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The Programming Language Links

Meet Links (Cooper et al., 2006)
@ a ML-like strict functional programming language,
a single-source language for multi-tier web-programming,
with a syntax reminiscent of JavaScript, e.g. fun foo(x,y) { ... },
and a strong type system including linear types,

with effect typing based on row polymorphism,

@ and it provides effect handlers for controlling effects (Hillerstrom, 2015).
Links has three backends, each written in OCaml:

@ a JavaScript compiler for the client,

@ an interpreter for the server,

@ and an SQL generator for the database,

@ and with this work a compiler for the server.
See more at http://www.links-lang.org.
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Algebraic Effects and Abstract Computations

An algebraic effect is a collection of abstract operations, e.g.

Nondet = {Choose : Bool}

Using abstract operations we can define effectful computations abstractly, e.g.

fun toss() { if (do Choose) Heads else Tails }
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Algebraic Effects and Abstract Computations

An algebraic effect is a collection of abstract operations, e.g.

Nondet = {Choose : Bool}

Using abstract operations we can define effectful computations abstractly, e.g.

sig toss : () {Choose:Booll|e}-> Toss
fun toss() { if (do Choose) Heads else Tails }
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Algebraic Effects and Abstract Computations

An algebraic effect is a collection of abstract operations, e.g.

Nondet = {Choose : Bool}

Using abstract operations we can define effectful computations abstractly, e.g.

sig toss : () {Choose:Booll|e}-> Toss
fun toss() { if (do Choose) Heads else Tails }

Evaluation of an abstract computation. . .

links> toss();
**x Error: Unhandled operation: Choose

... but, what is the semantics of Choose?
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Abstract Operation Instantiation with Handlers

A handler instantiates abstract operations with concrete implementations, e.g.

handler randomResult {
case Return(x) -> x
case Choose(resume) -> resume(random() > 0.5)

}

The function resume is the captured (delimited) continuation of the operation.
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Abstract Operation Instantiation with Handlers

A handler instantiates abstract operations with concrete implementations, e.g.

sig randomResult : (() {Choose:Boolle}-> a) ->
() {Choose{p} le}-> a
handler randomResult {
case Return(x) -> x
case Choose(resume) -> resume(random() > 0.5)

}

The function resume is the captured (delimited) continuation of the operation.
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Abstract Operation Instantiation with Handlers

A handler instantiates abstract operations with concrete implementations, e.g.

sig randomResult : (() {Choose:Boolle}-> a) ->
() {Choose{p} le}-> a
handler randomResult {
case Return(x) -> x
case Choose(resume) -> resume(random() > 0.5)

}

The function resume is the captured (delimited) continuation of the operation.

Interpretation of toss with this handler:

links> randomResult (toss) ();
Tails : Toss

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend 22-09-2016



Abstract Operation Instantiation with Handlers

A handler instantiates abstract operations with concrete implementations, e.g.

sig allChoices : (() {Choose:Boolle}-> a) ->
() {Choose{p} le}-> [al
handler allChoices {
case Return(x) -> [x]
case Choose(resume) -> resume(true) ++ resume(false)

}

The function resume is the captured (delimited) continuation of the operation.

Interpretation of toss with this handler:

links> allChoices (toss) ();
[Heads, Tails] : [Toss]
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Handlers can be Abstract Too

Consider the following abstract handler:

sig flip : (() {Choose:Bool |e}-> a) ->
() {Choose:Bool |e}-> a)
handler flip {
case Return(x) -> x

case Choose(resume) -> resume(not(do Choose))

}

We may use allChoices to interpret flip(toss):

links> allChoices (flip(toss)) ();
[Tails, Heads] : [Toss]
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Classification of Handlers

Handlers can be classified according to their continuation consumption.

Type Example(s) Cont. consumption
Exception handler | maybeResult 0
Linear handler randomResult, flip 1
Multi-shot handler | allChoices >1
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Handlers are not only for coin tossing. In particular, we have a reconstruction of
the concurrency model of Links using handlers (Hillerstrom, 2016).

