) ();
[Tails, Heads] : [Toss]

D. Hillerstrdm (University of Edinburgh)

Compiling Links Effect Handlers to the OCaml Backend

22-09-2016

Classification of Handlers

Handlers can be classified according to their continuation consumption.

Type Example(s) Cont. consumption
Exception handler | maybeResult 0
Linear handler randomResult, flip 1
Multi-shot handler | allChoices >1

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

Handlers are not only for coin tossing. In particular, we have a reconstruction of
the concurrency model of Links using handlers (Hillerstrom, 2016).

Thus we are interested in making this abstraction efficient and safe while retaining
modularity.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

Compiler Backend

’ OCaml frontend ‘ ’ Links ‘

OCaml backend

’ Lambda ‘
I |
| Byte code | Clambda \
| |
Custom backends Native backends

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016 9/20

Multicore OCaml Handlers

Multicore OCaml (Dolan et al., 2015) provides
@ effect handlers as an abstraction for concurrency,
@ an efficient, native implementation of linear effect handlers,
@ an explicit copying construct for on demand multi-shot handlers.
Consider the following example in Links and OCaml:
links> allChoices(flip(toss)) ()
[Tails, Heads] : [Toss]

ocaml# allChoices (flip toss) ();;

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 09 10/20

Multicore OCaml Handlers

Multicore OCaml (Dolan et al., 2015) provides

o effect handlers as an abstraction for concurrency,

@ an efficient, native implementation of /inear effect handlers,

@ an explicit copying construct for on demand multi-shot handlers.
Consider the following example in Links and OCaml:
links> allChoices(£flip(toss)) ()

[Tails, Heads] : [Toss]

ocaml# allChoices (flip toss) ();;
Exception: Invalid_argument "continuation already taken".

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
----- > call chain

handler

allChoices flip toss computation

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference

s > call chain
*-..do Choose
handler %
allChoices flip toss computation

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference

s > call chain
do Choose
4
handler
allChoices flip toss computation

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
> call chain

resume (true)
4

allChoices flip toss computation

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):
— reference
----- > call chain

sp
handler

allChoices flip toss computation

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
----- > call chain

handler

allChoices flip toss computation

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference

s > call chain
|
handler
allChoices flip toss computation

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
----- > call chain

handler

allChoices i toss computation

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016 11/20

On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
----- > call chain

handler

allChoices i toss computation

Conservative solution: implement every handler as a multi-shot handler.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016 11/20

What is the Penalty?

Dynamic process generation (Sieve)

600 -
‘@
£
£
= 400~
S Concurrency impl.
5 “ Compiler/handlers
8 @ Interpreter/built-in
3
c
8
he]
= 200-

0, . ‘ ‘ ‘ ‘ ‘ ‘
20 40 60 80 100 120 140 160

Number of processes

D. Hillerstrém iversity of Edinburgh) Compiling Links Effect Handlers to the OCaml Back

What is the Penalty?

Dynamic process generation (Sieve)

600 -
‘@
£
£
= 400~
S Concurrency impl.
5 Compiler/handlers
8 @ Interpreter/built-in
3
c
8
he]
= 200-

0, . ‘ ‘ ‘ ‘ ‘ ‘
20 40 60 80 100 120 140 160

Number of processes

Idea: let's use the linear type system to track the linearity of handlers.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016

Does It Work?

Dynamic process generation (Sieve)
with optimisations

600 -
@
E
)
S
= 400- .
= Concurrency impl.
-2 @ Compiler/handlers
3 @ Interpreter/built-in
g @ Compiler/handlers+lin
c
s
el
@ 200-
b=

0 -
| | | | | | | |
20 40 60 80 100 120 140 160

Number of processes

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

Scoping of Handler Promotion

Initial idea: use the effect system to propogate linearity information.

Ideally, we want this:

h, . h3 hy
=
h, . b3 hi
Legend
h? Multi-shot handler
hn, Linear handler

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016 14/20

Scoping of Handler Promotion

Initial idea: use the effect system to propogate linearity information.
But, this is what really happens:

hJ_ h’2“ hl

Need some way to capture the structure of the handler stack at the type-level.

Legend
hy, Multi-shot handler
hy, Linear handler

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016 14/20

Use Case: Channel Selection

The linear type system is not expressive enough to capture tombstones.

chy chy

resume resume

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

Use Case: Channel Selection

The linear type system is not expressive enough to capture tombstones.

chy chy

resume

Nil

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

Use Case: Channel Selection

The linear type system is not expressive enough to capture tombstones.

Ch1 Ch2
resume resume’
P =4

This is not the desired semantics!

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

Compiling Handlers — Related Work

Compilation options
o Continuation monad (Kammar et al., 2013)
o Free monad (Kiselyov et al., 2013; Bauer and Pretnar, 2015)
@ Direct-style like Multicore OCaml (Dolan et al., 2015)
@ Selective CPS translation (Leijen, 2016)
@ Shift/reset control operators (Saleh and Schrijvers, 2016)

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

@ Algebraic effects and handlers provide a modular abstraction for effectful
programming.
@ OCaml backend gives you a native code generator (almost) for free.

@ Regard Links as an experimental frontend to OCaml with effect typing and
linear types.

o Type-and-effect directed optimisations of handlers is promising.

@ To capture common use cases we need a more expressive linear type system.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016 17/20

References |

ﬁ Daniel Hillerstrom.
Handlers for algebraic effects in Links.
Master's thesis, School of Informatics, the University of Edinburgh, Scotland,
August 2015.

ﬁ Daniel Hillerstrom.
Compilation of effect handlers and their applications in concurrency.
Master's thesis, School of Informatics, the University of Edinburgh, Scotland,
August 2016.

ﬁ Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers.
In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P.
de Roever, editors, Formal Methods for Components and Objects, 5th
International Symposium, FMCO 2006, Amsterdam, The Netherlands,
November 7-10, 2006, Revised Lectures, volume 4709 of Lecture Notes in
Computer Science, pages 266—296. Springer, 2006.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

References |l

ﬁ Amr Hany Saleh and Tom Schrijvers.
Efficient algebraic effect handlers for Prolog.
Submitted to TPLP, 2016.

ﬁ Oleg Kiselyov, Amr Sabry, and Cameron Swords.
Extensible effects: an alternative to monad transformers.
In Chung-chieh Shan, editor, Proceedings of the 2013 ACM SIGPLAN
Symposium on Haskell, Boston, MA, USA, September 23-24, 2013, pages
59-70. ACM, 2013.

ﬁ Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil
Madhavapeddy.
Effective concurrency through algebraic effects.
OCaml Workshop, 2015.

ﬁ Andrej Bauer and Matija Pretnar.
Programming with algebraic effects and handlers.
J. Log. Algebr. Meth. Program., 84(1):108-123, 2015.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend

References 1l

[§ Ohad Kammar, Sam Lindley, and Nicolas Oury.
Handlers in action.
In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP '13, pages 145-158, New York, NY, USA,
2013. ACM.

ﬁ Daan Leijen.
Type directed compilation of row-typed algebraic effects.
Technical report, Microsoft Research, 2016.

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 09- 20/20

