
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Broken Links (Presentation)
Frank Emrich

The University of Edinburgh
United Kingdom

frank.emrich@ed.ac.uk

Daniel Hillerström
The University of Edinburgh

United Kingdom
daniel.hillerstrom@ed.ac.uk

Abstract
Links is a feature-rich web programming language for re-
search. It has often been the case that new features have
been designed and studied in isolation. Unsurprisingly, this
‘methodology’ inevitably leads to a system in which the in-
teraction amongst several features is broken. However, for
some combination of features it is not necessarily clear how
to make them apt together. In this talk, we want to give a
demonstration of the capabilities of the Links web program-
ming system followed by a discussion of interesting open
research challenges that have arisen from our work on Links.

Keywords multi-tier web programming, linearity, session
types, effect handlers

1 Introduction
An ever-growing set of tools and technologies help web de-
velopers write increasingly more interactive and dynamic
web applications. As a consequence, the complexity of web
applications has sky-rocketed. The programmer must mas-
ter a multitude of technologies as a single web application
may comprise several heterogeneous programming technolo-
gies split across multiple tiers: the client may be written in
JavaScript, communicating in ad-hoc manner with an ap-
plication server which may be a containerised distributed
system deployed on a cloud cluster, querying and crunching
data on multiple SQL-flavoured database servers. This is an
instance of the impedance mismatch problem. An old problem
that has been relevant for the Web since its inception.

The Links programming language was originally designed
in the mid-2000s to ease the impedance mismatch for web
applications by providing a single source language for each
involved tier [10]. The name ‘Links’ is both the designation
for the programming language and its associated system.
The system automatically slices any given source program,
generating the necessary code for each tier; for example
translating some code into JavaScript for the browser, some
into bytecode for the server, and some into SQL for the
database. The system also encompasses an application server,
which makes it simple to deploy a Links web application.

Links has been a successful vehicle for programming lan-
guage research [4, 5, 7–12, 14, 16–29, 31–33, 38, 39, 41]; for
example it led to the work of formlets [10, 11] as an idiom
for abstracting web forms. Furthermore, Links has influ-
enced other successful web programming languages, includ-
ing Opa [2] and Ur/Web [6].

2 The Links Language
Over the course of time, the programming language Links
has evolved into a feature-rich strict functional language in
the spirit of ML [35] with an advanced structural type-and-
effect system based on rows [32, 37]; it supports first-class
polymorphism with complete type inference for the decid-
able fragment of the type system [15]. The system also sup-
ports linear types. The type-and-effect system is used to clas-
sify which code can run on the database, server, or client [4].
Database queries are integrated into the language [9], as
pioneered by Kleisli [3, 40] and popularised by LINQ [34],
with support for data provenance [16–19] and view update
via relational lenses [31].

Inspired by Erlang [1], Links provides lightweight and
scalable concurrency, enabling programmers to modularise
their code into cohesive units, which communicate asyn-
chronously via linear session-typed channels. Such session
types [30] provide a lightweight means for enforcing com-
munication protocol conformance at compile-time. In Links,
protocol conformance checking leverages the linear type sys-
tem to ensure that each channel is used exactly once. Session-
typed channels are also failure-safe, meaning communication
protocols are capable of accounting for failure [20, 21]. This
makes it viable to implement a session-typed distributed
application in Links, which can cope with client drops.

Links has native support for effect handlers [36] as ameans
for structuring effectful computations [23–29]. Effect han-
dlers generalise exception handlers as they let the program-
mer obtain the continuation at the throw point of an opera-
tion. This continuation is delimited by the nearest suitable
enclosing handler. Furthermore, the continuation is a first-
class entity which can be resumed immediately, stashed for
later, or discarded. Handlers enable expressive control ab-
stractions to be implemented as user-definable libraries. For
instance, the idiom async/await for asynchronous program-
ming is definable in user code using handlers [13].

3 Challenging Interactions
We outline three different research challenges that we have
discovered during our implementation work on Links.

Combining Handlers and Sessions Session types enjoy
strong meta-theoretic properties such as deadlock-freedom
– which holds true in Links too, if one disregards the effect
handler fragment of the language.

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Submitted to ProWeb’20, March 23, Porto, Portugal Frank Emrich and Daniel Hillerström

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

We provide a minimal example to to illustrate how one
might break the deadlock property for session types using
effect handlers. The idea is to take two processes, a sender
and a receiver, which communicate over a session-typed
channel that expects to send (dually receive) one integer. In
the receiver process we perform an effectful operation to
obtain the continuation prior to the first receive. By invoking
this continuation twice we can receive twice from the same
linear channel. The second receive deadlocks the program.
We may implement the sender process as follows.
sig sp : (!Int.End) -> ()

fun sp(oc) { discard(send(42, oc)) }

This declares a function sp which takes as input a session-
typed channel, that expects a single integer to be sent along
it. The definition of sp takes the output channel oc as its
sole argument and in its body it sends 42 along the channel,
and subsequently discards the continuation-channel (the End
part). We may realise the receiver process as follows.
sig rp : (?Int.End) {Yield:()}-> ()

fun rp(ic) { do Yield; discard(recv(ic).2) }

The signature of rp states that it takes an input channel
which expects one integer. The prefix on the function arrow
is an effect row. It describes which effectful operations the
function may perform. In this instance it may perform a
nullary operation Yield, which returns a value of type unit.
In the body of rp we first perform the operation Yield using
the do-invocation form. Afterwards, we perform a receive
over the channel ic, which returns a pair consisting of the
integer and the continuation channel. We project the latter
and discard it.
Finally, we connect the two processes and give an inter-

pretation of the operation Yield using a handler as follows.
handle(rp(fork(sp))) {

case Yield(resume) -> resume(()); resume(())

