
Proprietary + Confidential

Daniel Hillerström/2018-12-13
Intern, Google Aarhus, Denmark

PhD student, The University of Edinburgh, UK

Taking Back Control
… or implementing control idioms in user code

Proprietary + Confidential

This talk

A programmer’s introduction to effect handlers (my research topic).

This talk is largely based on materials from my CUFP’17 tutorial, c.f. http://cufp.org/2017/c3-daniel-hillerstrom-kc-concurrent-programming-with-effect-handlers.html

● Toy examples

● My PhD work at glance

● Implementing asynchrony as a library

● Some (semi-)open problems

● The future

http://cufp.org/2017/c3-daniel-hillerstrom-kc-concurrent-programming-with-effect-handlers.html

Proprietary + ConfidentialProprietary + Confidential

Why one might care

● Direct-style alternative to continuation passing style (CPS) and monadic programming

● Useful across a diverse spectrum

○ Probabilistic programming [Bingham et al., 2018]

○ Multi-stage programming [Yallop, 2017]

○ Concurrent programming [Dolan et al., 2017 and Leijen, 2017]

○ Modular program construction [Kammar et al., 2013]

● Expressive user-space for unikernels

The programmer’s perspective: take control from the runtime.

The compiler writer’s perspective: hand control to the programmer.

● Deep mathematical foundations [Plotkin and Power, 2001 and Plotkin and Pretnar, 2009]

● General enough to capture contemporary control idioms [Dolan et al., 2017, Leijen, 2017]

● Concrete enough to be amenable to optimisation [Wu and Schrijvers, 2015 and Leijen, 2018]

● Reduce complexity of the runtime/compiler [Dolan et al., 2016, Leijen, 2017]

Proprietary + ConfidentialProprietary + Confidential

Effect handlers

Operationally, effect handlers generalise exception handlers†

exception DivideByZero

let divide n d =
 match
 if d = 0 then raise DivideByZero
 else n / d
 with
 | result -> result
 | exception DivideByZero -> 0

†Benton and Kennedy (2001) style exception handlers

Proprietary + ConfidentialProprietary + Confidential

Effect handlers

Operationally, effect handlers generalise exception handlers†

exception DivideByZero

let divide n d =
 match
 if d = 0 then raise DivideByZero
 else n / d
 with
 | result -> result
 | exception DivideByZero -> 0

†Benton and Kennedy (2001) style exception handlers

transfers control to an enclosing handler

Proprietary + ConfidentialProprietary + Confidential

Effect handlers

Operationally, effect handlers generalise exception handlers†

exception DivideByZero

let divide n d =
 match
 if d = 0 then raise DivideByZero
 else n / d
 with
 | result -> result
 | exception DivideByZero -> 0

†Benton and Kennedy (2001) style exception handlers

Proprietary + ConfidentialProprietary + Confidential

Effect handlers

Operationally, effect handlers generalise exception handlers†

effect DivideByZero : int

let divide n d =
 match
 if d = 0 then raise DivideByZero
 else n / d
 with
 | result -> result
 | exception DivideByZero -> 0

†Benton and Kennedy (2001) style exception handlers

Terminology: abstract operation

Proprietary + ConfidentialProprietary + Confidential

Effect handlers

Operationally, effect handlers generalise exception handlers†

effect DivideByZero : int

let divide n d =
 match
 if d = 0 then perform DivideByZero
 else n / d
 with
 | result -> result
 | exception DivideByZero -> 0

†Benton and Kennedy (2001) style exception handlers

Terminology: abstract operation

Proprietary + ConfidentialProprietary + Confidential

Effect handlers

Operationally, effect handlers generalise exception handlers†

effect DivideByZero : int

let divide n d =
 match
 if d = 0 then perform DivideByZero
 else n / d
 with
 | result -> result
 | effect DivideByZero k -> continue k 0

†Benton and Kennedy (2001) style exception handlers

Terminology: abstract operation

Proprietary + ConfidentialProprietary + Confidential

Effect handlers

Operationally, effect handlers generalise exception handlers†

effect DivideByZero : int

let divide n d =
 match
 if d = 0 then perform DivideByZero
 else n / d
 with
 | result -> result
 | effect DivideByZero k -> continue k 0

†Benton and Kennedy (2001) style exception handlers

Terminology: abstract operation

Proprietary + ConfidentialProprietary + Confidential

Effect handlers

Operationally, effect handlers generalise exception handlers†

effect DivideByZero : int

let divide n d =
 match
 if d = 0 then perform DivideByZero
 else n / d
 with
 | result -> result
 | effect DivideByZero k -> continue k 0

†Benton and Kennedy (2001) style exception handlers

transfers control back to the invocation site
with the provided value

Terminology: abstract operation

Proprietary + ConfidentialProprietary + Confidential

Effect handlers

Operationally, effect handlers generalise exception handlers†

effect DivideByZero : int

let divide n d =
 match
 if d = 0 then perform DivideByZero
 else n / d
 with
 | result -> result
 | effect DivideByZero k -> continue k 0

†Benton and Kennedy (2001) style exception handlers

transfers control back to the invocation site
with the provided value

Terminology: abstract operation

continue : (‘a,‘b) continuation -> ‘a -> ‘b

Proprietary + ConfidentialProprietary + Confidential

Handlers in action

File: https://github.com/dhil/google-tech-talk-2018/blob/master/live/guess_the_number.ml

https://github.com/dhil/google-tech-talk-2018/blob/master/live/guess_the_number.ml

Proprietary + ConfidentialProprietary + Confidential

Execution stack

effect E : unit
match
 let x = match perform E with
 | effect F k -> ...
 in ...
with
| effect E k -> continue k ()

Fiber: heap allocated stack; grows and shrinks on demand.

