
Extended Abstract

Compiling Links Effect Handlers to the OCaml Backend

Daniel Hillerström
The University of Edinburgh

Sam Lindley
The University of Edinburgh

KC Sivaramakrishnan
University of Cambridge

Abstract
Algebraic effects and handlers provide a modular abstraction for
modelling and controlling computational effects. We present a
compiler for the experimental language Links with effect hand-
lers. Our compiler interfaces with the Multicore OCaml backend to
take advantage of OCaml’s implementation of efficient handlers.

1. Motivation
Algebraic effects and handlers [7] afford a compelling and modu-
lar alternative to monad transformers for controlling computational
effects. In previous work, we extended the functional web program-
ming language Links with algebraic effects and handlers [3, 4].

Links is a strict ML-like functional language for the web [1].
It has three backends: i) a JavaScript compiler for the client, ii) an
interpreter for the server, iii) and an SQL generator for the database.
Currently effect handlers are only supported on the server; in future
we intend to extend the JavaScript compiler to support them too.

In order to improve performance, and to study efficient compil-
ation of effect handlers in general, we have implemented a Links
compiler that targets the Multicore OCaml backend [2]. By taking
advantage of the OCaml backend we obtain both native code com-
pilation and access to the OCaml toolchain for free.

Prior work focuses mainly on the design and expressiveness of
handlers rather than performance. Nevertheless, several papers do
address performance. Kammar et al. [5] take advantage of Haskell’s
aggressive fusion optimisations for an efficient Haskell library for
handlers, as explained in detail by Wu and Schrijvers [9]. Kiselyov
and Ishii [6] also optimise a different Haskell library for hand-
lers, taking advantage of prior work on optimising monadic reflec-
tion [8]. Our work differs from these systems in that we compile
effect handlers directly, rather than via library.

2. Affine and Multi-shot Effect Handlers
This section provides a short primer to effect handlers in Links. An
algebraic effect is given by a signature of abstract operations. For
example nondeterminism is an algebraic effect that is given by a
nondeterministic choice operation called Choose. In Links, we may
use this operation to implement a coin toss:

sig toss : Comp({Choose:Bool |e}, Toss)
fun toss() { if (do Choose) Heads else Tails }

This declares an abstract computation toss, which invokes an op-
eration Choose using the do primitive. The sig keyword begins a
signature, which reads: toss is a computation with effect signature
{Choose:Bool |e} and return value Toss, whose constructors are
Heads and Tails. Links employs row typing to support extensible
effect signatures, thus e is an effect variable, which can be instanti-
ated with additional operations.

Introduction of another operation causes the effect signature
to grow accordingly. For example, if we introduce an exception
operation Fail : Zero, then we can model a drunk coin toss:

sig drunkToss : Comp({Choose:Bool,Fail:Zero |e}, Toss)
fun drunkToss() { if (do Choose) toss()

else switch (do Fail) { } }

Here Zero is the empty type, and thus the switch pattern matching
construct has no clauses.

An effect handler instantiates a subset of the operations of an
abstract computation. For example, the following handler interprets
Choose randomly:

sig randomResult : (Comp({Choose:Bool |e}, a)) ->
Comp({Choose{_} |e}, a)

handler randomResult {
case Return(x) -> x
case Choose(k) -> k(random() > 0.5)

}

The signature conveys that the handler interprets the operation
Choose and leaves any other operations uninterpreted. The notation
Choose{_} denotes that the operation is polymorphic in its pres-
ence. The handler comprises two clauses: i) the Return-clause spe-
cifies how to handle the return value of the computation. ii) the
Choose-clause specifies how to handle a Choose operation. The
parameter k is the (delimited) continuation of the operation Choose

in the computation. We say that randomResult is a linear handler,
because it invokes every continuation exactly once.

Alternatively, we may define a handler for Choose that invokes
its continuation twice to enumerate every possible outcome:

sig allResults : (Comp({Choose:Bool |e}, a)) ->
Comp({Choose{_} |e}, [a])

handler allResults {
case Return(x) -> [x]
case Choose(k) -> k(true) ++ k(false)

}

Observe that the return value is lifted into a singleton list. The
Choose-clause concatenates the outcomes obtained by interpret-
ing the operation as true and false, respectively. We say that
allResults is a multi-shot handler.

Finally, we have handlers that do not invoke continuations.
These are familiar exception handlers. As an example consider the
following handler, which returns Just the result of the computation
or returns Nothing if the operation Fail is performed:

sig maybeResult : (Comp({Fail:Zero |e}, a)) ->
Comp({Fail{_} |e}, Maybe(a))

handler maybeResult {
case Return(x) -> Just(x)
case Fail(_) -> Nothing

}

The type system prevents invocation of the continuation in the
Fail-clause, because the type Zero has zero inhabitants. Linear and
exception handlers together constitute affine handlers.

1 2016/6/11



Lambda

Byte code

Custom
backends

Links frontendOCaml frontend

OCaml backend

Native
backends

Figure 1. OCaml Backend

3. Compiler Infrastructure
We reuse most of the previous Links infrastructure. The Links fron-
tend is type-checked and translated into a small, typed intermediate
language in A-normal form (ANF). The Links interpreter imple-
ments a generalised CEK machine [4], which interprets ANF code.