}

The fork function provides the sender process with an output
channel and returns an input channel which we give to the
receiver process. Both processes run under a handler, which
intercepts and interprets invocations of Yield. Once the re-
ceiver process performs Yield control gets transferred to the
Yield-clause in the handler.The clause provides access to the
continuation of the invocation, here named resume. In the
right hand side of the clause, the first invocation of resume
transfers control back to the receiver process, which then
performs the receive which blocks until the sender process
has sent its data. Both processes complete after having suc-
cessfully sent and received the data, respectively. Upon com-
pletion control is transferred back into the handler clause,
causing the next invocation of resume, which transfers con-
trol back into rp, causing a second receive to happen along
the input channel. But no further input is coming along this
channel, hence the process blocks indefinitely.

The problem is that the interpretation of Yield is non-
linear in this example. To conform with the session protocol
the continuation resume must be invoked exactly once. The
pressing question is: how dowe enforce a linear interpretation?

Handling without Tiers Functions can be located on ei-
ther a client, server, or database. A server-side function may
call a client-side function, by passing the static name of the
said function to the client and await the result. However,
with effect handlers it is possible to install a handler on the
server, and run an effectful client-side computation under
it. The continuation of an operation invocation is dynamic
and nameless, making it troublesome to pass it back to the
server for handling. A solution may be to serialise the entire
continuation, however, that may not be feasible for large
computations. Another solution may be to generate dynamic
names, or pointers, for continuations and storing them on
the client. However, the server may drop the provided con-
tinuation, thus this approach seems to invite a whole range
of potential lifetime and memory leak issues.

ML Type Inference, Linearity, and Kinding The type
system supports linear typing, effect tracking, and first-class
polymorphism. The addition of type and kind inference leads
to intricate interactions between these features.

For example, we utilise the kind system to track linearity
of type variables. To make type inference tractable in the
presence of first-class polymorphism we also use the kind
system to track whether any given type variable is monomor-
phic. The type inference algorithm uses some bidirectionality
to decide when to infer polymorphic types. If a function is
annotated with a type signature, then we push the type infor-
mation of its parameters inwards during inference of its body
type. For an unannotated function, we create a fresh type
variable for each of its parameters. Each fresh type variable is
given the kind mono, which prohibits the variable from being
unified with a quantified type. This is at odds with inference
for linearity. For example, what should the inferred type of
fun id(x){x} be? Should x be assigned a type variable with
the linear kind or the monomorphism kind?

4 Talk Objectives
The talk will cover: i) a demonstration of the Links web
programming system, ii) motivated examples of fragile in-
teraction between distinct features, iii) a discussion about
research questions arising from our implementation work.

Acknowledgments
We would like to thank Sam Lindley and Leo White for
insightful discussions about this work. Daniel Hillerström
was supported by EPSRC grant EP/L01503X/1 (EPSRC Centre
for Doctoral Training in Pervasive Parallelism).

2

https://www.epsrc.ac.uk/
http://pervasiveparallelism.inf.ed.ac.uk


221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Broken Links (Presentation) Submitted to ProWeb’20, March 23, Porto, Portugal

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

References
[1] Joe Armstrong. 2010. Erlang. Commun. ACM 53, 9 (2010), 68–75.
[2] Henri Binsztok. 2011. The Opa Language. http://opalang.org.
[3] Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong.

1995. Principles of Programming with Complex Objects and Collection
Types. Theor. Comput. Sci. 149, 1 (1995), 3–48.

[4] James Cheney, Sam Lindley, Gabriel Radanne, and Philip Wadler. 2014.
Effective quotation: relating approaches to language-integrated query.
In PEPM. ACM, 15–26.

[5] James Cheney, Sam Lindley, and Philip Wadler. 2013. A practical
theory of language-integrated query. In ICFP. ACM, 403–416.

[6] Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming the
Web. In POPL. ACM, 153–165.

[7] Chi-Feng Chou. 2011. Functional reactive animation in SVG for the web
via Links. Master’s thesis. The University of Edinburgh.

[8] Ezra Cooper. 2009. Programming Language Features forWeb Application
Development. Ph.D. Dissertation. The University of Edinburgh.

[9] Ezra Cooper. 2009. The Script-Writer’s Dream: How to Write Great
SQL in Your Own Language, and Be Sure It Will Succeed. In Database
Programming Languages. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 36–51.

[10] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006.
Links: Web Programming Without Tiers. In FMCO (LNCS), Vol. 4709.
Springer, 266–296.