Execution stack: a stack of fibers.

stack pointer

Toplevel fiber

1st handler

Fiber for
(let x = …)

back pointer

Proprietary + ConfidentialProprietary + Confidential

Execution stack

Fiber: heap allocated stack; grows and shrinks on demand.

Execution stack: a stack of fibers.

stack pointer

Toplevel fiber

1st handler

Fiber for
(let x = …)

back pointer

Fiber for
(perform E)

back pointer

2nd handler

perform E

effect E : unit
match
 let x = match perform E with
 | effect F k -> ...
 in ...
with
| effect E k -> continue k ()

Proprietary + ConfidentialProprietary + Confidential

Execution stack

Fiber: heap allocated stack; grows and shrinks on demand.

Execution stack: a stack of fibers.

Toplevel fiber

1st handler

stack pointer

Fiber for
(let x = …)

back pointer

Fiber for
(perform E)

back pointer

2nd handler

perform E

continuation pointer
continuation pointer

effect E : unit
match
 let x = match perform E with
 | effect F k -> ...
 in ...
with
| effect E k -> continue k ()

Proprietary + ConfidentialProprietary + Confidential

Execution stack

Fiber: heap allocated stack; grows and shrinks on demand.

Execution stack: a stack of fibers.

stack pointer

Toplevel fiber

1st handler

Fiber for
(let x = …)

back pointer

Fiber for
(perform E)

back pointer

2nd handler

()

effect E : unit
match
 let x = match perform E with
 | effect F k -> ...
 in ...
with
| effect E k -> continue k ()

Proprietary + ConfidentialProprietary + Confidential

Generators and iterators

Files: https://github.com/dhil/google-tech-talk-2018/blob/master/live/generators.ml
 https://github.com/dhil/google-tech-talk-2018/blob/master/live/pi.ml

https://github.com/dhil/google-tech-talk-2018/blob/master/live/generators.ml
https://github.com/dhil/google-tech-talk-2018/blob/master/live/generators.ml

Proprietary + ConfidentialProprietary + Confidential

An overview of implementations

White et al. (2018)
Typed Multicore OCaml

Biernacki et al. (2019)
Helium

Inostraza and van der Storm
(2018)

JEff

Bauer and Pretnar (2012)
Eff

Leijen (2017)
Koka

Lindley et al. (2017)
Frank

Dolan et al. (2015)
Multicore OCaml

Hillerström (2015)
Links

X Yinfluenced

Library implementations omitted, c.f. https://github.com/yallop/effects-bibliography

https://github.com/yallop/effects-bibliography

Proprietary + ConfidentialProprietary + Confidential

Year 0 Applications of effect handlers (wrt. parallelism and concurrency)

Year 1 Compilation strategies. Abstract machines, CPS translations.

Year 2 Expressive power.

Year 3 ??? Commences once I return.

My PhD at glance

Proprietary + ConfidentialProprietary + Confidential

Year 0 Applications of effect handlers (wrt. parallelism and concurrency)

Year 1 Compilation strategies. Abstract machines, CPS translations.

Year 2 Expressive power.

Year 3 ??? Commences once I return.

My PhD at glance

c.f. Hillerström and Lindley (2016), Hillerström et al. (2017), and Hillerström and Lindley (2018)

Proprietary + ConfidentialProprietary + Confidential

Year 0 Applications of effect handlers (wrt. parallelism and concurrency)

Year 1 Compilation strategies. Abstract machines, CPS translations.

Year 2 Expressive power.

Year 3 ??? Commences once I return.

My PhD at glance

Proprietary + ConfidentialProprietary + Confidential

Implementing asynchrony

File: https://github.com/dhil/google-tech-talk-2018/blob/master/live/async_await.ml

https://github.com/dhil/google-tech-talk-2018/blob/master/live/async_await.ml

Proprietary + ConfidentialProprietary + Confidential

(Semi-)Open problems I

(* Module trace.ml *)
effect Trace : unit
let trace f =
 match f (fun () -> perform Trace) with
 | result -> result
 | effect Trace k -> print_endline “Called”; continue k ()

(* Module other.ml *)
open Trace
let f g =
 match g () with
 | _ -> ()
 | effect Trace _ -> ()

let _ = trace f (* prints nothing. *)

Abstract operations are not abstracted.

Biernacki et al. (2018), Biernacki et al. (2019), Convent et al. (2018), Zhang and
Myers (2019) provide potential answers.