Thus we are interested in making this abstraction efficient and safe while retaining
modularity.
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Compiler Backend

’ OCaml frontend ‘ ’ Links ‘

OCaml backend

’ Lambda ‘
I |
| Byte code | Clambda \
| |
Custom backends Native backends
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Multicore OCaml Handlers

Multicore OCaml (Dolan et al., 2015) provides
@ effect handlers as an abstraction for concurrency,
@ an efficient, native implementation of linear effect handlers,
@ an explicit copying construct for on demand multi-shot handlers.
Consider the following example in Links and OCaml:
links> allChoices(flip(toss)) ()
[Tails, Heads] : [Toss]

ocaml# allChoices (flip toss) ();;
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Multicore OCaml Handlers

Multicore OCaml (Dolan et al., 2015) provides

o effect handlers as an abstraction for concurrency,

@ an efficient, native implementation of /inear effect handlers,

@ an explicit copying construct for on demand multi-shot handlers.
Consider the following example in Links and OCaml:
links> allChoices(£flip(toss)) ()

[Tails, Heads] : [Toss]

ocaml# allChoices (flip toss) ();;
Exception: Invalid_argument "continuation already taken".

D. Hillerstrdm (University of Edinburgh) Compiling Links Effect Handlers to the OCaml Backend



On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
----- > call chain

handler

allChoices flip toss computation
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On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference

s > call chain
*-..do Choose
handler %
allChoices flip toss computation
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On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference

s > call chain
do Choose
4
handler
allChoices flip toss computation
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On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
> call chain

resume (true)
4

allChoices flip toss computation
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On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):
— reference
----- > call chain

sp
handler

allChoices flip toss computation
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On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
----- > call chain

handler

allChoices flip toss computation
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On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference

s > call chain
|
handler
allChoices flip toss computation
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On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
----- > call chain

handler

allChoices i toss computation
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On Demand Multi-shot Handlers are a Fragile Abstraction

Runtime layout of aliChoices(flip(toss)):

— reference
----- > call chain

handler

allChoices i toss computation

Conservative solution: implement every handler as a multi-shot handler.
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What is the Penalty?

Dynamic process generation (Sieve)
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Idea: let's use the linear type system to track the linearity of handlers.
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Does It Work?

Dynamic process generation (Sieve)
with optimisations
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Scoping of Handler Promotion

Initial idea: use the effect system to propogate linearity information.

Ideally, we want this:

h, . h3 hy
=
h, . b3 hi
Legend
h? Multi-shot handler
hn, Linear handler
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Scoping of Handler Promotion

Initial idea: use the effect system to propogate linearity information.
But, this is what really happens:

hJ_ h’2“ hl

Need some way to capture the structure of the handler stack at the type-level.

Legend
hy, Multi-shot handler
hy, Linear handler
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Use Case: Channel Selection

The linear type system is not expressive enough to capture tombstones.

chy chy

resume resume
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Use Case: Channel Selection

The linear type system is not expressive enough to capture tombstones.

chy chy

resume

Nil
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Use Case: Channel Selection

The linear type system is not expressive enough to capture tombstones.

Ch1 Ch2
resume resume’
P =4

This is not the desired semantics!
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Compiling Handlers — Related Work

Compilation options
o Continuation monad (Kammar et al., 2013)
o Free monad (Kiselyov et al., 2013; Bauer and Pretnar, 2015)
@ Direct-style like Multicore OCaml (Dolan et al., 2015)
@ Selective CPS translation (Leijen, 2016)
@ Shift/reset control operators (Saleh and Schrijvers, 2016)
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@ Algebraic effects and handlers provide a modular abstraction for effectful
programming.
@ OCaml backend gives you a native code generator (almost) for free.

@ Regard Links as an experimental frontend to OCaml with effect typing and
linear types.

o Type-and-effect directed optimisations of handlers is promising.

@ To capture common use cases we need a more expressive linear type system.
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