[11] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2008. The
Essence of Form Abstraction. In APLAS (Lecture Notes in Computer
Science), Vol. 5356. Springer, 205–220.

[12] Ravi Shankar Dangeti. 2008. Building biological database applications
using Links. Master’s thesis. The University of Edinburgh.

[13] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Mad-
havapeddy, K. C. Sivaramakrishnan, and Leo White. 2017. Concurrent
System Programming with Effect Handlers. In TFP (Lecture Notes in
Computer Science), Vol. 10788. Springer, 98–117.

[14] Gilles Dubochet. 2005. The SLinks language. Master’s thesis. The
University of Edinburgh.

[15] Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan
Coates. 2020. FreezeML: Complete and easy type inference for first-
class polymorphism. Draft.

[16] Stefan Fehrenbach. 2019. Language-integrated Provenance. Ph.D. Dis-
sertation. The University of Edinburgh.

[17] Stefan Fehrenbach and James Cheney. 2015. Language-integrated
Provenance in Links. In TaPP. USENIX Association.

[18] Stefan Fehrenbach and James Cheney. 2018. Language-integrated
provenance. Sci. Comput. Program. 155 (2018), 103–145.

[19] Stefan Fehrenbach and James Cheney. 2019. Language-integrated
provenance by trace analysis. In DBPL. ACM, 74–84.

[20] Simon Fowler. 2019. Typed Concurrent Functional Programming with
Channels, Actors, and Sessions. Ph.D. Dissertation. The University of
Edinburgh.

[21] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019.
Exceptional asynchronous session types: session types without tiers.
PACMPL 3, POPL (2019), 28:1–28:29.

[22] Simon Fowler, Sam Lindley, and Philip Wadler. 2017. Mixing
Metaphors: Actors as Channels and Channels as Actors. In ECOOP
(LIPIcs), Vol. 74. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
11:1–11:28.

[23] Daniel Hillerström and Sam Lindley. 2016. Liberating effects with
rows and handlers. In TyDe@ICFP. ACM, 15–27.

[24] Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers.
In APLAS (Lecture Notes in Computer Science), Vol. 11275. Springer,
415–435.

[25] Daniel Hillerström, Sam Lindley, and Robert Atkey. 2020. Effect Han-
dlers via Generalised Continuations. J. Funct. Program.. To appear.

[26] Daniel Hillerström, Sam Lindley, Robert Atkey, and KC Sivaramakr-
ishnan. 2017. Continuation Passing Style for Effect Handlers. In FSCD
(LIPIcs), Vol. 84. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
18:1–18:19.

[27] Daniel Hillerström. 2015. Handlers for Algebraic Effects in Links. Mas-
ter’s thesis. The University of Edinburgh.

[28] Daniel Hillerström. 2016. Compilation of Effect Handlers and their
Applications in Concurrency. Master’s thesis. The University of Edin-
burgh.

[29] Daniel Hillerström, Sam Lindley, and KC Sivaramakrishnan. 2016.
Compiling Links Effect Handlers to the OCaml Backend. ML Work-
shop.

[30] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR (Lecture
Notes in Computer Science), Vol. 715. Springer, 509–523.

[31] Rudi Horn, Roly Perera, and James Cheney. 2018. Incremental Rela-
tional Lenses. Proc. ACM Program. Lang. 2, ICFP, Article Article 74
(July 2018), 30 pages. https://doi.org/10.1145/3236769

[32] Sam Lindley and James Cheney. 2012. Row-based effect types for
database integration. In TLDI. ACM, 91–102.

[33] Sam Lindley and J Garrett Morris. 2017. Lightweight functional session
types. Behavioural Types: from Theory to Tools. River Publishers (2017),
265–286.

[34] Microsoft Corporation. 2005. DLinq: .NET Language Integrated Query
for Relational Data.

[35] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. 1997.
The Definition of Standard ML. MIT Press, Cambridge, MA, USA.

[36] GordonD. Plotkin andMatija Pretnar. 2013. Handling Algebraic Effects.
Logical Methods in Computer Science 9, 4 (2013).

[37] Didier Rémy. 1994. Theoretical Aspects of Object-oriented Program-
ming. MIT Press, Cambridge, MA, USA, Chapter Type Inference for
Records in Natural Extension of ML, 67–95.

[38] Gabriel Tellez. 2008. Implementing the Java Pet Store in Links: An
assessment of Links as an effective platform for building web applications.
Master’s thesis. The University of Edinburgh.

[39] Thomas Weber. 2018. Uselets: UIs using Actors as an Abstraction for
Composable Communicating Components. Master’s thesis. LMU/Uni-
versity of Augsburg/TU Munich.

[40] Limsoon Wong. 2000. Kleisli, a functional query system. J. Funct.
Program. 10, 1 (2000), 19–56.

[41] Jeremy Yallop. 2010. Abstraction for web programming. Ph.D. Disserta-
tion. The University of Edinburgh.

3

http://opalang.org
https://doi.org/10.1145/3236769

	Abstract
	1 Introduction
	2 The Links Language
	3 Challenging Interactions
	4 Talk Objectives
	Acknowledgments
	References