Proprietary + ConfidentialProprietary + Confidential

(Semi-)Open problems II

let take_while predicate file =
 let fh = open_in file in
 let rec take acc =
 try
 let line = input_line fh in
 if predicate line then
 take (line :: acc)
 else acc
 with
 | End_of_file -> acc
 in
 let lines = take [] in
 close_in fh; lines

In general, effect handlers do not interact well with resources

effect Abort : 'a
let leaks () =
 let predicate _ = perform Abort in
 match take_while predicate "fruits.dat" with
 | result -> result
 | effect Abort _ -> [] (* leaks. *)

Dolan et. al (2017) and Leijen (2018) provide potential answers

Proprietary + ConfidentialProprietary + Confidential

(Semi-)Open problems II

In general, effect handlers do not interact well with resources

effect Choose : bool
let bad_descriptor () =
 let predicate _ = perform Choose in
 match take_while predicate "fruits.dat" with
 | result -> [result]
 | effect Choose k ->
 continue k true @ continue k false
 (* bad file descriptor exception *)

Dolan et. al (2017) and Leijen (2018) provide potential answers

let take_while predicate file =
 let fh = open_in file in
 let rec take acc =
 try
 let line = input_line fh in
 if predicate line then
 take (line :: acc)
 else acc
 with
 | End_of_file -> acc
 in
 let lines = take [] in
 close_in fh; lines

Proprietary + ConfidentialProprietary + Confidential

(Semi-)Open problems III

Handler-oriented programming can occur a significant overhead

Some ideas on how to eliminate the overhead:

● Alternative, more efficient runtime representations of the handler stack

● Apply fusion laws (catamorphisms/folds) [Wu and Tom Schrijvers, 2015]

● Generalise tail-call elimination to “tail-resumptive elimination” [Leijen, 2018]

● Use a substructural typing discipline to guide optimisations

● Power of JIT compilation: profile-guided optimisations at runtime? (Speculation)

Proprietary + ConfidentialProprietary + Confidential

Concluding remarks and the future

Summary

● Effect handlers provide an abstraction for modular effectful programming

● Contemporary control idioms are really special instances of effect handlers

● OCaml provides an industrial-strength implementation of effect handlers

Future work

● Loads of design questions (type systems, modular abstraction, etc)

● Loads of compiler questions (optimisation schemes, runtime representations, etc)

● Effect handlers as a primitive in WebAssembly?

Proprietary + ConfidentialProprietary + ConfidentialProprietary + Confidential

References

Proprietary + Confidential

References I

❖ Andrej Bauer and Matija Pretnar, “Programming with Algebraic Effects and Handlers”, 2012

❖ Nick Benton and Andrew Kennedy, “Exceptional Syntax”, 2001

❖ Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos,

Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman, “Pyro: Deep Universal Probabilistic

Programming”, 2018

❖ Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski, “Handle with Care: Relational

Interpretation of Algebraic Effects and Handlers”, 2018

❖ Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski, “Abstracting Algebraic Effects”, 2019

❖ Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin, “Encapsulating Effects in Frank”, draft

2018

❖ Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Madhavapeddy, “Effective

Concurrency through Algebraic Effects”, 2015

❖ Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and Leo

White, “Concurrent System Programming with Effect Handlers”, 2017

Proprietary + Confidential

References II

❖ Daniel Hillerström, “Handlers for Algebraic Effects in Links”, 2015

❖ Daniel Hillerström and Sam Lindley, “Liberating Effects with Rows and Handlers”, 2016

❖ Daniel Hillerström, Sam Lindley, Robert Atkey, KC Sivaramakrishnan, “Continuation Passing Style for Effect

Handlers”, 2017

❖ Daniel Hillerström and Sam Lindley, “Shallow Effect Handlers”, 2018

❖ Pablo Inostroza and Tijs van der Storm, “JEff: Objects for Effect”, 2018

❖ Ohad Kammar, Sam Lindley, and Nicolas Oury, “Handlers in Action”, 2013

❖ Daan Leijen, “Type Directed Compilation of Row-Typed Algebraic Effects”, 2017

❖ Daan Leijen, “Structured Asynchrony with Algebraic Effects”, 2017

❖ Daan Leijen, “Algebraic Effect Handlers with Resources and Deep Finalization”, 2018

❖ Sam Lindley, Conor McBride, and Craig McLaughlin, “Do be do be do”, 2017

❖ Gordon D. Plotkin and John Power, “Adequacy for Algebraic Effects”, 2001

❖ Gordon D. Plotkin and Matija Pretnar, “Handlers of Algebraic Effects”, 2009

Proprietary + Confidential

References III

❖ Leo White, “Effective Programming: Adding an Effect System to OCaml”, 2018 (talk)

❖ Jeremy Yallop, “Staged Generic Programming”, 2017

❖ Yizhou Zhang and Andrew Myers, “Abstraction-Safe Effect Handlers via Tunnelling”, 2019

❖ Nicolas Wu and Tom Schrijvers, “Fusion for Free: Efficient Algebraic Effect Handlers”, 2015