Our compilation strategy is to translate the Links ANF lan-
guage into the OCaml Lambda language, which is a small, un-
typed lambda calculus. The OCaml backend exposes a hierarchy
of intermediate representations (IRs), where the top representation
is known as Lambda. As shown in the Figure 1, the Lambda IR of-
fers two different compilation options: byte code and native code.
Therefore by targeting Lambda rather than a lower level IR, we
achieve maximum flexibility as a translation into byte code, in prin-
ciple, enables us to take advantage of custom backends such as
js of ocaml to produce efficient JavaScript.

There are several semantic differences between Links and
OCaml, e.g. Links employs structural typing, whilst OCaml pre-
dominantly employs nominal typing. In particular, Links employs
row typing for effects, records, and variants, whereas OCaml only
supports row typing for the latter. Exhibiting a faithful translation
from Links to OCaml amounts to a lot of value boxing. Thus, we
target Lambda for greater flexibility and control. We effectively
subvert OCaml’s typechecker by targeting Lambda, however the
translation is safe as Links programs are already typechecked.

4. Runtime Representation
By using the OCaml backend we naturally inherit the OCaml run-
time. OCaml implements effect handlers as heap-managed stack
data structures, and as a consequence composition of handlers gives
rise to n-element stacks at run-time. For example, the composition
randomResult(maybeResult(·)) is represented as a two-element
stack. Thus, an invocation of an abstract operation amounts to
performing a dynamic lookup for a suitable handler in a stack.

Since the primary use of handlers in OCaml is to express con-
currency, OCaml handlers are affine; continuations can only be re-
sumed at most once, and multiple invocations of a continuation
causes a run-time error. Multi-shot handlers can be simulated by
manually cloning continuations using Obj.clone_continuation.
The cost of cloning is linear in the size of the handler stack. How-
ever, cloning is a fragile abstraction; if the handler stack contains at
least one multi-shot handler, then every affine handler in the stack
must be demoted to a multi-shot handler to be safe, because a multi-
shot handler may consume a linear continuation more than once.
Consequently, multi-shot handlers in OCaml break modularity.

In the Links compiler we use the cloning capability under the
hood to implement multi-shot handlers. For example, our encoding
of allResults amounts to the following in plain OCaml:

State 8-Queens 20-Queens
Links Interpreter 76167 242 411517
Links Compiler 1619 1 1059
OCaml (native) 829 1 200

Table 1. Micro-benchmarks (execution times are in milliseconds)

let all_results m = match m () with
| x -> [x]
| effect Choose k ->

let k’ arg =
continue (Obj.clone_continuation k) arg

in k’ true @ k’ false

OCaml provides a unified syntax for pattern-matching on regu-
lar, effect, and exception patterns. The keyword effect begins an
operation-clause. Essentially, we create a local function k’, which
wraps the actual continuation k. An invocation of k’ passes its ar-
gument to a fresh copy of the actual continuation. The continue

function is provided by the standard library; given a continuation
and a value, it invokes the continuation with that particular value.
By default we implement every handler as a multi-shot handler.

5. Optimisations
Table 1 contains the results of a few micro-benchmarks from Kam-
mar et al. [5]. Links Compiler corresponds to this work. While the
results are promising, it is rather conservative to implement every
handler as multi-shot. We would like to recover the efficiency of
affine handlers, but without sacrificing abstraction.

Linearisation Handlers that use their continuations linearly should
be promoted to linear handlers at compile time. We are currently
working on applying the existing linear type system of Links to
track the linearity of handlers.

Handler Resolution Traversing a large handler stack is likely to
be costly. If the handler stack, or part of it, is known statically, then
we can instantiate abstract operations at compile time.

6. Acknowledgements
The first and second authors were supported by EPSRC grants
CDT in Pervasive Parallelism (EP/L01503X/1) and EP/K034413/1,
respectively. This work is in collaboration with OCaml Labs.

References
[1] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web Program-

ming Without Tiers. FMCO ’06, 2006.
[2] S. Dolan, L. White, K. Sivaramakrishnan, J. Yallop, and

A. Madhavapeddy. Effective Concurrency through Algebraic Ef-
fects, 9 2015. OCaml Workshop.

[3] D. Hillerström. Handlers for Algebraic Effects in Links. Master’s
thesis, 2015.

[4] D. Hillerström and S. Lindley. Liberating Effects using Rows and
Handlers. Draft, June, 2016.

[5] O. Kammar, S. Lindley, and N. Oury. Handlers in Action. ICFP, 2013.
[6] O. Kiselyov and H. Ishii. Freer monads, more extensible effects.

Haskell Symposium, 2015.
[7] G. D. Plotkin and M. Pretnar. Handling Algebraic Effects. Logical

Methods in Computer Science, 2013.
[8] A. van der Ploeg and O. Kiselyov. Reflection without remorse: reveal-

ing a hidden sequence to speed up monadic reflection. 2014.
[9] N. Wu and T. Schrijvers. Fusion for Free - Efficient Algebraic Effect

Handlers. MPC, 2015.

2 2016/6/11


	Motivation
	Affine and Multi-shot Effect Handlers
	Compiler Infrastructure
	Runtime Representation
	Optimisations
	Acknowledgements

